\qquad

1) Develop a SolidWorks (SW) kinematic simulation for the four bar shown below with crank link 2 rotating at constant 30 rpm CCW. Attach a screen shot of your mechanism. Create three MATLAB graphs from your results. Be certain to start each plot at $\theta_{2}=0^{\circ}$. Do not plot $-180^{\circ} \leq$ $\theta_{2} \leq 180^{\circ}$.
a) θ_{4} [deg] as a function of θ_{2} [deg] (only one full revolution)
b) $\dot{\theta}_{4}[\mathrm{rad} / \mathrm{sec}]$ as a function of $\theta_{2}[\mathrm{deg}]$ (only one full revolution)
c) $\ddot{\theta}_{4}\left[\mathrm{rad} / \mathrm{sec}^{2}\right]$ as a function of $\theta_{2}[\mathrm{deg}]$ (only one full revolution)
2) Use simple trigonometry to determine $\theta_{4_{-} \operatorname{MAX}}$ and $\theta_{4_{-} \operatorname{MIN}}$ and compare to SW values. Show your work.
$\operatorname{trig} \theta_{4 _ \text {MAX }}$
$\operatorname{trig} \theta_{4 \text { MIN }}$ \qquad

SW $\theta_{4 _ \text {max }}$ \qquad SW $\theta_{4 _ \text {MIN }}$ \qquad
3) Explicitly verify your SW results and provide documentation including screen plots and hardcopy of code.

