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Computer networking is a reliable and efficient means for communications between 
disparate and distributed components in complex dynamical processes like advanced 
aircraft, spacecraft, and autonomous manufacturing plants. The role of Integrated 
Communication and Control Systems (ICCS) is to coordinate and perform inter
related functions, ranging from real-time multi-loop control to information display 
and routine maintenance support. In ICCS, a feedback control loop is closed via the 
common communication channel which multiplexes digital data from the sensor to 
the controller and from the controller to the actuator along with the data traffic 
from other loops and management functions. Due to the asynchronous time-
division multiplexing of the network protocol, time-varying and possibly stochastic 
delays are introduced in the control system, which degrade the system dynamic per
formance and are a source of potential instability. The paper is divided into two 
parts. In the first part, the delayed control system is represented by a finite-
dimensional, time-varying, discrete-time model which is less complex than the ex
isting continuous-time models for time-varying delays; this approach allows for 
simpler schemes for analysis and simulation of ICCS. The second part of the paper 
addresses ICCS design considerations and presents simulation results for certain 
operational scenarios of ICCS. 

1 Introduction 
Complex dynamical processes like advanced aircraft, 

spacecraft, and autonomous manufacturing plants require 
high-speed, reliable communications between system com
ponents which perform a set of inter-related functions ranging 
from active control to information display and routine 
maintenance support [1]. The system components include a 
number of computers, intelligent terminals, sensors and ac
tuators, and their functions are executed in real time. The ac
tivities of system components can be coordinated by ap
propriate information exchange via a multiplexed communica
tion network to achieve a better utilization of the resources. 
However, the network introduces delays in addition to the 
sampling delay that is prevalent in all digital control systems. 
The network-induced delays are time-varying and possibly 
stochastic, and are dependent on the intensity, probability 
distribution, dynamics of the traffic as well as on mis-
synchronization between control system components and 
noise in the communication medium. The Integrated Com
munication and Control Systems (ICCS) for these processes 
must be designed to compensate for these delays. The 
schematic diagram of an ICCS network in Fig. 1 illustrates 
how these delays are introduced. 
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In ICCS, a control loop is closed via the common com
munication channel which multiplexes digital data from the 
sensor to the controller and from the controller to the actuator 
along with the data traffic from other control loops and 
management functions. Furthermore, the control system com
ponents (e.g., the sensor and controller) may not be syn
chronized. Figure 2 illustrates how the network-induced vary
ing delays Qsc and Qca enter the control system. 

In the continuous-time, the control law for a given plant 
model is derived as a transfer function or using a state-space 
realization. In the discrete-time, an additional parameter of 
importance is the sampling time Tof the control system [2]. In 
ICCS, Tis essentially the sensor message inter-arrival time and 
can be considered as a common parameter of the control 
system and the communication network. From a point of view 
of control systems design, smaller values of T(with the excep
tion of sensitivity to round-off errors in the controller com
puter) are desirable as the discrete-time control law more 
closely approximates its continuous-time design. On the other 
hand, a smaller T, i.e., a higher sampling frequency, implies a 
larger network traffic, for a given data transmission rate, 
which in turn increases the data latency. 

Analysis and design of ICCS require interactions between 
the disciplines of communication systems and control systems 
engineering. It may be appropriate to bring out the notions of 
delay as it is used in the two disciplines in somewhat different 
manners. In communication systems, the delay is primarily 
referred to as queueing delay and data latency which are 
associated with only those messages that successfully arrive at 
the destination terminal [3, 4]; messages that are corrupted by 
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noise or deleted due to queue saturation at the transmitter buf
fer of the source terminal are not considered for this purpose. 
In control systems, the delay is related to the question: How 
old is the data which is currently used?. When no messages are 
rejected, the two notions of delay are similar; otherwise they 
are different. 

Although ample research papers in modeling and simula
tion of communication protocols have been published [5], the 
significance of network-induced delays relative to the stability 
of feedback control systems has not been apparently ad
dressed except in a few cases [3, 4]. 

In our earlier work [4], the basis for selection of the SAE 
linear token passing bus [6] as the medium access protocol for 
ICCS networks has been reported along with the simulation 
results for its performance analysis. We have shown that the 
bus traffic in an ICCS network is subject to time-varying data 
latency of messages resulting from asynchronous time-division 
multiplexing in the communication network. The detrimental 
effects of data latency on the dynamic performance of ICCS 
are further aggravated due to possible mis-synchronization 
between terminals in the control loop as well as to loss of 
messages resulting from saturation of buffers and noise cor
ruption in the network medium. 

