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Extended Discrete-time LTR Synthesis of 
Delayed Control Systems*t 
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Abstract--This paper addresses compensation of dealys 
within a multi-input-multi-output discrete-time feedback 
loop for application to real-time distributed control systems. 
The delay compensation algorithm, formulated, in this 
paper, is an extension of the standard loop transfer recovery 
(LTR) procedure from one-step prediction to the general 
case of p-step prediction ( p > l ) .  It is shown that the 
steady-state minimum-variance filter gain is the /-/2- 
minimization solution of the relative error between the target 
sensitivity matrix and the actual sensitivity matrix for p-step 
prediction (p --- 1). This concept forms the basis for synthesis 
of robust p-step delay compensators (p > 1). The proposed 
control synthesis procedure for delay compensation is 
demonstrated via simulation of the flight control system of an 
advanced aircraft. 

1. Introduction 
IN MANY REAL-TIME distributed control systems such as 
advanced aircraft, spacecraft, and autonomous manufactur- 
ing plants, the sensor and control signals within a feedback 
loop may be delayed or interrupted. An example is the 
randomly varying delays induced by multiplexed data 
communication networks in Integrated Communication and 
Control Systems (ICCS) (Halevi and Ray, 1988; Ray and 
Halevi, 1988; Liou and Ray, 1990) where delays may be 
distributed between the sensor and the controller and 
between the controller and the actuator as illustrated in Fig. 
1. Another example is the occurrence of delays in the control 
law execution due to priority interruption at the control 
computer (Belle Isle, 1975). In general, the presence of 
randomly varying distributed delays within a multi-input- 
multi-output (MIMO) feedback system makes the task of 
controller design significantly more difficult than that without 
delays. To this effect Luck and Ray (1990) proposed a delay 
compensator to alleviate the detrimental effects of randomly 
varying distributed delays by using a multi-step predictor. 
The key idea in this multi-step compensator design is to 
monitor the data when it is generated and to keep track of 
the delay associated with it. With this knowledge, the 
problem of varying distributed delays can be alleviated by 
having a lumped constant delay of multiple sampling 
intervals as seen by the controller. 

The major assumption in the formulation of the above 
multi-step compensation algorithm (Luck and Ray, 1990) is 
that the randomly varying delays are bounded. This 
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assumption is justified in view of the fact that an unbounded 
delay would render the closed loop open. Using a specified 
confidence interval, an upper bound can be assigned to each 
of the randomly varying distributed delays. The number (p)  
of predicted steps in the compensator is then determined 
from these bounds. That is, at time k, the predictor estimates 
the state using the measurements up to the (k - p ) t h  instant. 
Although Luck and Ray (1990) addressed some of the 
robustness issues of the delay compensator for structured 
uncertainties, the compensated system used the gain matrices 
that were originally designed for the non-delayed system. 
Since the robustness property of linear quadratic optimal 
regulators (LQR) is not retained when the state feedback is 
replaced by state estimate feedback (Doyle and Stein, 1979), 
this problem is likely to become worse with the insertion of a 
p-step predictor for p --- 1 because of the additional dynamic 
errors resulting from plant modeling uncertainties and 
disturbances. 

The objective here is to develop a procedure for synthesis 
of the p-step delay compensator with a trade-off between 
performance and stability robustness. To achieve this goal we 
propose to extend the concept of loop transfer recovery 
(LTR) (Doyle and Stein, 1981; Stein and Athans, 1987) 
which is a well-established procedure for synthesis of robust 
controllers. In continuous-time systems, the key step in LTR 
design is to select an observer gain so that the full-state 
feedback loop transfer property can be recovered 
asymptotically. For the discrete-time LTR, Maciejowski 
(1985) has shown that although the target sensitivity matrix 
can be completely recovered with a posteriori state 
estimation (i.e. p = 0 in the p-step predictor) a predictive 
state estimator (i.e. p = 1) is not capable of full recovery. 
Along this line Zhang and Freudenberg (1991) have analysed 
the loop transfer recovery error for predictive state 
estimation. We have adopted an approach, following the 
multi-step prediction method of Luck and Ray (1990) to 
synthesize the control system for delay compensation. This 
approach minimizes the loop recovery error where the gain 
of the p-step observer is tuned to a prescribed value. An 
alternative approach is to incorporate the delay in the plant 
model and then synthesize the controller and observer gains 
that must accommodate the effects of loss of robustness 
margins due to the delay and uncertainties. This approach is 
also discussed in this paper and it has been shown that the 
above two approaches yield identical relative sensitivity 
errors. However, if the plant model is simply augmented to 
accommodate the induced delays, the state-space realization 
may not be minimal as pointed out by Kinnaert and Peng 
(1990). 

