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Performance Management of Multiple 
Access Communication Networks 

Suk Lee, Member, IEEE,and Asok Ray,  Senior Member, IEEE 

Absfruct- This paper focuses on conceptual design, develop- 
ment, and implementation of a performance management tool for 
computer communication networks to serve large-scale integrated 
systems. The objective is to improve the network performance 
in handling various types of messages by on-line adjustment of 
protocol parameters. The techniques of perturbation analysis of 
Discrete Event Dynamic Systems (DEDS), stochastic approxima- 
tion (SA), and learning automata have been used in formulating 
the algorithm of performance management. The efficacy of the 
performance management tool has been demonstrated on a net- 
work testbed. 

The conceptual design presented in this paper offers a step 
forward to bridging the gap between management standards 
and users’ demands for efficient network operations since most 
standards such as I S 0  (International Standards Organization) 
and IEEE address only the architecture, services, and interfaces 
for network management. The proposed concept for performance 
management can also be used as a general framework to assist de- 
sign, operation, and management of various DEDS such as com- 
puter integrated manufacturing and battlefield C3(Command, 
Control, and Communications). 

I. INTRODUCTION 
ULTIPLE-access computer networks are designed to M provide communications between spatially distributed 

heterogeneous devices via common media and flexibility for 
changes in the system configuration. They are, therefore, well 
suited to serve large-scale integrated systems like banking 
and brokerage, battlefield command and control, autonomous 
manufacturing and processing plants, and advanced aircraft 
and spacecraft. Since the system requirements may widely 
vary according to the specific application, a computer network 
must be tailored at the design stage by selection of appropriate 
protocols and assignment of the default parameters [ 11-[3]. 
However, since the condition under which a network actually 
operates may change from that considered at the design 
stage, control and management actions are required to adjust 
the network parameters so that the design and operational 
objectives are satisfied. For example, under crisis situations, 
a military communication network may experience a traffic 
pattern which is entirely different from that under the normal 
peace-time operations. Similarly, in an aircraft control system 
network, the AI-based decision support systems for vehicle 
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management are expected to generate a significant amount 
of additional traffic when dealing with component failures or 
inflicted damage. Therefore, the network must always adapt to 
the dynamic environment especially if it is required to serve 
a large collection of heterogeneous users. 

The responsibility of adapting the network to the dynamical 
environment belongs to network management which aims 
to maintain reliable, flexible, and efficient operations. The 
discipline of network management is a relatively young field, 
and its importance is being realized as the number and 
diversity of the subscribers increase. Basic rules have been 
reported on the architecture, service definition, protocol stan- 
dardization, and distribution of network management functions 
[4]-[6]. Several standards for network management have been 
already published or under preparation as an important part 
of the integrated protocol suite [ 2 ] ,  [3], [7], [8]. However, 
analytical work has been largely limited to the classical 
areas of routing and flow control [9]. Researchers have not 
apparently addressed the key issue of how to accomplish 
the network management tasks in real time as problems or 
disruptions arise either in the network operations or in the 
process that is served by the network. This has happened 
partly because the development of a methodology for network 
management is beyond the scope of standardization. Never- 
theless, from the users’ point of view, network management 
is extremely crucial for maintaining uninterrupted operators as 
many important functions are dependent on the communication 
services provided by the network. 

The major components of network management are fault 
management, configuration management, and performance 
management. As its name implies,fault management is respon- 
sible for detection, isolation, and recovery from component 
failures and inflicted damage. Configuration management is 
related to network initialization and accommodation of any 
network configuration changes including those requested by 
fault management and performance management. Performance 
management is responsible for improving the network 
performance by adjusting the protocol parameters, and is 
critical for efficient operation of large-scale integrated systems 
that operate in a dynamic environment. Network operations 
with default settings of protocol parameters may not prove 
to be efficient under diverse operating conditions for a 
prolonged period of time. For example, a network for 
Computer Integrated Manufacturing (CIM) should be able 
to deliver various messages such as CAD (Computer Aided 
Design) file transfer, interpersonnel electronic mail, sensor 
and control signals within their time limits of delivery under 
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changing traffic patterns caused by common events like 
arrival of new production orders and machinery breakdown. 
Even though individual protocols offer mechanisms to handle 
various types of messages efficiently, the key parameters of 
the protocol suite which determine the network performance 
are at the network operator’s disposal. Usually, the operator 
adjusts these parameters on the basis of certain heuristics 
and hisher individual experience because there is no 
established relationship between protocol parameters and 
network performance. Also, no systematic approach to 
parameter adjustment exists. 