The paper is the first of two parts, and presents the results 
for ICCS analysis focusing on discrete-time control systems 
which are subject to time-varying delays. The analytical 
technique developed here is applicable to integrated dynamical 
systems such as those encountered in advanced aircraft, 
spacecraft, and real-time control of robots and machine tools 
via a high-speed network within an autonomous manufactur
ing environment. 

This paper is organized in five sections and one appendix. 
The current status of research for analysis of time-delayed 
control systems is summarized in Section 2. The significance 
of data latency and mis-synchronization between individual 
system components in ICCS networks is discussed in Section 3 
in view of the time-varying delays. A finite-dimensional, 
discrete-time model for analyzing linear time-invariant feed
back control systems with distributed and time-varying delays 
is derived in Section 4. The summary and conclusions of this 
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paper along with recommendations for future work are 
presented in Section 5. Appendix A contains a supporting 
proposition. 

Part II is presented as a companion paper [7] which ad
dresses system design considerations. These include the 
physical significance of the network delay parameters in ICCS 
design and some of the simulation results. 

2 Research Status for Analysis of Delayed Control 
Systems 

Several approaches for analyzing the dynamic performance 
and stability of delayed control systems have been suggested 
[8-16]. Most of the literature on delayed systems deals with 
the case of constant delays, but some results concerning time-
varying delays were presented, e.g., Yorke [8], Hirai and 
Satoh [9], Ikeda and Ashida [10], and Belle Isle [11, 12]. For a 
network with randomly distributed traffic, the delay in the 
ICCS loop could be a stochastic process. The use of stochastic 
Lyapunov functions for stability analysis of systems with ran
domly varying delays has been suggested by Belle Isle. 

The network-induced delays in an ICCS feedback loop are 
sensor-controller delay and controller-actuator delay as shown 
in Figs. 1 and 2. Since both these delays are time-varying, they 
may not be lumped together, in general. However, since the 
digital control algorithm is time-invariant, the two delays 
could be lumped together if no message rejection/vacant 
sampling (defined later in Section 3) occurs. A statement of 
this property and its proof are given as Proposition A.l in Ap
pendix A. 

Lumping the two delays, 9JC and Qca in Fig. 2, does not 
necessarily solve the problem of control system design as the 
lumped delay could still be a time-varying quantity. This 
makes the system analysis and design difficult because the 
specifications of feedback control systems are usually given in 
terms of phase margin and gain margin in the frequency-
domain or in terms of smallest decay rate, overshoot, rise 
time, settling time, etc. in the time-domain. These specifica
tions, the frequency domain data in particular, are stated in 
view of linear time-invariant systems. Approaches for solving 
time-varying delay problems are discussed below. 

Given a linear finite-dimensional time-invariant system with 
a lumped time-varying delay placed between the controller and 
actuator, the closed loop digital control system is approx
imately represented in continuous-time as 

dx(t)/dt = Ax(t)-Bx(t-L(t)) (2.1) 

where x is the (n x 1) state vector, 
A and B are (n x n) constant matrices, and 
L(t) > 0 for all t > 0. 

A first order system is considered to illustrate how the com
plexity of dynamic performance analysis increases with time-
varying delays. 

dx(t)/dt = ax(t)-bx(t-L)(t)) (2.2) 

where x is a scalar, a < 0, b > 0, and L is a continuous func
tion of t such that sup L(t) = q and inf L(t) > 0. 
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A sufficient condition for uniformly asymptotic stability of 
(2.2) has been shown by Yorke [8] to be q < (1.5)/6 provided 
that a = 0, i.e., the plant is represented by a pure integrator. It 
is interesting to note that if L(t) = q for all t, then the above 
condition can be relaxed to the necessary and sufficient condi
tion of q < ir/(2b) by use of Nyquist stability criterion. This 
suggests that replacing L(t) by its supremum may not be the 
solution. Similar results have been derived by Hirai and Satoh 
[9] using a different approach. 

An overview of methods for analyzing delayed control 
systems is presented below. 