The paper is organized in five sections including the 
introduction. Section 2 summarizes the pertinent properties 
of LTR for one-step prediction as reported in the existing 
literature. Main results including the structure and properties 
of the p-step delay compensator (p-> 1) are generated in 
Section 3. A general description of the p-step compensator is 
first presented. Then, the loop transfer matrix of the 
compensator is derived along with the error of the sensitivity 
matrix relative to that of the target loop. Finally, it is shown 
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FIG. 1. Random distributed delays in the control system. 
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that the minimum variance filter gain minimizes the error of 
sensitivity matrices. A procedure to synthesize the observer 
and controller gains for the p-step compensator is presented 
in Section 4. The proposed procedure is tested by the 
simulation of the flight control system of an aircraft which is 
subjected to a lumped delay of two sampling periods. The 
paper is summarized and concluded in Section 5. 

2. Review o f  the L TR concept for  one-step prediction 
The concept of loop transfer recovery (LTR) and the 

existing results for one-step prediction in the discrete-time 
setting are presented in this section. The plant under control 
is represented by a discretized version of a finite- 
dimensional, linear, time-invariant model in the continuous- 
time setting. The discretized model is assumed to be 
minimum-phase, stabilizable and detectable. 

x k + , = A x k + B u  k, Yk=Cxk .  (1) 

Following (1) the plant transfer matrix is given as: 

G(z)  = CO(z)B,  (2) 

where O ( z ) = ( z l - A )  J is the resolvement matrix. The 
target loop transfer matrix at the plant input is: 

H(z)  = rdP(z)B, (3) 

and the resulting target sensitivity matrix is: 

S(z)  = 11 + H(z)] '. (4) 

The full-state feedback control law for the above plant is: 

u k = -Fxk .  (5) 

In this paper, we have assumed that the uncertainties are 
unstructured and lumped at the plant input in the form of an 
input multiplicative term: 

G(z)  = G(z )[ l  + A(z)], (6) 

with given bound: 

oIA(e')l <lm(~O), W0-->0. (7) 

Usually, unstructured uncertainties include high-frequency 
dynamics that are not modeled in the plant dynamics. The 
bound l , , (w) finally restricts the system design specifications 
for stability robustness in terms of the closed loop 
complementary sensitivity matrix (Doyle and Stein, 1981). 
The task of control synthesis via the standard LQG]LTR 
approach is focused on shaping the loop sensitivity matrices 
for required performance and stability robustness, and can 
be carried out in two stages as discussed in Doyle and Stein 
(1979). 

For the filter observer (i.e. p =0)  of a stabilizable, 
detectable and minimum phase plant, the loop transfer and 
sensitivity matrices have been shown by Maciejowski (1985) 
to converge pointwise in frequency to those of the target 
system as the measurement noise approaches zero. However, 
this may not be valid for the one-step predictor 
(Maciejowski, 1985; Zhang and Freudenberg, 1991; Yen and 
Horowitz, 1989). Breaking the loop at the plant input, as 
shown in Fig. 2, the one-step delay-compensator transfer 
matrix is: 

Gl(z) = F ( z l  - A + BF + LC)  IL. (8a) 

Loop break point II 

U 

Y 

FIG. 2. Loop transfer recovery breaking the loop at plant 
input. 

An alternative form is: 

G,(z)  = F[1 + O ( z ) ( B F  + L C ) ] - t O ( z ) L .  (8b) 

Then the loop transfer matrix for the one-step delay- 
compensated system is: 

Ll(z  ) = G, ( z )G(z )  = F[I + O ( z ) ( B F  + LC)] - 'O(z )LCdP(z )B ,  

(9a) 

which can also be expressed, similar to the formula proposed 
by Zhang and Freudenberg (1991), as: 

L, (z )  = [I + El(Z)] ' [H(z) - E,(z)], (9b) 

where E ~ ( z ) = F [ z I - A  + L C ]  'B is the one-step error 
matrix at the plant input. The resulting one-step sensitivity 
matrix can be expressed as a function of the error transfer 
matrix: 

S,(z)  = [1 + L,(z)l-' 
= [1 + H(z)]-'[l + E,(z)]. (10) 

It is clear from (6) and (9) that E,(z )  is essentially the 
relative error of the sensitivity matrix, S,(z) ,  of one-step 
delay compensator relative to the target sensitivity matrix, 
S(z). 