This paper presents conceptual design, development, 
and implementation of a performance management tool 
for multiple-access computer communication networks. The 
objective is to improve the network performance by on- 
line adjustment of protocol parameters. To the best of the 
authors’ knowledge, it is the first application of Perturbation 
Analysis (PA) of Discrete Event Dynamic Systems (DEDS) to 
multiple-access network protocols. Moroever, the technique of 
PA has been combined with Stochastic Approximation (SA) 
and Learning Automata (LA) to formulate the performance 
management algorithm. This paper is organized into six 
sections, including the Introduction and two Appendices. 
Section I1 presents the main theme of the proposed 
performance management tool, including the concepts of PA, 
SA, and LA. Analytical formulation of the tool for the specific 
case of a token bus protocol is presented in Section 111. 
Details of implementation of the performance management 
algorithm on a network testbed are described in Section IV. 
The test results are presented and discussed in Section V. 
Finally, the paper is summarized and concluded in Section 
VI along with recommendations for future research. The 
priority mechanism of the token bus protocol considered here 
is briefly in Appendix A, and an example of perturbation 
analysis of timer setting changes for the protocol is presented 
in Appendix B. 

11. PERFORMANCE MANAGEMENT 
The role of performance management is to manipulate 

the adjustable protocol parameters in real time so that the 
network can adapt itself to a dynamic environment. Perfor- 
mance management is divided into two tasks: i) performance 
evaluation to find how changes in protocol parameters affect 
the network performance measure; and ii) decision making 
on how to adjust the protocol parameters. The first task is 
essentially equivalent to finding a relationship between the 
network performance and the protocol parameters, and may be 
required to estimate the network performance at some points in 
the neighborhood of the current parameter settings. The second 
task is to decide the direction and magnitude of the parameter 
adjustment vector, i.e., what are the next settings for improved 
network performance, utilizing pieces of information provided 
by the first task, and the performance history. 

Performance Evaluation: The analytical techniques, such 
as queueing theory [lo], often require unrealistic assumptions 
like Poisson arrival, and tend to be mathematically untractable 
as the structure of the performance measure becomes complex. 

Furthermore, network traffic statistics such as message arrival 
process and distribution of message length, which are required 
as inputs to the analytical model, are very difficult to estimate 
on-line. On the other hand, discrete-event simulation [ 113 is a 
viable alternative to analytical techniques. A major advantage 
of simulation over any analytical technique is that a DEDS can 
be modeled with much less stringent assumptions, and more 
complex performance measures can be handled with relative 
ease. However, discrete-event simulation usually suffers from 
signficant computational burden because a single simulation 
run represents only one realization of a stochastic process. In 
order to obtain an accurate performance estimate under a given 
set of parameters, several independent runs (or a lengthy run 
if the process is ergodic) are needed, and these runs should be 
repeated for individual sets of pertinent parameters. In order to 
avoid the estimation of network traffic statistics which are still 
required, one can record time of arrival and length for each 
message and feed this information into a simulation model. 
However, this requires a large amount of information transfer 
from each individual station to the performance manager, 
which may degrade the overall network performance. 

Over the last decade, Ho and his colleagues (1121, [13], 
and references therein) have developed the technique of Per- 
turbation Analysis (PA) to circumvent the difficulties of con- 
ventional analysis and simulation in DEDS. PA estimates the 
DEDS performance under perturbed conditions (with different 
parameter values) by observing the sequence of events occur- 
ring over a period of time in the nominal (i.e., unperturbed) 
system. In fact, PA constructs parts of event sequence for the 
perturbed system based on the nominal one. This approach 
has a computational advantage over repetitive simulation runs, 
especially when no analytic technique is available. When the 
effects of n parameters on a performance measure are to be 
evaluated, the conventional discrete-event simulation needs 
n + 1 runs (one with the nominal parameters and 71 runs, 
each with one perturbed parameter and the remaining nominal 
values). On the other hand, PA needs only one run because 
it calculates the performance measure of the perturbed system 
based on the inherent information from the simulation with the 
nominal parameter. Therefore, the ratio of computation time 
can be approximately 1 to n + 1 if the processing time for PA 
algorithms is negligible compared to that for discrete-event 
simulation. For performance management, PA is very suitable 
because this technique can directly utilize on-line observation 
of events. This does not require any identification of statistical 
parameters of the network traffic and is computationally more 
efficient than discrete-event simulation. Furthermore, PA still 
retains the inherent advantages of simulation over analytical 
techniques. 

Decision Making: This task requires parameter optimiza- 
tion, and can be accomplished numerically by Stochastic 
Approximation (SA) which utilizes random measurements 
over a finite period of time to estimate the finite difference 
quotient of the performance measure with respect to decision 
variables [ 141. However, since the performance measure itself 
is a random variable (with an unknown distribution) in this 
situation, the estimated quotients have a nonzero variance at 
every point. Consequently, the SA technique has to reduce 
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its step size as the extrema1 point is approached. In many 
situations, however, more than one optimization algorithm 
may be required because any individual algorithm is likely 
to be efficient only in some region of the protocol parameter 
settings under given statistics of network traffic. An additional 
level of decision making is needed to select the most appropri- 
ate optimization algorithm according to the current parameter 
settings and traffic statistics. This approach is likely to enhance 
the efficiency and credibility of performance management 
in a dynamic operating environment whose characteristics 
are unknown or partially known. Techniques like Learning 
Automata (LA) can be used for decision making at the upper 
level for selecting the most efficient and credible optimization 
algorithm based on past performance [ 151. 