Stochastic Lyapunov Function. The underlying principle 
relies upon the well known Lyapunov method [13], except for 
that the definitions of norms are modified to accommodate 
the time-varying delay argument and the differential operators 
are defined in a stochastic setting. Bell Isle and Kozin [11, 12] 
used the concept of a stochastic Lyapunov functional to derive 
a sufficient condition for almost-sure sample stability of ran
domly varying delayed systems. 

D-Partition Method. It gives the region(s) in the parameter 
space within which the system is stable. Given a system 
dx{t)/dx = ax{t) — bx{t — q), the method defines region(s) 
in the a, b plane within which the system is stable for a given 
constant delay q. Rekasius [14] adopted this concept to iden
tify stable regions for systems with the constant delay q or as a 
function of q. Except for the traditional graphical approaches 
like Nyquist's [17] and Mikhailov's [18], the algebraic ap
proach presented by Rekasius is one of the few methods that 
gives necessary and sufficient conditions for stability of con
trol systems with constant delays. This method has a potential 
for application to ICCS design if an equivalent constant-delay 
system could be identified to replace the time-varying delays. 

Method of Steps. In this approach adopted by Hirai and 
Satoh [9], the time-varying delay is assumed to be of the form: 
L(t) = t - nTfor nT < t < (« + l)T. Consequently, the 
term with time-varying delay, t — L(t), in the system equa
tion remains a constant within each time period (nT, (n + 
1)7], i.e., x(t - L(t)) = x(nT). Thus the output at the time 
instant (n + Y)T can be recursively expressed in terms of the 
output at the time instant nT,x(nT) in the form x( (n + 1)7") 
= F(.) x(nT), where F(.) is a function of the sampling time 
and system parameters. The necessary and sufficient condition 
for the stability of a scalar system is IF I < 1. 

A common drawback in some of the design methodologies 
for time-delayed systems, Bell Isle [11, 12] and Mori et al. [15, 
16] for example, is that the stability criterion does not involve 
the exact magnitude of the delay, and its functional 
characteristics and constraints in the case of time-varying 
delays. Such results are very conservative since stabilty is 
guaranteed for a wide range of delays. As a result, many of 
these criteria have very limited practical significance. 

We propose a discrete-time approach for analyzing delayed 
systems following the concept of the method of steps. If the 
plant and controller are time-invariant and the control inputs 
are piecewise constants, the system can be represented by an 
augmented state vector which consists of past values of the 
plant input and output in addition to the current state vectors 
of the plant and controller. Thus the problem of time-varying 
delays can be treated by a finite-dimensional time-varying 
discrete-time model where the delays are not restricted to be 
integer multiples of a given time period. From the perspectives 
of ICCS analysis and design, the proposed method has the 
following advantages. 

8 The two time-varying delays in Fig. 2 can be treated 
separately, i.e., unlike the other methods, these delays are 
not required to be lumped. Therefore, the proposed 

method is not limited by the restrictions stated in Proposi
tion A.l of Appendix A. 

9 The delays can be a discrete function of time or a discrete
ly sampled sequence of a continuous-time function. 

3 Significance of Delays in ICCS Networks 

In Section 1 the structure and operating principles of an 
ICCS network are briefly described. The characteristics of the 
actual network protocol are not considered and no specific 
structures for the delays are assumed since these issues have 
been addressed in our earlier publications [3,4]. In this section 
we present how time-varying delays could occur in an ICCS 
network. To better explain the physical significance of 
network-induced delays, we make the following assumptions. 

1 Traffic is periodic with constant message lengths, i.e., 
queueing delays and data latencies of all messages are deter
ministic (but time-dependent). 

2 Message lengths for sensor and control signals are iden
tical. This signifies that sensor to controller and controller to 
actuator data latencies have identical characteristics. Let the 
infimum and supremum of these data latencies be <5min and 
5max, respectively. 

3 The sampling intervals of the sensor and controller are 
identical and equal to T. 

4 The time skew As between the sampling instants of the 
sensor and controller is a constant (As € [0, 7]) over a finite 
time window. 

5 The control signal processing delay 8p is a constant and 8p 

< T. 
6 The network is not overloaded and the communication 

medium is error-free, i.e., no message is lost due to saturation 
of the transmitter buffer at any terminal or by noise con
tamination. This also implies that <5max < T. 