E,(z )  = S ( z ) - l [S t ( z )  - S(z)]. (11) 

It is known (Zhang and Freudenberg, 1991; Yen and 
Horowitz, 1989) that complete loop recovery, i.e. making 
E , ( z ) = O  for all z, cannot be achieved in general by a 
constant observer gain L. However, it is possible to identify 
an L that minimizes the one-step error transfer matrix E, ( z )  
in the H 2 sense. 

3. The p-step delay compensator 
Figure 1 illustrates a feedback control system where both 

sensor and control signals are delayed. (This might happen in 
a network-based integrated control system of advanced 
aircraft where sensor, controller and actuator are not 
collocated.) If the sum of the upper bounds of distributed 
delays are represented by a lumped delay of p sampling 
intervals at the plant output, the sensory information 
available at the controller is Yk-p at the kth instant. The 
p-step delay compensator (where the plant is completely 
controllable and observable), proposed by Luck and Ray 
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FIcl. 3. Structure of p-step delay compensator. 

(1990) and illustrated in Fig. 3, has the following structure: 

u~ = --F2klk_ m (12) 

where F is the state feeback gain matrix and the state 
estimate is based on the sensory information up to the 
( k - p ) t h  instant given as: 

~..klk_ p = A2k_l lk_  p + Buk_ 1 

~k_r,+2l/~_p = A2k_p+ll~_ p + Buk_,+ l (13) 

xk-p +qk-p = A 2 k - p l ~ - p - l  + Buk-p  + L(y~_p - C$k_, lk_ p_ 1). 

The key idea of applying the LTR approach to the above 
p-step delay compensator is to tune the loop transfer matrix 
such that the error transfer matrix (i.e. the different between 
the actual and target sensitivity matrices) is minimized in a 
certain sense. Derivation of the loop transfer function of the 
p-step delay compensator is presented below as two 
propositions. 

Proposition 1. The transfer matrix of the p-step delay 
compensator (p > 1) from Yk to u k in the equation set (13) is 
given as: 

A p - i ]  l 
_ -1 AP-I  [ z l _ A + L C + B F £ 2 ~ ( z )  CAz) - Vnp (z) L, z p - l J  

(14) 

where 

( A ~ - ' )  
f ~ p ( z ) = I +  ! - ~  q~(z)BF f o r p > l ,  a n d ~ l ( z ) = L  

(15) 

Proof  o f  Proposition 1. The transfer matrix of the p-step 
(p > 1) compensator from Yk to Uk is obtained by substituting 
(13) into (12): 

p - - 2  

U k = - F A p - t . ~ k  p+ll k p - F  E A i B u k - i - t  , 
i = ( I  

where the summation on the right hand side reduces to zero 
for p = 1. From the above equation, it follows that 

uk = - F A g -  I( A - LC)2k-p  I • -p - i 
p--I 

- F A V - t L y k  p - F  ~ AiBuk_i  I. (16) 
i = 0  

The Z-transform of (16) is: 

U(z) = - FA p-  ' (A - L C ) f ( ( z ) z  t, _ FA p - , L Y ( z ) z - p  
p--I 

- F  ~ A iBU(z ) z  - i - ' ,  (17) 
i = O  

and Z-transform of the last equation in (13) yields: 

X ( z )  = (z l  - A + L C ) - ' I B U ( z )  + L r ( z ) l ,  (18) 

where X(z)  = Z[~klk-I], Y(z)  = Z[yl,], and U(z) = Z[uk]. 
Substituting (18) into (17) yields: 

U(z) = - FAP-I (A - L C ) ( z I -  A + L C ) - I [ B U ( z )  + L Y(z)]z  -p 

_ FA p-  I L y ( z ) z - P ,  
p--2 

- F  Z A iBU(z )  z - i - l ,  
i~o 

which in turn can be simplified as: 
p - 2  

U ( z ) = - - F [ z P - I I +  ~ A i B z p - i - 2 F  
k i=O 

BF] - l + A P - I ( z l  - A  + LC) -1 

x A p-  ~(zl - A + L C ) - ' L Y ( z ) .  (19) 

Using the relationship ~ ( z ) =  ( z l - A )  -~ and equating like 
powers of A, equation (15) can be expressed as: 

p - - 2  

f l +  ~ A i B z - i - I F  p > l ,  
£~p(z) = [ I ,=o (20) 

p = l .  

The proof is completed by substituting (20) into (19) and 
exercising a few algebraic operations. 

