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Additional Notes for C04 
 

Please refer to Notes_08_11 as well as C01_solution, C02_solution and C03_solution 
 
 
Interpretting Lagrange multipliers 
 
Each row in the constraint vector { }Φ  has a corresponding row in the Jacobian q Φ   

Each row in the constraint vector { }Φ  has a corresponding row in the velocity RHS { }ν  
Each row in the constraint vector { }Φ  has a corresponding row in the acceleration RHS { }γ  
Each row in the constraint vector { }Φ  has a corresponding row in the Lagrange multipliers { }λ  
 
Lagrange multipliers { }λ  are directly related to reactions at joint contraints { }KINEMATIC

Φ  and 
forces/torques required to provide driver motion { }DRIVER

Φ . 
 
For example, C01_solution uses { } { } { }B B

3 2 2x1r r 0− = for revolute B in the third and fourth rows 
of the constraint vector. 
 
Consequently, the third and fourth rows of { }λ  will correspond to revolute B 
 
Following Notes_08_11 page 7, Lagrange multipliers for revolute joints { }REV

λ  are exactly equal 
to the reaction force at the joint. 
 
However, you must inspect the subscripts for each your revolute constraints { }REV

Φ  to ascertain 
if the corresponding{ }REV

λ are the force on body i or the force on body j. 
 
Following Notes_08_11 page 7, the constraint { } { } { }B B

3 2 2x1r r 0− =  for revolute B cited above 
uses j=3 and i=2. 
 
Consequently { } { } { }3 on 2 on 2 REVREV

F F= = + λ  and { } { } { }2 on 3 on 3 REVREV
F F= = − λ  

 
Similarly, the kinematic driver 2 2 _START 2t 0φ −φ −ω =  which appears in the ninth row of the 
constraint vector { }Φ  for C01_solution will have a corresponding DRIVERλ  in the ninth row of the 
Lagrange multipliers. 
 
This DRIVERλ  is the force/torque required to cause the specifed driver motion. 
 
Following Notes_08_11 page 9,  the ANGLEλ  for a relative angle driver constraint is exactly equal 
to the torque required to cause the specified rotational motion. 
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However, you must again inspect the subscripts to ascertain ± directions. 
 
Following Notes_08_11 page 9, absolute angle driver 2 2 _START 2t 0φ −φ −ω =  may be rewritten as 
a relative angle driver 2 1 2 _START 2t 0φ −φ −φ −ω =  using j=2 and i=1. 
 
Consequently, ( )1on 2 on j ANGLEANGLE

T T= = −λ  

 
Verbal description of differences between parts 1) and part 3) 
 
Part 1) is kinematically driven.  Crank speed 2φ  is constant.  The other φ  and φ  are not constant 
as the posture of the mechanism changes but at each posture they are proportional to 2φ  and 2

2φ  
respectively.  This is an inverse dynamic problem where we know motion at any time t and can 
then calculate joint forces and driver torque for 2φ  at any time t. 
 
Part 1) is like you riding a bicycle at constant speed where 2φ  is the speed of the rear wheel 
(constant) and 2φ =0 at all times t. 
 
Part 3) requires forward dynamics because the driver for the crank is suddenly removed.  This is 
like riding the bike and your foot slips off the pedal.  The speed of the rear wheel 2φ  will 
decrease slightly as the bike coasts if you are on level ground ( 2φ  small negative). The speed of 
the rear wheel 2φ  will decrease much more quickly if your foot slips off the pedal and you are 
headed uphill ( 2φ  negative).  The speed of the rear wheel 2φ  will increase if your foot slips off 
the pedal and you are headed downhill ( 2φ  positive). 
 
You need to know 2φ  and 2φ  at the moment when your foot slips off the pedal (OLD) so that 
you can use friction, wind resistance and hill angle to find acceleration/deceleration 2φ  (OLD  
but not zero) and calculate 2φ  and 2φ  at some time t=0.05 sec in the future (NEW). 
 
For part 3) run your code at 2φ =85.5° and 2φ =60 rpm CCW to find all { }OLD

q  and { }OLD
q  at the 

moment t=0 when the driver for link 2 is cut (OLD).  The speed of the crank 2 _ NEWφ  will no 

longer be constant and 2 _ NEWφ  will no longer be zero because that driver is now gone.  The speed 
of the crank may increase or decrease just like your bicycle.  You need to use the 17x17 forward 
dynamic equation to calculate { }OLD

q  at time t=0 using current values for { }OLD
q  and { }OLD

q  just 

like the bike.  Then you can predict the future for { }NEW
q  and { }NEW

q  at time t=0.05 sec. 
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C04 part 1) 
 
This is a kinematically driven problem that will use inverse dynamics. 
 
Copy your code for C03 into a new set of routines for C04 and run them to obtain values for 
positions { }q , velocities { }q  and accelerations { }q  using  2 _STARTφ = 0 deg and 2ω  = 60 rpm CCW 
WITHOUT ANY DYNAMICS. 
 
Then provide values for m2, JG2, m3, JG3, m4 and JG4 using either your values for C03 or values 
from C03_solution, 
 
You may also use your centroid values { } P

is '  or values from C03_solution in your new code. 
 
Create [M] = diag(   m2   m2   JG2   m3   m3   JG3   m4   m4   JG4 ) 
 
Create {Q}APPLIED = transpose(   0   -m2*g   0   0   -m3*g   0   0   -m4*g   0   ) to provide gravity 
loading on each link. 
 
Be certain to use units for g that are the same as translational accelerations in your code. 
 
Following Notes_08_11 page 5, use inverse dynamics to calculate accelerations { }q  and 
Langrange multipliers { }λ  with - 
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Accelerations { }q  from kinematically driven inverse dynamics should match accelerations  { }q
from pure kinematics exactly. 
 
Interpret Langrange multipliers { }λ  per above. 
 
 
C04 part 2) 
 
Repeat part 1) using 2 _STARTφ  = 85.5 deg and retain the values for positions { }q , velocities { }q  at 
this posture for part 3) and EXTRA CREDIT. 
 
 
C04 part 3) 
 
This is a dynamically driven problem that will use forward dynamics. 
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It will become forward dynamics if the driver constraint is removed. 
 
Use the positions { }OLD

q  and velocities { }OLD
q  from part 2) as initial conditions immediately 

before the driver is removed. 
 
Immediately after the driver is removed, the constraint vector { }Φ  will become 8x1, the 

Jacobian q Φ   will become 8x9 and the acceleration RHS { }γ  will also become 8x1. 
 
You will not be able to solve the purely kinematic acceleration equation { } { }1

qq
−

 = Φ γ   
because the mechanism is no longer kinematically driven and the Jacobian has insufficient row 
rank. 
 
However, you will still be able to solve the full dynamic equation. 
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Note the Lagrange multipliers { }λ  will become 8x1 because there is no corresponding driver 
constratint. 
 
Accelerations { }PART _ 2

q correspond to constant speed crank rotation and will not match { }PART _ 3
q

where there is no driver to maintain crank speed. 
 
Use initial conditions { }OLD

q  and { }OLD
q  from part 2) along with the dynamically driven 

accelerations { } { }OLD PART _ 3
q q=   from part 3) to integrate one time step h forward in time using 

the simplistic integrators. 
 
C04 part 4) 
 
Check kinematic consistency for the new positions { }NEW

q  and velocities { }NEW
q  at one time 

step into the future. 
 
They will not be perfectly consistent because of the large stime step and rudimentary integrators. 
 
 
 


