
Runge-Kutta Method for Solving Ordinary Differential Equations
Author: John M. Cimbala, Penn State University

Latest revision: 26 September 2016

 Consider a first-order ordinary differential equation (ODE) for y as a function of t,

dy B Ay
dt

= − (1)

Assume that the starting or initial condition y(tstart) at some time t = tstart is known (tstart is often but not necessarily zero). If
coefficients A and B are constants, Eq. 1 can be solved analytically. However, if A and/or B are functions of t and/or y, an
analytical solution may be difficult, if not impossible to find. In such cases, the Runge-Kutta marching technique is useful
for obtaining an approximate numerical solution of Eq. 1. Subroutines to perform Runge-Kutta marching are built into
modern mathematical programs such as Matlab; nevertheless, readers should be familiar with how the method works.
While leaving out much of the details, this learning module provides enough information about the algorithm so that
readers can write a computer program to perform Runge-Kutta marching. Readers are encouraged to learn more about this
technique by studying Press et al. (1986) or other books on numerical methods.

 The most simple-minded algorithm for solving Eq. 1 numerically is the explicit Euler method, where one marches
explicitly in time steps of duration ∆t, incrementing y based on its slope with respect to time. Letting subscript n denote the
time step at hand, one can march to the next time step, n+1, as follows:

 1n n
n

dyy y t
dt+

 = + ∆

 (2)

where the slope in Eq. 2 is evaluated from the right hand side of Eq. 1 at time step n,

 n n n
n

dy B A y
dt

 = −

 (3)

Once the value of yn+1 is known, Eq. 2 is re-solved at the new time step; this process is continued from the starting time,
tstart, till some ending time, tend. While this technique is simple to program on a computer, it is inherently unstable, only first-
order accurate, and requires very small ∆t in order to achieve reasonable results. The main problem here is that the slope is
evaluated only at time step n, and is assumed to be constant throughout the time interval ∆t, as illustrated (and exaggerated)
in Figure 1.

t

y

tn tn+1

Exact curve, y(t)

yn

Predicted yn+1

1

Figure 1 Illustration of the explicit Euler method in which the predicted value of yn+1 at time tn+1 is extrapolated from the

slope (derivative) of y at time t = tn..

 In reality, as one marches towards time step n+1, the slope does not remain constant. Mathematicians and engineers
have developed clever algorithms to modify the slope such that information is used from one or more values of t between tn
and tn+1. These algorithms include the implicit Euler method and various kinds of predictor-corrector techniques, which can
be formulated to first-, second-, or higher-order accuracy.

 The Runge-Kutta technique is fourth-order accurate, and can be thought of as a kind of predictor-corrector
technique in that the final value of yn+1 at t = tn+1 is calculated as

 1 finaln ny y y+ = + ∆ (4)

where increment ∆yfinal is a weighted average of four “trial increments,” namely ∆y1, ∆y2, ∆y3, and ∆y4, evaluated from
slopes calculated at t = tn, tn+1/2, tn+1/2, and tn+1, respectively, as indicated in Figure 2.

t

y

tn tn+1 tn+1/2

Exact curve, y(t)

yn

predicted yn+1

1

2

3
4 ∆y1

∆y2 ∆y3 ∆y4

∆yfinal

Figure 2 Illustration of the four points where trial increments ∆y1, ∆y2, ∆y3, and ∆y4 are calculated for the fourth-order

Runge-Kutta marching technique; point 1 is the original point at t = tn, and points 2, 3, and 4 are trial points at t
= tn+1/2, t = tn+12, and t = tn+1, respectively.

The final predicted value of yn+1 at t = tn+1 is calculated as

 31 2 4
final 6 3 3 6

yy y yy
∆∆ ∆ ∆

∆ = + + + (5)

In Eq. 5 the first trial increment, ∆y1, is evaluated as in the explicit Euler method, using the slope evaluated at point 1, at t =
tn,

 1
 , n nt t y y

dyy t
dt = =

 ∆ = ∆

 (6)

This slope is used to predict a trial midpoint (point 2) at t = tn+1/2 = tn + ∆t/2 (halfway to the next time step),

 1
2 2n

yy y ∆
= +

The second slope is calculated at point 2, which is used to predict the second trial increment (∆y3) and the second trial
midpoint (point 3),

2

2
 ,

2n
tt t y y

dyy t
dt ∆

= + =

 ∆ = ∆

 (7)

 2
3 2n

yy y ∆
= +

The third slope is calculated at point 3, which is used to predict the third trial increment (∆y4) and the third trial point (point
4), this time at t = tn+1:

3

3
 ,

2n
tt t y y

dyy t
dt ∆

= + =

 ∆ = ∆

 (8)

 4 3ny y y= + ∆

The fourth slope is calculated at trial point 4, as predicted by the third slope.

4

4
 , nt t t y y

dyy t
dt = +∆ =

 ∆ = ∆

 (9)

Finally, a weighted average of all four slopes is used to predict yn+1, using Eqs. 4 and 5. As seen in Eq. 5, increments ∆y2
and ∆y3 have twice the importance (weight) as the other two. Another way to say this is that the two inner slopes are
counted as twice as important as the two outer slopes.

 The technique can be applied to more than one differential equation simultaneously. In addition, an nth-order ODE can
be solved by the Runge-Kutta method by splitting it into n first-order ODEs.