An alternative proof of Proposition 1 can be formulated 
following (Ishihara, 1988) by expressing the transfer matrix 
of the p-step compensator from Yk to u k as: 

c ~ ( z )  = - [ F A ~ - '  I . ~  (z l  - A + L C ) - ' B  + I + p~2 F A i S ] - I  
,% z '÷ '  I 

FAP- I 
x ~ (z l  - A + L C ) - I L .  (21) 

Proposition 2. Let the loop transfer matrix of the p-step 
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delay compensated system at the plant input be expressed as: 

Lp(Z) = Gp(z)G(z), 

where Gt'(z) and G(z) are defined in (14) and (2), 
respectively. Then, 

Lp(z) = [I + Ep(z)]-~[H(z) - Ep(z)], (22) 

where 
A P - I  I 

Et'(z) = FaP(z)B - Fz~WT_ I [1 + dP(z)LC]- ¢b(z)LC~(z)B, 

(23) 

is the p-step error transfer matrix; and H(z) is the target 
loop transfer matrix as defined in (3). 

Proof of  Proposition 2. By Proposition 1, the open loop 
transfer matrix of the p-step delay compensator is: 

Lt'(z) = Gt'(z)G(z), 

Ap-| [ Ap-i]  i 
[ z I - A  + LC + BFf2~,I(z) z p J J = F~p (z) 

x LC~(z)B  

= F ~ , ' ( z ) [ l  AP-t + ~ (1 + ~(z )LC)  'Op(z) 

tap_ I 
X BF~2~l(z) z p 1 

× (I + ~(z )LC)  ' ~ ( z )LC~( z )B  

= F[I  + ( I - ~ )  * ( z )BF + ~ 

×(I  +aO(z)LC) ' ~ ( z ) B F ] - '  
At" 1 

Zt" -1 

x (1 + ~ ( z ) L C ) - ' ~ , ( z ) L C ~ ( z ) B  

= [I + Ftb(z)B - 
I 

~ m p ~ 
I 

F zt" -~ 

× (1 + ~ ( z ) L C ) - l ~ ( z ) L C ~ ( z ) B ]  
I I 

At'- t 
X F z 7  T (1 + O(z )LC)- I~(z )LC~(z )B .  

The proof is completed by substituting (24) and (3) in the 
above equation. 

Remark 1. After some algebraic manipulations Ev(z ) con be 
written as: 

Ep(z) = FTp(z), (24) 

where 
p--2 A t, 1 1 

Tp(z)= z - ' ~ T - I ( z l - A + L C ) -  +i=o ~ A i B z - i - "  P->2(25)  

[ . ( z I - A  + LC) IB, p = 1. 

This shows that Ep(Z) can be separated in terms of the 
full-state feedback gain F and a function of L and p. 

Remark 2. For a minimum-phase plant (A, B, C) and with 
det (CB)~  O, as the measurement noise convariance matrix 
R approaches to zero and consequently L---~AB(CB) i, 
following Shaked (1985) the error matrix Ep(z) in (23) in 
Proposition 2 simplifies to: 

For p = 1, the error matrix Ep(x) in (26) is identically equal 
to El(z) in (11). 

Remark 3. It follows from the expression of Lp(z) in 
Proposition 2 that the sensitivity matrix, S,(z), of the p-step 
delay compensator is: 

Sv(z ) = [1 + Lt'(z)]-1, (27) 

and the difference between the sensitivity matrices of the 
p-step compensated and target systems is: 

Sp(z) - S(z) = [I + H(z)]- 'Ep(z),  (28) 

where S(z) is given in (4). This shows that the error transfer 
matrix Ep(z) is indeed the error of the sensitivity matrix of 
the p-step delay compensator loop relative to that of the 
target loop. 

Remark 4. If the plant model has an inherent delay of Pl 
steps and the induced delay in the feedback loop amounts to 
P2 steps such that the total delay is p = p t  +P2, then the 
resulting error transfer matrix satisfies equation (26) as the 
measurement noise covariance is tuned to zero. This can be 
easily seen if the plant transfer matrix satisfies the following 
constraints: 

CAiB=O, i = 0 , 1  . . . . .  P l - 2 a n d d e t ( C A P l - l B ) ~ 0 ,  

(29) 
i.e. 

G(z) = CO(z)B 
A i 

= Ci~=ozi+l  B ,  

A P I - I  
: c ~  ,~(z)B. (30) 

According to Shaked (1985), the observer gain L approaches 
AP~B(CAP~-~B) 1, as the measurement noise covariance 
approaches zero. Applying this observer gain to the loop 
transfer matrix: 

Lp(z) = CAz)C(z ) ,  

and by using (14) in Proposition 1, the error matrix becomes 
identical to that in (26) with a total delay o fp  =P l  +P2. 

