1) Determine mass and centroidal mass moment of inertia for an aluminum bar that is 4 cm wide, 25 cm long and 2 cm thick. Then create a Working Model (WM) link and adjust the mass in the "Properties" window to represent the actual link. Working Model assumes that all links are planar and are one unit thick. Validate your approach by repeating for an aluminum circular disk with 15 cm diameter and 2 cm thickness. Use units of $[\mathrm{kg}]$ for mass and $\left[\mathrm{kg} . \mathrm{cm}^{2}\right]$ for mass moment of inertia.
$4 \times 25 \times 2 \mathrm{~cm}$ bar $\quad 15 \mathrm{~cm}$ OD x 2 cm disk
actual density
mass
centroidal J
WM mass
WM centroidal J
WM density
2) A connecting rod 3 from an air compressor was weighed and measured as shown below. The connecting rod was balanced on a straight edge to find its centroid location G_{3}. It was then suspended by the inner surface of the wrist pin at point P and allowed to swing freely with small angle motion. Twenty periods of oscillation were measured. These measurements were repeated ten times.
$\mathrm{m}_{3}=0.462 \mathrm{lbm} \quad \mathrm{L}=\mathrm{BC}=4.33$ inch $\quad \mathrm{a}=3.642$ inch $\quad \mathrm{ID}_{\mathrm{C}}=0.707$ inch
$20 \tau=13.69 \quad 13.6713 .64 \quad 13.67 \quad 13.66 \quad 13.76 \quad 13.7413 .7313 .7913 .67 \mathrm{sec}$
Determine time period τ, standard deviation σ_{τ} and centroidal mass moment of inertia $\mathrm{J}_{\mathrm{G} 3}$.
τ \qquad σ_{τ} \qquad $100 \sigma_{\tau} / \tau$ \qquad $\mathrm{J}_{\mathrm{G} 3}$ \qquad

3) Determine BG_{3} and CG_{3}. Then use the two-mass equivalent link model to find lumped masses $m_{3 B}$ and $m_{3 C}$ and the approximate lumped mass moment of inertia $J_{\text {APP. }}$.
BG_{3} \qquad CG_{3} \qquad $\mathrm{m}_{3 \mathrm{~B}}$ \qquad $\mathrm{m}_{3 \mathrm{C}}$ \qquad $\mathrm{J}_{\text {APP }}$ \qquad
4) Use "polygeom" boundary summations to approximate mass, centroid location and centroidal polar mass moment of inertia for the connecting rod assuming it is made of 0.75 inch thick flat aluminum plate. Outlines for the connecting rod and holes are available in
"h10_conn_rod_CCW.txt", "h10_holeB_CCW.txt" and "h10_holeC_CCW.txt" on our class web page. Note that all three outlines were digitized CCW. Provide a plot of your outlines with a small red cross at the centroid location and attach hard copy of your code.
m_{3} \qquad BG_{3} \qquad $\mathrm{J}_{\text {BOUNDARY }}$ \qquad
5) Compare your experimental measurements, lumped mass approximations and flat plate boundary approximations for mass, centroid location and mass moment of inertia.