A learning automaton consists of a set of actions, a cor- 
responding set of action probabilities, and a reinforcement 
scheme. The action probabilities are updated by the reinforce- 
ment scheme according to the response from the environment 
which reacts to the action of the learning automaton. A 
Performance Evaluator (PE), as a part of the environment, 
is required to interpret the response. If the interpretation is 
favorable, then the probability of the chosen action is increased 
and those for other actions are decreased. By repeating this 
process, the learning automaton can select the best action 
under the current environment. In a dynamic environment, 
the performance management algorithm must know whether 
the network traffic statistics have changed because: i) the 
optimization algorithm is likely to have its own ability of 
adaptation such as reduction of the step size in SA; and ii) a 
change in network traffic may mislead the learning automaton 
in evaluating the performance of the optimization algorithms. 
Therefore, whenever any change in network traffic statistics 
takes place, the step size of the optimization algorithm and 
the PE may have to be reset. 

111. FORMULATION OF A PERFORMANCE 

MANAGEMENT PROCEDURE 

The proposed performance management tool is based on the 
principles of Perturbation Analysis (PA), Stochastic Approx- 
imation (SA), and Learning Automata (LA), and its overall 
structure is shown in Fig. 1. The Linear Token Passing Bus 
(LTPB) protocol [8] has been selected to demonstrate the 
efficacy of this performance management tool for adjustment 
of a Token Holding Timer (THT) and three Token Rotation 
Timers (TRT1, TRT2, and TRT3) in real time on the basis 
of measured data. The operating principle of LTPB and its 
priority mechanism are described in Appendix A. 

A. Performance Evaluation Via Perturbation Analysis 
The knowledge of the relationship between a selected per- 

formance measure and the pertinent protocol parameters is a 
critical requirement for performance management. In this case, 
the behavior of the LTPB protocol with perturbed parameter 
settings under the same stochastic realization is constructed 
from a single observation with nominal parameters. The set- 
tings of the four timers of LTPB directly influence data latency 
(i.e., the time interval between the instant a message enters the 
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Fig. 1. Overall structure of performance management. 

source station’s queue to the instant the last bit of the message 
is received at the destination station), whose statistics are often 
one of the most dominant factors in network performance. 
How to assess the effects of change in timer settings on 
network operations is illustrated by a simple example of an 
LTPB network in Appendix B. 

The PA Algorithm for the LTPB Protocol: To reduce the 
complexity of the problem, we assume that there is no 
queue saturation on both nominal and perturbed paths. 
This assumption holds good for the majority of network 
applications because the network is usually designed to operate 
sufficiently below its full load and a safe margin is allowed 
in the allocation of queue capacity. The PA algorithm consists 
of two parts: i) detection of any possible difference between 
the nominal path and a perturbed path: and ii) construction 
of the portions of the perturbed path which differ from the 
nominal one. No additional event scheduling in discrete- 
event simulation is required for either of these two parts. 
This is critical because a major share of computations in 
discrete-event simulation results from event scheduling and 
its execution. 
Detection of Difference between Nominal and Perturbed Paths: 
A portion of the perturbed path begins to differ from the 
nominal one when the number of message transmissions from 
a queue on a particular token reception are different from 
each other. (Transfer of the right to transmit between the 
queues of a station is also considered as a token reception.) In 
order to establish the test conditions for a different number of 
message transmissions on the perturbed path, several notations 
are introduced. 

Number of messages just transmitted from the current 
queue on the nominal path, m = 0,1,2,  . . . . 

Number of messages waiting in the current queue after 
m transmissions on the nominal path, q = 0,1,2,  . . . . 

m: 

q: 
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L k :  Transmission time of the lcth message, = 

T:  Nominal token circulation time of the current queue, 
i.e., the time interval between the previous and current token 
reception instants. 

1,2,. ‘ .  ,m. 

THT: Nominal length of THT. 
ATHT: 
TRT;: Nominal length of TRT;. 
ATRT;: 
The following tests must be executed before passing the 

TEST0 [test for priority class 01 

Perturbation in THT, THT + ATHT > 0. 

Perturbation in TRTi, TRTi + ATRTi > 0. 

token to the next queue after m message transmissions. 

Case a)  ATHT > 0 and m > 0: 
m 

L k  < (THT + ATHT) and q > 0 
k = l  

Case 6 )  ATHT < 0 and m > 1: 
m - 1  

L k  2 (THT + ATHT) 
k = l  

TESTi [test for priority class, i, i = 1,2,3] 
Case a )  (TRT; - T )  > 0,  ATRT; > 0 and m > 0: 

m 

L~ < (TRT, + ATRT, - T )  and q > o 
k=l 

path while there would be at least one transmission on the 
perturbed path for TESTO(b). TESTi(c) implies that some 
transmissions are possible on the perturbed path while there 
has been no transmission on the nominal path due to expiration 
of TRTZ. If TESTi(d), which can be considered as a special 
case of TESTi(b), is satisfied, then no transmission is allowed 
on the perturbed path while one transmission was possible on 
the perturbed path. 