This shows that any inherent delay in the plant has the 
same effect on the error matrix as the induced delay in the 
feedback loop. In other words, we can either consider the 
delays in the feedback loop outside the plant or as a part of 
the plant model. In the second case, the original plant 
state-space matrices (A, B, C), with det (CB)--/=0, need to be 
augmented with P l steps of delay and the new plant 
state-space matrices (A', B',  C')  need to be formed, which 
must satisfy the following conditions: (i) C ' ( z l -  A ' ) - l B  ' =  
C ( z l - A ) - l B z  v~; and (ii) complete controllability and 
observability. Therefore, we have adopted the first approach 
of putting the lumped induced delay outside the plant model. 

Remark 5. Dual results of Proposition 2, obtained by 
breaking the loop at the plant output instead of plant input, 
yield the loop transfer matrix 

L,(z)  = a( z )G~(z )  

= [H(z ) -  E~(z)l[l + E.(z)]-' ,  

where the target loop transfer matrix at the plant output (i.e. 
the transfer matrix of the minimum variance filter) is: 

and H(z) = C~(z)L,  

1AP-1 
Ep(z) : CO(z)L - CO(z)BFdP(z)[I + BF~(z)]-  ~ L. 

The resulting loop sensitivity matrix of the p-step delay 
compensator at the plant output is: 

Sp(z) = [l + L,(z)l  ' = [1 + E~(z)][l + H(z) ] - ' ,  

and the difference between the sensitivity matrices of the 
minimum-variance filter and p-step delay compensator is: 

s , ( z )  - S(z )  = e , ( z ) [ t  + H(z)l  1. 

Hz-minimization of the p-step error matrix 
For the one-step predictor, it has been shown (Zhang and 

Freudenberg, 1991; Yen and Horowitz, 1989) that the 
steady-state minimum-variance filter gain with zero measure- 
ment noise is obtained by minimizing the H 2 norm of the 
one-step error matrix El(z ). Analogous to the case of p = 1, 
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we will show that the same filter gain minimizes the H 2 norm 
of  the p-error  matrix Ep(z). This result forms the basis for 
synthesis of robust p-s tep delay compensators (p  > 1) and is 
presented below as two propositions. Then, the procedure 
for synthesizing the observer gain matrix is outlined. 

For the purpose of tuning the minimum variance gain of 
the observer, we augment the discrete-time, linear, 
time-invariant plant model in (1) and (2) with (fictitious) 
plant and measurement noises as: 

x,+ 1 = Ax, + Bu, + w,, (31) 

y,  = Cx, + v, ,  (32) 

where {Wk} is a zero-mean white sequence with covariance 
matrix: E{w,w f} = BBr6kj, and {v,} is a zero-mean white 
sequence with covariance matrix: E{vkv~ = pl6kj, 
combining the distributed delays within the control loop as a 
lumped delay of p sampling intervals at the sensor-controller 
interface, the state estimate is redefined as: 

"rk[k p = E{xk I Yk-p), (33) 

where the estimator is described by the set of equations (13). 

Proposition 3. Let the (zero-mean) state estimation error be 
defined as: 

e,l , p = x ,  - .~klk_ p. (34) 

Then, 

E{e,i,_perlk_p} = 

+ ~ A'BBrA ~r, p ~ 2  (35) 
s ~ O  

AP-~(A - LC)~BBr(A - Lc)'rA <p-~)r, p = 1. 
~s=O 

Proof of Proposition 3. From the plant model in (31) and 
(32), and the filter equations (13), we can express the 
estimation error e,  k in terms of the input sequence {w~}, 

I. _ P .  
when the system is Imtlally started at s = -oo: 

k--p 

e k l k - p =  Z A p - I ( A - L C ) k - p - s w ~ .  
s= - ~  

k - I  

+ 2 A k - S - l W s  " ( 3 6 )  

s - k - p +  I 

Hence the cross-covariance of  ek+ ~ and wk, defined as 
R~w(S ) = E(ek+~lk+ ~ pW~}, can be expressed in the following 
form: 

+ ~  

Re~(S)= ~ AP-t(A-LC)S-p-mBBtO(m) 
m=p--s 

p - s  1 

+ ~ A~-'-"BBr6(m) 
m=l--s 

f AP-I(A- LCf-PBB r (s >-p) 
=~A~-'BB r ( s = l  . . . . .  p - l )  (37) 

Lo (s = o). 

Similarly, the autocovariance of ek is obtained as: 

R~(s) = 

f+~_o R~(s+m+p)(A-LC)"TA(p- ' ) r=  

I ++P~=tlR~.,(s+m+l)A "T, p - > 2  (38) 

L ~=,R~(s+m+p)(A_LC),,rA(p l)r, p = l .  

The proof is completed by setting s = 0, and then substituting 
(37) into (38). 