7 The capacity of the receiver queue at the controller is one. 
This assumption is consistent with the usual ICCS design prac
tice [3]. (If an observer is used to estimate the delayed sensor 
data, the queue capacity may have to be increased.) 

Let y,- be the sensor data, generated at theyth sample of the 
sensor, be immediately stored at the sensor terminal's 
transmitter buffer at the time r0 + jT, and wait to be 
transmitted as a message via the network medium. Upon 
transmission, the sensor data is received at the controller at r / 
+ jT. The sensor data has to wait at the receiver buffer until 
the next sampling instant of the controller at T2 + jT if T / < 
T2 or at T2 + (/' + 1)7"if T/ > T2. AS the processing is com
pleted at T3 + jT, the control signal is put in the controller's 
transmitter buffer where it waits to be transmitted to the ac
tuator terminal. Finally, at rj + jT, the control signal arrives 
at the actuator terminal and immediately acts upon the plant. 
Referring to the timing diagram for message transactions in 
Fig. 3, the delays are interpreted as follows. 

• Sensor to controller data latency 8j = T / — T0 

• The interval T2 - T0 is the time skew As between the sen
sor and controller sampling instants. 

8 Control signal processing delay 8p = T3 - T2 
8 Controller to actuator data latency 8CJ = TJ — T3 
8 Controller to actuator delay Qj = TJ — T2, which is 

essentially the sum of the processing delay 8p and con
troller to actuator data latency 8J. 

Let Zj be the delayed sensor data which is used by the con
troller at its y'th sample at time T2 + jT. Then the sequences 
(zj) and (y,-) are related as 

zj=yj-pu) (3-1) 

where p(j) is a non-negative integer with an upper bound j>. 
Now we introduce the concepts of the delays involving the 
data latency and time skew. 

Definition 3.1. The modified sensor-to-controller data 
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latency V s / for a sensor message y,- at theyth sensor sample is 
defined as the interval between the instant of the sensor data 
generation and the instant when the controller starts process
ing these data or it would have been processed if not replaced 
by any fresh sensor data. 

Therefore, V s / is given by the following relationship in 
terms of the sensor-controller data latency Sj and time skew 

V J = kT+ As for (k- l)T+ AS<8J<kT+ A, (3.2) 

where k is a non-negative integer and, under the assumptions 1 
and 6 stated earlier, k is either 0 or 1. 

Lemma 3.1. p(j) = 0 or 1 Vj under the assumptions 1 to 6 
stated earlier. 

Proof. Since VSJ is time-varying, 0 < 5min < 8J < 5max < 
T Vj and 0 < As < T, we have only two possible conditions: 
(i) V J < As implying z ; = yy and (ii) V ^ > As implying that 
ZJ = yy-i-

Remark 3.1. If V < r2, i.e.,p(j) = 0, then VSJ = As; if 
T / > T2, Le.,p(j) = 1, then V s / = T + As. 

Remark 3.2. The number uJ, of sensor message arrivals at 
the controller during itsy'th sampling period, has an expected 
value of 1 since the sensor and controller sampling intervals 
are identical. v> assumes exactly one of the values: 0, 1, and 2. 

Remark 3.3. vJ = 0: If vJ < A, and VJ+l > As, then 
zj+l = Zj = y,-. This implies that no fresh sensor message ar
rives at the controller during its y'th sampling period, and the 
old sensor data is used at the (J + l)st sampling instant for 
computing the control signal. This phenomenon is called va
cant sampling as illustrated in Fig. 4. 

Remark 3.4. v' = 1: If one of the two conditions occur: (i) 
V J > As and V s / + I > As implying that zJ+1 = y,-, or (ii) 
V s / < As and Vsc

j+[ < As implying that zy+1 = yJ+l, then 
exactly one sensor message arrives at the controller during its 
jth sampling period, and this message is used to compute the 
control signal at the (/' + l)st sampling instant. 

Remark 3.5. vJ = 2: If V^ ' > Â  and Vsc
j+l < As, then 

zy+1 = yJ+1. This implies that two sensor messages arrive at 
the controller during its y'th sampling period. The former ar
rival is discarded and the latter arrival is used for computing 
the control signal. This phenomenon is called message rejec
tion at the controller's receiver as illustrated in Fig. 4. 