Construction of the Perturbed Path: The construction of a 
perturbed path consists of three parts: maintenance of the 
perturbed queue status; calculation of the perturbed timer 
status; and propagation of the effects of perturbation on the 
instant of token reception. Records associated with a message 
such as generation time and message length are kept even 
after the message is transmitted on the nominal path. These 
records are discarded only after the message is transmitted on 
both nominal and perturbed paths. In this way, queue contents 
on the perturbed path are available for construction of the 
perturbed path. 

For the priority level 0, THT status is independent of the 
token circulation time T since THT is always reset to its 
full value at each token reception. Therefore, upon a token 
reception, the remaining interval of THT on the nominal path 
R(0) is always equal to THT during which the priority 0 
queue can start to transmit its messages. On the perturbed 
path, the interval R’(0) is 

Case b)  (TRT; - T )  > 0,  ATRTi < 0 and m > 1: R’(0) = THT + ATHT. 

For the lower-priority levels, the remaining interval of TRTi 
on the nominal path is equal to R(i) = max (TRTi - T ,  0 )  
upon a token reception, where m a ( . , . )  denotes the larger 
of the two arguments. Since the interval is dependent on T ,  
the perturbation on the instants on the current and previous 
token receptions at a queue should be considered, which are 
denoted by AC and AP, respectively. The perturbation on the 

m-1 

k=l 
(TRT; + ATRT; - T )  5 L k  

Case c )  (TRT; - T )  5 0 and ATRT, > 0: 

(TRT; + ATRTi - T )  > 0 and q > 0 
remaining time when the token is received, AR(i), is 

Case d) (TRT; - T )  > 0,  ATRT; < 0 and m = 1: 
AP - AC + ATRT; 

(TRT, + ATRT; - T )  5 0. 

TESTO(a) is applicable if a priority class 0 queue can 
transmit more message(s) on the perturbed path in addition 
to m transmitted messages on the nominal path. Additional 
transmission is possible only when THT is increased and there 
has been at least one message transmission on the nominal 
path. (No transmission on the nominal path implies that the 
queue is empty upon token reception.) Further, the increased 
THT should be long enough so that the perturbed THT is not 
expired even after m trnasmissions and the queue should not 
be empty for additional transmission(s). TESTO(b) is opposite 
to TESTO(a). If TESTO(b) is satisfied, then the number of 
transmissions on the perturbed path is less than the number m 
of transmissions on the nominal path. In this case, ATHT 
should be negative and the perturbed THT should expire 
during the (m - 1)st transmission at the latest. TESTi(a) and 
TESTi(b) are largely equivalent to TESTO(a) and TESTO(b), 
respectively. TESTi(b) represents a slightly different situation 
compared to TESTO(b) in the following sense. TESTi(b) 
could imply that no transmission is allowed on the perturbed 

{ A P  - AC + ATRT, + TRZ - T 
if (TRT; - T )  > 0 

AR(i) = 

The first case applies when the timer is not expired on the 
nominal path as shown in Fig. 2. The second case applies 
when the timer is already expired prior to the token reception 
as shown in Fig. 3. Then, at the token reception, the remaining 
interval on the perturbed path R’(i), during which priority z 
transmissions can start, is: 

R’(i) = max(R(i) + AR(i),O). 

AC for the next queue is yet to be obtained for construction 
of the perturbed path. The time X(Z), spent in transmitting 
messages from the current queue, is known from the nominal 
path. The time, X’( i ) ,  spent for message transmissions on the 
perturbed path can be obtained on the basis of the perturbed 
queue status and the perturbed remaining time R‘(Z). X ’ ( i )  is 
calculated by summing up the transmission time, L j ,  of the j t h  
message from the perturbed queue either until the perturbed 
queue becomes empty or until the perturbed TRTi is expired 
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Fig. 3 .  Perturbed remaining interval of TRT, (case 2).  