Proposition 4. The H 2 norm of the sensitivity error matrix 

where 

Ep(z), defined in (23) in Proposition 2, is minimized if the 
observer gain matrix L is identically equal to the standard 
steady-state minimum-variance filter gain matrix with no 
measurement noise. 

Proof of Proposition 4. From the definition of H 2 norm 
(Francis, 1987) and Ep(z) in (24) of  Remark 1, it follows 
that: 

1 / f2,~ 
{{Ep(z){{ z = ~ t r a c e  tJo F 'r"(Jo)r"*(eJ°)FT d O )  

1 ((2~ [ At, , LC)-'B] 
= ~ t r a c e  \)o VL~(dnl-A + 

J 

A"' ) 
[ e - j a (p  l) w - - A + L C ) - I B  F r d Q  

1 / (  2"~ r A p-I . LC)-tB ] ] + ~ trace k]. F | ~ ( e ~ U l  - A + 

s = O  

1 {(2" ["-2 As l 
+~-~trace \Jo F [ , - - ~ o ~ ]  

+ M(p), (39) 

1 2zr p - - 2  A s 
( - - t r a c e ( (  F [ ~ ]  ~ B ]  
/ 2~ ~,Jo Ls=oe ' J 
( r p -2  A s i T  x M(p) = 

p - 2  

p = l .  

Since the sum of the second integral and the third integral is 
identically equal to zero and the integrals of the cross terms 
in the fourth term also vanish, 

,,Ep(z)ll~=ltrace {FAP-' f['~[(eml-A + LC)-'BBr 

x (e-J•l - A + LC) -r  dff2]A (p I)TFT} + N(p), 

where (40) 

N ( p ) =  ace F ~ A~BBTA sr F r , p>-2 
L X S =  o / J 

p = l .  

For given plant model state-space matrices A and B, if the 
feedback gain matrix F is fixed, then the observer gain L is 
the only adjustable matrix which could change the H 2 norm 
of the error matrix. On the other  hand, the covariance of  the 
state estimation error in Proposition 3 can be written, 
according to the discrete-time Plancherel theorem (Francis, 
1987), as follows: 

E(ek{k-pefflk p } =  AP-I JtSX[(e/QI A+ LC)-IBB r 

×(e-JUI-A + LC)-r dQ]A (p t)r + S(p) 

where 
2oA'BBTA~r p>-2 

S(p) = ' (41) 

1.0, p = l .  

A comparison of the H 2 norm of the error matrix Ep(z) in 
(40) with the trace of error covariance matrix 
E{eklk-~-er'*l _~_} in (41) reveals that any adjustment of L can 
only change the first term of both equations. Therefore,  
minimization of IIE,(z)ll2 is equivalent to that of 
trace [ E {ekl,_perlk_p} l for Vp > O. 

Next we proceed to find an optimal L that minimizes the 
trace [E{e,i k perlk_p}]. It follows from Lemma 1, given 
below, t h a t  the minimum variance filter gain (with p = 1) 
also minimizes the t race[E{e k k er* }] while p > 1 

• I - P  I - - P  " 
Therefore, the optimal observer gain L that minimizes 
IIE~(z)ll2 is the same L that minimizes IIEl(z)ll2. According 

~UTO 2g :2oN 
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to Lernma 2, the steady-state minimum variance gain with no 
measurement noise is the optimal gain. 

Lemma 1 for Proposition 4. For the p-s tep predictor 
( p > l ) ,  if the estimation error is defined as e k k = 

. . . .  I - P  
Xk---fkk_p, then the filter gain L which mlmmlzes the 
covariance E{ekk_verl~_p} is identical to the minimum 
variance filter gain. 

Proof of Lemma 1. The proof directly follows the 
derivations in Chapter 5 of Maybeck (1979). 

Lemma 2 for Proposition 4. For a fixed F, the H 2 
optimization of one-step predictor error matrix given as: 

min tlE,(z)ll2 = min IIF(zl - A + LC)-'Bll2, (42) 
L L 

is the steady-state minimum variance filter gain where the 
plant and measurement noise covariance matrices, Q and R, 
are set to: 

Q = BB r, R = lira pl, (43) 
~ o  

Proof of Lemma 2. The proof directly follows from the dual 
result of Theorem 3.1 in Yen and Horowitz (1989). 

4. Synthesis of the p-step delay compensator 
We propose a procedure for robust synthesis of the p-s tep  

delay compensator on the basis of the analytical results 
derived in Section 3. This two-stage procedure is structurally 
similar to the conventional LQR/LTR,  and is described 
below. 