Definition 3.6. The sensor-controller delay QSJ for the 
delayed sensor message z,- + yj-p{J) is the time interval be
tween the (j — p(j) )th sampling instant of the sensor and the 
y'th sampling instant of the controller (when zy is processed). 
Therefore, Qj can be expressed as 

Qsc
J=p(j)T+As (3.3) 

Remark 3.7. The condition p(J + 1) < p(j) + 1 Y/ is in
dependent of the stated assumptions. The rationale is that the 

sensor data, available to the controller at one instant, is also 
available at the successive instants unless replaced by a fresh 
data. 

Proposition 3.1. Under the assumptions 1 to 6, stated 
earlier, the sequences {VSJ} and [QJ] are identical, i.e., 
v s / = e^' vy. 

Proof. Using Lemma 3.1 and making use of Remarks 3.3, 
3.4, and 3.5, we need to consider only two possible cases: (i) zy-
= y; implying V ^ = Qj = As and (ii) z i+1 = yy implying 
V„/ = G^' = T + As. 

The importance of the above proposition is that the control 
system delay Qj in Fig. 2 is equal to the communication 
system delay parameter VJ which can be readily obtained 
from (3.2). vj can be calculated on the basis of the network 
traffic characteristics which could be deterministic or random, 
and As can be approximately maintained at a desired constant 
value by periodically broadcasting synchronization signals via 
the network medium. 

Remark 3.8. vj and 9 S / refer to the same sensor message 
only when vj = As. 

Using the above physical concepts of the network-induced 
delays, we develop a discrete-time, finite-dimensional, time-
varying model of the delayed control system as proposed in 
Section 2. The delayed system model, to be presented next, is 
generic and is not restricted to the assumptions that were made 
in the beginning of this section for physical explanation of the 
delay phenomena. 

4 Development of a Delayed Control System Model 

We consider the control system in Fig. 2 where Gp (s) and 
Gc(z) are linear, finite-dimensional, time-invariant models of 
the continuous-time plant and discrete-time controller, respec
tively. In Section 3, we described how the sequence {z^l of 
the delayed plant output at the controller sampling instants is 
obtained from the corresponding sequence {yk} of the 
measured plant output at the sensor sampling instants. Since 
the delay Qsc, in Fig. 2, is time-varying, the controller may use 
the sensor data generated at the current or earlier samples. The 
delay Qca to which the control input sequence (u^j is sub
jected is also time-varying. This implies that even if the con
troller generates the commands at a constant rate, the interval 
between their successive arrivals at the actuator terminal may 
not be a constant. In contrast with the sensor data which may 
wait at the controller's receiver queue before being processed 
by the controller, the control input acts upon the plant im
mediately after arriving at the actuator terminal. This happens 
because the controller is scheduled to generate signals at con
stant intervals whereas the actuator operations are essentially 
asynchronous. The characteristics of the delay Qsc are dif
ferent from those of Qca in the case where two or more sensor 
data arrive at the controller during one of its sampling inter
vals. Since the controller operates in discrete time, unlike the 
actuator which is essentially a continuous-time device, only 
the most recent sensor data is accepted. We have referred to 
this phenomenon as message rejection at the controller's 

r0+jT r,+jT rj+jT r3+jT '4+jT r0+iT r2+iT'3+|T ' ,+ iTr ! , + j T 

-I 1- • 
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Fig. 3 Timing diagram for message transactions 
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receiver in Section 3. On the other hand, if no fresh sensor 
data are available during a sampling interval, the previous sen
sor data is used to compute the control input, i.e., zk+l - zk. 
We have referred to this phenomenon as vacant sampling at 
the controller. Having this scenario in mind, we present a for
mal definition of the problem. 

The linear, finite-dimensional, time-invariant model Gp(s) 
of the plant in Fig. 2 is given in the standard state-variable 
form: 

x = Ax + Bw (4.1) 

y = Cx (4.2) 

where x€Rn, uSR'", y€Rr, and the matrices A, B, and C are of 
compatible dimensions. 

Let the system be sampled every Tunits of time, and let the 
input u(t) to the plant be piecewise constant during each 
sampling interval. More specifically, let u ( 0 assume at most (/ 
+ 1) different values in the interval [kT, (k + 1)7) where the 
changes occur at the instants kT + tk, i = 0, I, 2, . . . . , I 
such that tf > ti+ ik with tf- = 0 and t0

k < T. The superscript 
k indicates that the instants tf may vary from one sampling in
terval to another. 