Fig. 2. Perturbed remaining interval of TRT, (case 1). 
backward finite-difference quotient qf [IC]. The ith diagonal 
element of r [ k ]  is: 

~ ; [ I c ]  = rnax(c;re~[”,~) 
i.e., R‘(i) - X ’ ( i )  5 0. While calculating X ’ ( i ) ,  observations 
like data latency on the perturbed path can be recorded for 
estimating the perturbed performance. 

of token reception for the next queue is obtained as: 

where ci is a positive constant for the initial step size, T E 
(0,l)  is a reduction factor, e i [k]  is an integer counter variable 
indicating the number of sign reveals in the ith quotient q:[k], 

Defining AX(;) = X’(i) - X ( z ) ,  perturbation at the instant 

AC(i + 1) = AC(i)+ A X ( i )  and 1 is the lower bound common to all diagonal element. The 
forward or backward quotient of the observed performance 
g ( z [ k ] ,  w[IC]) at a sample point u[k] is defined as: where the indices i and i + 1 indicate that the current and next 

queues are based on modulo 4, i.e., they range from 0 to 3. 

tion analysis of the LTPB procotol is summarized in four steps 
Summary of the PA Algorithm: The algorithm for perturba- g ( z [ k ]  + A 4 + i ,  4 4 )  - s(z[k1,4kl) 

Ax; [kl qf[kI = 

as delineated. 
Step 1 :  Perform appropriate test (TEST0 and TESTi,i = 

1,2,3) just before passing the token to the next queue or 
station. Set the flag if any of the tests are satisfied. 

Step 2:  If the flag is not set, repeat Step 1 for the next queue 
or station. Otherwise, proceed to Step 3. 

Step 3: Execute the construction procedure for the current 
queue before passing the token. 

Step 4: Repeat Step 3 until all queues have AC = 0 and 
A P  = 0 during a token circulation. If so, clear the flag and 
go to Step 1. 

B .  Stochastic Approximation 
Although the Stochastic Approximation (SA) technique 

described in [ 141 has been proven to converge in a stochastic 
sense, it is known to have a slow convergence in many 
practical situations due to the fact that its step size is uniformly 
reduced regardless of the current value of decision variable 
z [ k ]  (a 4 x 1 vector of timer settings in this paper) at the 
k t  h iteration. To circumvent this difficulty, the conventional 
algorithm is modified following Ho et al. [ 161. This modified 
algorithm, hereafter referred to as the Modified Stochastic 
Approximation (MSA), can be written as follows. 

~ [ I C  + 11 = z[k] - r[lc]f(q*[k],. . . , q*[k - m, + 11). 

r [ k ]  is a diagonal matrix whose nonzero elements are not 
restricted to be identically equal and are dependent on the 
number of sign reversals in the corresponding forward or 

where ui is the ith unit vector, a positive perturbation Ax:;[k] 
for ith decision variable is used for forward difference, and 
a negative perturbation Ax:;[k] for backward difference. The 
MSA algorithm also utilizes past quotients to smooth the 
adjustments in 2[IC]. Function f takes a weighted average of 
m, recent quotient vectors q*[k]  = CY==, q f [ k ]u i .  That is, 
the ith element of f is written as: 

fi(Q* [kl, . . * , !J*F - mu + 11) 

4 k I  
- g ( s [ k ] , w [ k ] )  W j X i [ k  - j + l]q’[k - j + 11 

j=1 g(z[k - j + 11, w[k  - j + l)]) - 

where C?!=,wj = 1 and wj 2 OVj. 
Remark: The basic idea behind the MSA algorithm is that 

the sign of the quotient changes more frequently as z [ k ]  
approaches its optimal point since the noise contained in the 
quotient is likely to determine the sign. The MSA algorithm 
adapts its step size based on the number of sign reversals in 
the quotient in contrast with uniform reduction in stochas- 
tic approximation. Weighted averaging function f serves to 
reduce the length of a period to measure the performace and 
avoid alternating directions of the parameter adjustments. With 
an appropriate choice of the window size m, and weighting 
factors wj, inherent noise in measurements may be reduced 
without sacrificing the speed of convergence. However, a 
rigorous proof of the convergence for MSA algorithms has 
not been established. This is apparently untractable because of 
the dependence of the step size on past history. 
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Apl[k] = 

1431 

ifa[IC] = 1 andp[lc] = 0.25, 
or ifa[k] = 2andP[k] = 0.75 

ifa[IC] = 1 andp[IC] = 0.75, 
or ifa[k] = 2andP[k] = 0.25 

ifa[k] = landp[k] = 1, 

M 

0 ifP[k] = 0.5 
-1 . - 
M 
- 

M 
\ or ifa[k] = 2and/3[k] = 0 

C. Learning Automata 

For autonomous selection of the optimization algorithm, 
the Variable-Structure Stochastic Automaton (VSSA) [ 151 has 
been adopted because greater flexibility can be exercised 
within a smaller structure in comparison to those in fixed 
or deterministic settings. The reinforcement scheme in VSSA 
updates the action probabilities in discrete time based on the 
responses from the Performance Evaluator (PE). The next 
action of the automaton is selected on the basis of the updated 
action probabilities whose sum is equal fo 1. A simplified 
VSSA is represented by the triple { E , P , A }  where 5 = 
(01, a2, . . . . c y a } ,  ,L? = { P I ,  ,&, . . . , pS} ,  and A: E x + E is 
the reinforcement scheme. CU is the set of available actions (is., 
optimization algorithms); a [ k ]  denotes the action at instant I C .  P 
is the set of responses (i.e., possible levels of performance 
of the current optimization algorithm) that are inputs to the 
automaton, and the response at instant IC is denoted by p [ k ] .  