• In the first stage, the target loop is designed assuming no 
delay (i.e. p = 0) and full-state feedback. The controller 
gain is optimized relative to a specified performance index. 
This is accomplished by shaping the target loop transfer 
matrix and the sensitivity matrix. 

• In the second stage, according to Proposition 4, the 
observer gain L is made identically equal to the 
steady-state minimum variance filter gain. This gain is 
calculated by solving the steady-state Riccati equation for 
a fictitious measurement noise convariance matrix R which 
is set to pl where/9 is a tunable scalar parameter and 1 is 
the identity matrix. The plant noise covariance matrix Q is 
set equal to BB r. For a given p, the loop transfer matrix 
and the sensitivity matrix of the p-s tep delay compensator,  
derived in Proposition 2 and Remark 4, are computed. 
Finally, p is tuned to achieve the specified performance 
and robustness requirements. The similar procedure can 
be found in Maciejowski (1985) and Yen and Horowitz 
(1989). 

The above synthesis procedure for p-s tep delay compensa- 
tion has been verified by simulation of the flight control 
system of a fighter aircraft. The lumped delay of p sampling 
intervals is a representation of the sensor-to-controller and 
controller-to-actuator delays (that could result from a data 
communication network interconnecting specially distributed 
components of the flight control system). The (continuous- 
time) plant model,  linearized at the operating condition of 
7.62 k and 0.9 Mach, is given below (Safonov et al., 1981). 

A =  

- - 0 . 0 2 2 6  -36.6170 -18.8970 
0.0001 - 1.8997 0-9831 

0.0123 11.7200 -2.6316 
0 0 1.000 
0 0 0 
0 0 0 

-32.0900 
-0.0007 

-0.0009 
0 
0 
0 

3.2509 
-0.1708 

-31.6040 
0 

-30.0000 
0 

-0.7626 ° 
-0.0050 

22.3960 
0 
0 

-30.0000 

[0000 0300iT [0,000 o] 
B =  0 0 0 30 , C =  0 0 1 0 ' 

where the six plant state variables are forward speed, angle 
of attack, pitch rate, attitude angle, elevon actuator 
position, and canard actuator position; the two control inputs 
are elevon and canard signals; and the two output variables 
are angle of attack and attitude angle. The plant model was 
discretized at a sampling frequency of 1000Hz which is 
sufficiently high relative to the desired operating frequency 
range of the closed loop system. On the basis of the 
discretized plant model, and a given set of performance and 
robustness specifications which can be found in Safonov et al. 
(1981), the control matrices for the target and delay- 
compensated systems were synthesized using a standard 
commerically available toolbox on a personal computer. 

The full-state feedback regulator was designed using the 
standard LQR procedure with Qc = 1~ and Re = 10-212. The 
resulting optimal state feedback gain, F, is given below: 

F =  [ 7.3570 -19.395 -9.9957 
[ -4 .2423 11.685 6.6904 

- 15.975 8.8425 -0.70813] 
10.395 -0.70716 8.2537 J" 

For tuning the filter gain in the LTR design procedure, the 
plant noise covariance was set as Q = B B  r, and the 
(fictitious) measurement noise covariance was set to R = PI2 
where p was tuned in the range of 10-7-10 12. Initially, a 
series of simulation experiments were conducted with no 
delays, i.e. p = 0, to verify that the system performance is 
degraded as p is increased and the error recovery becomes 
impossible. The LTR procedure yielded good results for 
recovering the full-state feedback robustness properties at 
p = 0 as expected. The system performance improved as the 
measurement noise (i.e. p)  was reduced, and the loop 
sensitivity matrix converged to the target sensitivity matrix as 
p was made to approach zero. 

In the simulation experiments, the scalar parameter p was 
tuned to adjust the observer gain L for both one-step and 
two-step compensators such that the stability robustness for 
each case (i.e. p = 1 and p = 2) bears a desired safe margin 
relative to the target system while the state feedback gain is 
retained at the optimal value F for the target system. The 
robustness margin in the frequency range of 10-1000 Hz was 
set to 10 dB in terms of the maximum singular value of the 
loop transfer matrix to overcome the detrimental effects of 
loss of phase margin resulting from delays. The parameter p 
in the design procedure of the delay compensator was 
adjusted to satisfy this requirement for robustness. The 
respective values of p and the resulting filter gain L that were 
used for one-step and two-step delay compensators are given 
in Table 1. 