The solution of the state equation (4.1) is given below. 

x((Ar+l)7-)=exp(Ar)x(A:r)+ f exp[A(T-T)]Bu(T)dT 
Jo 

(4.3) 

Using the fact that the input is piecewise constant, we have: 

= AjX^ + 2>x 
where \k = x(kT), As = exp (AT), and uk_ 

(4.4) 

u(t),t€[tf, 
') as illustrated in Fig. 4, and 

B/ 
f'i-i 

r - T ) ] B d r a n d t_l
k = T, t,k = 0. (4.5) 

Remark 4.1. Some of the tf's should be set equal to zero 
and others to T if the actual number of different inputs acting 
on the plant during one sampling interval is less than (/ + 1). 

Remark 4.2. The following relation holds regardless of the 
value of tjk: 

2 ^ B * = I exp(AT)Bc?T= a constant (4.6) 
;=o •,0 

The right-hand side of (4.6) is the input matrix in case only one 
constant control input is applied throughout the sampling 
interval. 

Remark 4.3. The sequence {tk} satisfies: 

f*+i =0iftjk<TfoTVi> (/'+!)• 

To see this, first note that the input uk_j is the same as 
u(jt+i)_(/+i). If this input arrives at the actuator before the (k 
+ l)st sensor sampling instant, then all previous inputs have 
arrived before the (k + l)st instant as well, and their relative 
arrival time t,k+i in [(k + \)T, (k + 2)7) is zero. 

Setting the reference signal rk in Fig. 2 to zero, the discrete-
time, linear, time-invariant model Gc(z) of the controller is 
given in the state-invariable form as: 

Gz, Vk+i --Vvk-Gzk (4.7) 

»* = Hi?*-Jz i t (4.8) 

where ij€R?, zk is the last available measurement at the instant 
when u,;. is processed by the controller, and the matrices F, G, 
H, and J are of compatible dimensions. 

We combine (4.4), (4.7), and (4.8) with the expression z} = 

Vj-pU) f ° r *ne delayed sensor data in (3.1). Any finite amount 
of delay is satisfied by havingp(k) = 1, 2, . . . , p where p is 
the maximum of p(k) for all k. We obtain an augmented state 
representation as follows. 

r 
xk+, = (A, -B0»JT0*C)x t - B / J £ T,*yt_, 

+ B 0 * H i 7 i t + j > / i i i t _ , 
J'=I 

h if i=p(k) 
where rtk = 

0 if i?ip(k) 

y*-/=iry*-/. ' = 1 . 2 , . . . , ( f - i ) , (4.9) 

Vk+r- • G V C x , - ^ T A y , _ / + F ^ 
i = i 

p 

i = i 

«*-i=I/n«*-,-. '=1 .2 , ( / - I ) . 
Equation (4.9) is written in a matrix form as: 

X, + 1 = * , X ^ (4.10) 

where X^ = [ x / y t _ , r - • • • y ^ / i j / u ^ . / u j t _ /
r ] r is the 

augmented state vector of dimension N = n + p/' + q + ml, 
and the (N X N) augmented state transition matrix is given as: 

As 0. . . . 0 B / H B,*. . . . B,* 

* * = 

c 
0 

0 

0 

0 

0 

0 

h 

h 0 

0 F 

0 H 

0 

0 

0 

I, 

0 I,„0 

B / J 

G 

J 

0 

[T /C T,*. . .T * 0 0] 

(4.11) 
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Since only one of the T,*'s is nonzero, (4.11) implies that on
ly one matrix column is added to the first term on the right-
hand side. 

Remark 4.4. In the realization (4.9), the sensor outputs y,'s 
can always be replaced by earlier control inputs u,'s. To see 
that (4.2) and (4.4) are combined as: 

yk-x=CXs-
l(xk- £B ;*"'a*., . ,) (4.12) 

which means that u / t_ ;_1 can replace yAr„, as part of the 
augmented state vector X*. In that case, the matrices B,*~' 
must be stored as well. Following the same argument, 
y*_i, . . . ,y*-p can be replaced by u*_,_,, . . . ,uk_i_p if the 
matrices Bjk~J,j = 1, 2, . . . ,p are stored. 