The discrete reinforcement scheme for performance man- 
agement has been formulated following the concept of discrete 
reward/penalty (DRP) automaton [17]. In this case, the au- 
tomaton has two available actions (i.e., there is a choice 
between two alternative optimization algorithms) in response 
to five possible inputs, namely 0, 0.25, 0.5, 0.75, and 1, from 
the environment. Among these inputs /?I = 0 indicates the 
most favorable response while ,Os = 1 is the most unfavorable 
one. The reinforcement scheme has M + 1 states (i.e., the 
action probability is allowed to assume one of the M + 1 
values) where M is an even number greater than 2. The 
reinforcement scheme is presented: 

I ifa[k] = landP[k] = 0, 
or ifcu[k] = 2andP[k] = 1 

and 

where pl [IC] is the probability of selecting "1. The probability 
of selecting a2 is given as pn[k] = 1 - pl[k]Vk. 

Iv .  Ih4PLEMENTATION OF THE 
PERFORMANCE MANAGEMENT TOOL 

The performance management algorithm has been imple- 
mented on a network testbed where the LTPB protocol [8] 
under consideration was emulated by two interacting ap- 
plication processes. The testbed is operated on the IEEE 
802.4 token bus protocol in the environment of the (10 Mb/s 
broadband) Manufacturing Automation Protocol (MAP) [2]. 

The physical configuration of the testbed consists of a length 
of coaxial cable, a head-end remodualtor, and three hosts. 
Each host computer is equipped with two network cards from 
Industrial Networking Incorporated (INI) [18]. One of the 
hosts operates as a network management console for initial 
downloading of the protocols to the remaining two hosts. At 
each of these two hosts, a software package emulates a number 
of LTPB stations by generating, transmitting, and receiving 
messages which are essentially packets of the Association 
Control Service Element (ACSE) of MAP [2 ] .  

A .  Implementation Strategy 

Since the PA algorithm involves only logic and addition op- 
erations, it has been implemented in a distributed manner to be 
executed at each station to estimate the network performance 
under perturbations in each one of the four timer settings of the 
LTPB priority mechanism. Perturbation in the token reception 
instant is included in the token to be passed to the next 
station in the logical ring. In this distributed implementation, 
additional traffic due to management operations is expected to 
be significantly smaller than that for a centralized PA algorithm 
which requires information on contents of queues and timer 
status from all stations. On the other hand, the decision- 
making module that includes stochastic approximation and 
learning algorithms is centralized at a designated station, 
hereafter referred to as performance manager. Even though 
the network may have more than one station with partial 
or complete capability to execute decision-making functions, 
the centralized strategy allows only one active copy of each 
decision-making function. The rationale for selecting central- 
ized decision making is that the distributed strategy, where 
every station could make decisions autonomously based only 
on its local performance, would result in inconsistency and 
conflict by having different timer settings over the network. 

Network operations under the proposed performance man- 
agement tool involve a series of iterations, which consist of 
an observation period and subsequent management actions. At 
the beginning, the performance manager broadcasts the initial 
timer settings and timer perturbation vectors to all stations. 
During an observation period, each station executes its own 
PA algorithm, and the performance manager monitors the 
messages flowing over the network. When the performance 
manager depicts that enough data have been collected, it waits 
for the token and then broadcasts the request for a performance 
report to all stations. Then, the performance manager passes 
the token without any further message transmission. Once 
this request from the performance manager is received, other 
stations interrupt their normal operations, prepare the perfor- 
mance reports, and transmit these reports as soon as the token 
is received. After one complete token circulation, the manager 
receives the token against and, by this time, reports from all 
other stations have been received. Then, the manager processes 
the reports, computes new timer settings, and broadcasts them 
with new timer perturbation vectors for the next iteration. 
Upon reception of the new settings and perturbation vectors, 
all stations set their corresponding variables and wait for the 
token to resume normal operations. 
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B .  Implementation Details 

In this implementation, a measure of the network perfor- 
mance has been formulated on the basis of observed data 
latency. Throughput of the network is excluded from the per- 
formance measure since network traffic is assumed to be below 
network capacity, which implies that all messages entering the 
network are eventually transmitted to their destination. In other 
words, throughput is equal to offered traffic. Therefore, the 
main focus of the performance measure is on data latency, i.e., 
how long it takes for a message to reach its destination relative 
to the instant of its generation. The network performance g(. ,  .) 
is expressed as a function of data latency: 

where p E [0,1] is a weighting factor, rn,[k] is the number 
of messages observed during the kth iteration, z denotes 
priority level, rn;[k] is the number of the priority level i 
messages during the lcth iteration related to m,[k] by m,[k] = 
C:=omi[k] ,  and S j ( z [ k ] , w [ k ] )  is the data latency of the j t h  
priority level i message during the lcth iteration. Fi(.) is a 
penalty function for priority level i messages and is defined 
as: 

with penalty threshold 0; and penaly band b; for priority level 
i messages. 