Figure 4 shows a comparison of the maximum and 
minimum singular values of the loop transfer matrices for the 
one-step delay compensated (i.e. p = l )  and two-step 
delay-compensated (i.e, p = 2) systems. (Note: The target 
loop with full state feedback and no delay merely serves as a 
reference for the synthesis procedure.) The minimum 
singular values of the loop transfer matrices of the individual 
systems represent the lower bounds of their respective 
performance, and their maximum singular values represent 
the upper bounds of stability robustness. As stated earlier, 
the observer gain matrices of both compensators are adjusted 
by tuning p such that their maximum singular values are 
about 10 dB lower than that of the target system in the range 
of 10-1000Hz. The minimum singular values for both 
compensators, as seen in Fig. 4, are significantly lower than 
that for the target system. This is expected in view of the 
reduction in observer gain resulting in decreased loop 
transfer gain. However,  the two-step compensator consis- 
tently exhibits a lower performance (of about 12 dB) relative 
to the one-step compensator because of lower observer gain 
due to a higher value of the parameter p. 

One major criterion in the synthesis procedure is to reduce 
the difference between the sensitivity matrices of the target 
loop and the delay compensated loop (in the H 2 sense) as 
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TABLE 1. OBSERVER GAINS AND ADJUSTING PARAMETERS OF THE p-STEP DELAY COMPENSATOR 
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One-step delay compensator  p = 1 x 10 -t2 

( - 0 . 4 2  × 102 0.2 x l0 t 0.33 x 103 0.000 -0.6252 x 104 -0.341 x 103~ r 
L =  \ - 0 . 4 1 x 1 0 2  0.000 0.772×103 0 . 1 x l 0 3  0.2703x104 1.217x104]  

Two-step delay compensator  p = 5 = 10 -8 

/ - 6 . 6 2 3 9  3.4811 X 10 -1  3.7994 x 10 1.2893 x 10 -]  -1.3923 × 10 2 1.5987 × 10 ~ r  
L = ~ - 4 . 1 8 9 3  1 .1793x10 - I  3 .0325x10 2 .2847x10  -1 1 .9327x10 1.2122×102] 

much as possible. From this perspective, Fig. 5 shows 
comparisons of the maximum and minimum singular values 
of the sensitivity matrices for the target, one-step delay 
compensated (i.e. p = 1) and two-step delay-compensated 
(i.e. p = 2) systems. As shown in Table 1, the observer gains 
of  the delay compensators are tuned to their respective 
values such that the specification for stability robustness is 
satisfied. This renders the minimum singular values of the 
sensitivity matrices of the two compensators remain close to 
each other and above that of the target system except in the 
high frequency region where all of them move towards 0 dB. 
Therefore, the sensitivity of the delay compensators reduces 
at high frequency, which is a very desirable feature from the 
point of view of stability robustness. On the other hand, the 
performance of the delay compensators (in the low- 
frequency range) degrades as p is increased. It follows from 
Fig. 5 that O(E1(e~'O))=5.5dB and O(Ez(ei°'))=31.8dB in 
the frequency range of 10-2-10 Hz. 

5. Conclusions 
In many real-time distributed control systems such as 

advanced aircraft, spacecraft and autonomous manufacturing 
plants, the sensor and control signals within a feedback loop 
are subjected to delays induced by multiplexed data 
communication networks or due to priority interruption at 
the control computer. From this perspective, a procedure has 
been developed for robust compensation of delays in 

multi-input-multi-output discrete-time control systems. This 
control synthesis procedure is an extension of the standard 
loop transfer recovery (LTR) from one-step prediction to the 
general case of p-s tep prediction (p  -> 1), and is carried out 
in two steps; (1) evaluation of the state feedback gain 
assuming full state feedback and no induced delays; and (2) 
tuning of the filter gain by varying a scalar parameter 
representing the (fictitious) measurement noise covariance 
matrix. The delay-compensated system, albeit inferior in 
performance relative to the non-delayed full state feedback 
system, can be synthesized for a given value of p. The 
synthesis procedure is demonstrated via simulation of the 
flight control system of a fighter aircraft. 

The major conclusion derived from the analytical work 
reported in this paper is as follows. The concept of the 
steady-state minimum-variance filter gain as the H 2- 
minimization solution of the difference between the target 
sensitivity matrix and the actual sensitivity matrix for 
one-step prediction does not hold for p-s tep prediction 
(p >1) .  The conclusions from the perspective of control 
synthesis are; (i) it is impossible to tune the observer gain for 
a delayed system (i.e. p -> 1) to fully recover the target loop 
characteristics; and (ii) if the delay-compensated system is 
designed to satisfy a specified requirement of stability 
robustness, then its performance decreases as p increases. 
The results and conclusions are also applicable if the plant 
model has inherent delays which have the same effects on the 
loop recovery error. 
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