Similarly, if F is nonsingular (Note: As is always non-
singular), u,'s may be replaced by earlier y,'s. To see that 
(3.1), (4.7) and (4.8) are combined as: 

uk^i=HF~i(jlk + Gyk^l_pik_l))-3yk_l_pik_l) (4.13) 

andu*_,, . . . ,u^_, can be replaced by yjt_f_1, . . . .y*-, if 
the values of p(k - j), j = 1,2 / are stored. The 
realization (4.10) is minimal if r = m, i.e., the number of in
puts and outputs are identical. The minimum dimension of the 
system, assuming F to be nonsingular, is n + q + (f + l)4> 
where ij/ = min(r, m). But, for r ^ m, this minimal realization 
would require storage of time-varying parameters, especially if 
r > m. 

Equation (4.9) is a linear, finite-dimensional, discrete-time, 
time-varying model of the system, which is apparently better 
suited for simulation, analysis, and design than the 
continuous-time approach proposed by other investigators, 
Bell Isle [11, 12] for example. 

Network traffic is generally random but it can be approx
imately periodic. As a first step in stability analysis for ICCS, 
we consider periodic traffic. (The assumption of periodicity 
needs to be modified to accommodate quasi-periodic traffic; 
this is a subject of future research.) 

For certain applications such as the token bus [6] with 
periodic traffic, the delay sequences have been shown to be 
periodic [3, 4]. In that case, there exists a positive integer M 
such that: 

p(k + M)=p(k) and tf = t^M for every; and k (4.14) 

Considering the (N x N) system matrix $k in (4.11), (4.14) 
implies that $k+M = ** for V k. Let us define, for any k, 

M 

v = n * * + M - ; (4.i5) 
7 = 1 

Proposition 4.1. Let the delays in the control system in Fig. 
2 be periodic with a period of M. Then the system (4.10) is 
uniformly asymptotically stable if all eigenvalues A, of ty,M 

are contained within the unit circle, i.e., IX,-1 < 1 for / = 1, 
2, . . . ,/V. 

Proof of Proposition 4.1: We need the following two lem
mas to prove the proposition. 

Lemma 4.1. The eigenvalues of tyk
M are identical to those of 

^{
M for every k. 

Proof of Lemma 4.1: Since $J+M = *,- V/, 

v = ( n *«-,»)( n *M-,+,) (4.i6) 
j-M—s + 2 j ' - l 

where s = k modulo M. By Lemma 4.2, it follows that the 
eigenvalues of ^rk

M are identical to those of ~tyx
M. 

Lemma 4.2. If T and Q are two square matrices of same 

dimensions, the eigenvalues of VQ are identical to those of fir. 

Proof of Lemma 4.2: The problem is stated as: If a is an 
eigenvector of Tfi with an eigenvalue fi, i.e., FQct = fxa, then 
does there exist a vector (3 such that fir/3 = ixfi. The proof 
follows by premultiplying the first expression by Q and setting 
(3 = Qa. 

Now we present the proof of Proposition 4.1. From (4.10) 
and (4.15), it follows that Xk+M = ̂ k

M Xk for any given k. 
Since this is a linear, autonomous system, IIX^+,̂ 11 — 0 as i — 
oo iff each eigenvalue of tyk

M lies within the unit circle. By 
Lemma 4.1, IIXJI — 0 as k — oo iff |\(. | < 1 for / = 1, 
2, . . . ,N. 

Corollary to Proposition 4.1. The system will have a 
minimum decay rate (per every M samples) of y e (0, 1) iff 
IX; I < 7 for/ = 1,2, . . . ,N. 

Proof of Corollary: The proof directly follows Proposition 
4.1. 

Remark 4.5. Since ll$A.ll < oo for every k, there exists a 
finite f 6 R+ such that, for every j < M, {\\^k

J\\)WJ < f. For 
example, one way to choose f is 

f= Max 11**11 (4.17) 

Remark 4.6. Proposition 4.1 applies to all periodic, finite-
dimensional, time-varying systems. In the ICCS, this can be 
used only if the delays are periodic. This simplification was 
possible because the infinite-dimensional delayed system could 
be represented by a linear finite-dimensional model. 

5 Summary, Conclusions, and Recommendations for 
Future Work 

The asynchronous time-division multiplexed networking in 
Integrated Communication and Control Systems (ICCS) in
troduces time-varying delays between system components. 
These delays could degrade the system dynamic performance 
and are a source of potential instability in complex dynamical 
processes like advanced aircraft, spacecraft, and autonomous 
manufacturing plants. 