The first term of the performance measure represents the av- 
erage penalty over all messages such that a message of which 
data latency exceeds the corresponding threshold is penalized 
according to the penalty function F;(.). This is analogous to 
variance of data latency. This form of penalty is especially 
useful for messages carrying time-critical information such as 
control signals and sensor data, interrupt signals, and video 
and voice data. The second part of the performance measure 
takes into account the square of average data latency over all 
messages. For network emulation on the testbed, p is set to 
1 because the two terms of the performance measure were 
found to have a very close correlation with each other from 
simulation experiments. 

The Performance Evaluator (PE) assesses the performance 
of an optimization algorithm by observing various items after 
timer settings have been changed. To this end, the performance 
of an optimization algorithm has been formulated focusing on 
its stepwise behavior rather than the asymptotic one. In fact, 
the asymptotic performance of an algorithm may not be mea- 
sureable because the performance manager usually switches 
from one algorithm to another. The PE maintains history of 

the network performance and adjustment of the timer settings 
in order to provide criteria for evaluation of the recent action 
by the learning automaton. In this implementation, records 
for the past five iterations are maintained. The PE compares 
the current network performance with the average network 
performance of the past iterations. Also, the magnitude and 
signs of current timer changes are compared to those of the 
averaged timer changes for past iterations. Since perturbation 
analysis is executed all the time, the signs of the next changes 
are available for the PE to compare the signs of the current 
changes to those of the next changes. According to these 
comparisons, the PE selects one value for p [ k ]  out of five 
possible values. 

v. RESULTS AND DISCUSSION 

The first part of this section presents the results from 
simulation experiments which were conducted to investigate 
the accuracy of the PA algorithm, which is an important 
ingredient of the performance management tool. The second 
part focuses on the results from emulation experiments the 
network testbed to demonstrate the efficacy of the proposed 
tool. 

A. Results for Simulation Experiments 

An LTPB network with 10 stations has been simulated with 
the transmission rate of 50 Mbls and queue capacity of 10 
messages for every queue. The network traffic is composed 
of messages at four priority levels. The total network takes 
70% of the network capacity on the average: 10% for priority 
level 0 and 20% each for priority levels 1, 2, and 3. The PA 
algorithm formulated in Section 111-A has been implemented 
in the simulation. This implementation maintains four separate 
perturbed paths and only one timer setting can be perturbed 
in each path. The simulation result under a typical scenario is 
discussed below. 

Having set the timers THT, TRT1, TRT2, and TRT3 at the 
nominal values of 150, 1000,800, and 600 ps, respectively, the 
PA algorithm was used to estimate the perturbed performance 
under four different perturbations on TRT3: -100, -50,50, 
and 100 ps. Four additional simulation experiments have also 
been performed to obtain network performance with four sets 
of perturbed timer settings without using the PA algorithm. 

Fig. 4 shows the absolute values of percent error in esti- 
mating the perturbed network performance with TRT3 pertur- 
bations. In Fig. 4, S denotes the number of future message 
generations considered by the PA algorithm. For S = 0 where 
no future message is taken into consideration (shown by solid 
black bars), the error for positive perturbation is much larger 
than that for a negative one. The rationale is that a positive 
increment in a timer setting is likely to make the perturbation 
in token reception instant AC positive during a major part 
of the simulation experiment because an increased timer 
setting enables the corresponding queues to transmit more 
messages compared to the nominal path. If AC is positive, 
the PA algorithm has to construct the perturbed path with no 
knowledge on any potential change in the queue contents from 
the present time t .  In order to reduce errors in estimating the 
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Fig. 4. Percent error of the PA algorithm with TRT3 perturbations. 

perturbed performance, the PA algorithm has been modified 
to look into the event calendar so that the next message 
generation at a given queue can be considered in constructing 
the perturbed path. This idea has been extended to consider 
message generations further in the future by scheduling more 
than one message generation for a given queue. The shaded 
bars for S = 1 in Fig. 4 show a significant reduction in the 
absolute values of the percent error when one future message 
generation at each queue is considered by the PA algorithm. 
However, this method for reducing errors is applicable only 
to simulation experiments. Simulation results show that the 
PA algorithm is capable of estimating the performance of 
the LTPB network under perturbed parameters by using the 
results of a single simulation experiment under the nominal 
condition. The estimation errors are found to be within 3% 
from all simulation experiments for perturbations in THT, 
TRT1, TRT2, and TRT3. 

