1) Develop a SolidWorks (SW) kinematic simulation for the four bar shown below with crank link 2 rotating at constant 30 rpm CCW. Attach a screen shot of your mechanism. Create three MATLAB graphs from your results. Be certain to start each plot at $\theta_2 = 0^\circ$. Do not plot $-180^\circ \le \theta_2 \le 180^\circ$.

- a) θ_4 [deg] as a function of θ_2 [deg] (only one full revolution)
- b) $\dot{\theta}_4$ [rad/sec] as a function of θ_2 [deg] (only one full revolution)
- c) $\ddot{\theta}_4$ [rad/sec²] as a function of θ_2 [deg] (only one full revolution)

2) Use simple trigonometry to determine θ_{4_MAX} and θ_{4_MIN} and compare to SW values. Show your work.

trig θ_{4_MAX} _____ trig θ_{4_MIN} _____

SW $\theta_{4_{MAX}}$ _____ SW $\theta_{4_{MIN}}$ _____

3) Explicitly verify your SW results and provide documentation including screen plots and hardcopy of code.