The system, under consideration in this paper, consists of a 
continuous-time plant and a discrete time controller where the 
sensor and control signals experience time-varying delays; no 
assumption has been made regarding any specific network 
topology or protocol. The plant and controller models are 
finite-dimensional, linear, and time-invariant. In contrast to 
other investigators' approach of modelling the system by 
delayed differential equations, we have represented the con
trol system in discrete-time. This yields a finite set of time-
varying, linear difference equations. The effects of the 
network-induced delays, i.e., data latency and mis-
synchronization between components, on the system dynamic 
performance have been taken into account. 

No general stability test have yet been established for the 
time-varying system. However, for periodic delays, which is 
an idealized case of periodic traffic in a linear token passing 
bus protocol [3, 6], a necessary and sufficient condition for 
uniform asymptotic stability has been established. Further 
research is required for defining stability conditions for 
nonperiodic delays. The existing techniques for solving time-
varying systems need to be investigated for this purpose. The 
areas of current research are: (1) Development of appropriate 
observers (or filters) to compensate for network-induced 
delays, and (2) Construction of an appropriate Lyapunov 
function for stability analysis of the finite-dimensional time-
varying system. 

Although the ICCS model is derived in a deterministic set
ting, it can be extended for random delays without any struc
tural modifications. In that case, the time-varying coefficients 
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in the system difference equations are replaced by stochastic 
delay parameters [13]. 
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A P P E N D I X A 

Supporting Proposition 
Proposition A.l: The time-varying delays Qsc and Qca in 

Fig. 2 can be equivalently lumped together as a single delay X 
= X(9SC, Gca) in Fig. A.l provided that 

1. The sensor and controller have identical sampling 
periods T, 

2. No message rejection at the sensor and controller 
terminals, 

3. X ( 7 ) > 0 f o r V / , 
4. \(kT+$k)=$k, and 
5. X(Ar r+7 )<TVT€[$* , r + * * + 1 ) 

where $k £ej+ GJ. 

Proof: The lumped and unlumped delayed systems in Fig. 2 
and Fig. A.l are equivalent with respect to the input/output 

relation if, for a given y(f) at anytime t > 0, u(t) and u*(0 
are identical. The function u ( 0 in Fig. 2 is piecewise constant 
and is given by 

u(t) = uk if kT+$k<t<((k+\)T+$k+l 

The function u*(t) in Fig. A.l is given by 

u*{t)=ukifkT<(t-Mt))<(k+\)T 

For u(/) and u* (0 to be equivalent, the time ranges in two 
equations must be the same. Condition 4 guarantees that 

u(.kT+$k)=uk 

Condition 5 assures that this value remains constant as long as 
t < (k + 1)T + $k+l. This follows from the fact that 

t-X(0 = kT+ T- X (kT+ T) > kTat the instant t = kT+ r 

Thus the input to the plant is u(t) = nk. The proof can also 
be obtained graphically and is shown in Fig. A.2. 

Remark A. 1.1: As can be seen from conditions 4 and 5 in 
Proposition A. l , \(t) is not unique and any admissible func
tion is equally applicable. 

Remark A. 1.2: If X(/) is a constant or can be approximated 
by a constant for all t even though Qsc and Qca could be in
dividually time-varying, then the control system can be de
signed using conventional frequency-domain techniques. 

y ( i ) Controller 
G (z) 

C 

Z.O.H. 
Lumped Delay 

*<esceca> 

u'(t) 
Plant 

G„(s) 

•A. 
Fig. A.1 Lumped delayed control system 

u(t) 

u(1) 

—1-0—i—»-i—i—i—f1 nn—i—;— 
* T T + * 2T2T+$ 3T 3T+* 4T 4T+.]. 

(a) Comparison of delayed and undelayed output 

e(t) 
Each of the functions shown is equivalent to u(t) 

3 1 

4 — 4 - 4 -
0 $° T T+* 1 2T2T+* 2 3T 3T+* 3 4T 4T+*" 

(6) Region of X((), T + e 1 > t > 27 + Q2 

Fig. A.2 Graphic representation of admissible functions 

Each of the functions shown is equivalent to u(t) 
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