B .  Results of Emulation Experiments on the Testbed 
Three experiments, conducted on the network testbed, are 

reported here as typical results. For each of these experiments, 
the emulated network was run for 100 iterations which are 
equivalent to 300,000 message transmissions. During the first 
25 iterations, the network was operated without any perfor- 
mance management action in order to achieve the steady-state 
operations. Four timers of the LTPB priority mechanism were 
adjusted on-line during the remaining 75 iterations. For these 
experiments, two different MSA algorithms (described in Sec- 
tion 111-B) were used: one is referred to as conservative and the 
other as liberal. The conservative MSA algorithm has smaller 
values for initial step size c i ,  reduction factor T ,  and weighting 
factor w1 compared to the liberal algorithm. In other words, 
the conservative algorithm tends to adjust timers in smaller 
increments and to reduce its step size faster than the liberal 
algorithm. For the first two experiments, the two algorithms 
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were used separately and one at a time for performance 
management without the learning scheme. This is referred 
to as the single-algorithm performance management (SPM). 
The conservative SPM was found to yield better cumulative 
performance than the liberal SPM. For the third experiment, 
both algorithms were employed togehter for performance 
management but one and only one of the two algorithms is 
selected by the learning automaton at any given iteration. This 
is referred to as the dual-algorithm performance management 
(DPM). 

Fig. 5 shows a comparison between the cumulative network 
performance of the DPM and the conservative SPM. As a ref- 
erence, the network without any performance management is 
also shown in Fig. 5. Up to 50 iterations, both SPM and DPM 
yield comparable network performance which is significantly 
superior to that without any performance management. Then 
onwards, the cumulative performance using DPM improves 
faster than that using conservative SPM. The rationale is that 
the DPM selects the liberal SPM (which has relatively larger 
stp sizes) more frequently to change the timer settings in larger 
increments, while the conservative SPM changes the settings 
in smaller increments which are reduced prematurely. 

VI. SUMMARY A N D  CONCLUSIONS 

A performance management algorithm for multiple access 
networks has been conceptualized, and formulated for a token 
bus protocol by using the principles of: i) perturbation analysis 
of discrete-event dynamic systems; ii) stochastic approxima- 
tion; and iii) learning automata. The procedure is aimed to 
improve the network performance in handling various types 
of messages by on-line adjustment of protocol parameters, 
and has been emulated on a network testbed. The conceptual 
design presented in this paper offers a step forward to bridging 
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the gap between management standards and user's demands 
for efficient network operations since most standards such as 
IS0  and IEEE address only the architecture, services, and 
interfaces for network management. The proposeed concept 
for performance management can also be used as a general 
framework to assist design, operation, and management of 
various DEDS such as computer integrated manufacturing and 
battlefield C3. The following major conclusions are derived 
from the results of simulation and emulation of performance 
management of Linear Token Passing Bus (LTPB) protocols. 

The perturbation analysis algorithm can estimate the 
performance of an LTPB network by using the results of a 
single simulation experiment under the nominal condition. 
The estimation errors are found to be within 3% for all 
simulation experiments. 
The performance of an LTPB network can be maintained 
by on-line adjustment of its timers. Identification of the 
network traffic statistics is not required. 
The discrete reward/penalty (DRP) reinforcement scheme 
is well suited as an ingredient of on-line performance 
management under unknown and dynamically changing 
environment. 

Some of the topics that are directly related to performance 
management are briefly discussed and recommended for future 
research. 

Extension to Other Protocols: The techniques used in 
this research can be applied to other medium access 
control (MAC) layer protocols. For example, the prob- 
ability of transmission and backoff time of a p-persistent 
Carrier-Sense Multiple Access (CSMA) protocol can be 
adjusted depending on the network traffic. Upper-layer 
protocols can be managed within a framework similar to 
that developed in this research. Especially for network- 
and transport-layer protocols, routing and flow control 
algorithms can adapt themselves by incorporating a per- 
formance management procedure. 
Application of Evolving Techniques for Decision Making: 
The decision-making functions of a performance manage- 
ment procedure can be formulated by using the evolving 
techniques like fuzzy set theory, expert systems, and 
neural networks. Decisions for performance management 
may have to be made with insufficient a priori knowledge 
of the environment, and the problem could be highly 
nonlinear and time varying. 

APPENDIX A 
LINEAR TOKEN PASSING Bus PROTOCOL 

A token bus protocol is a distributed controlled-access 
protocol for the Medium Access Control (MAC) layer. The 
right to use the medium is explicitly controlled by a special 
bit pattern called a token, and the responsibility of controlling 
the use of the medium lies with every station. This Appendix 
describes the priority mechanism of the Linear Token Passing 
Protocol (LTPB) [8], which is used in this paper to demonstrate 
efficacy of the proposed performance management tool. 

A token bus network consists of a number of stations 
connected via a broadcast medium on which any transmission 
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from a station can be heard by all stations. The right to transmit 
a message is given to a station when it receives a special bit 
pattern called a token. The token is passed from one station 
to another following a sequence of station addresses. The last 
station in the sequence sends the token back to the first station 
to form a logical ring. A station may transmit its messages 
before it passes the token to the next station in the logical ring 
sequence. A station with the token has complete control of the 
medium for a finite period of time. The length of this period 
depends on the number of waiting messages and the status of 
several timers. A station can transmit a number of messages 
or can pass the token to its successor (i.e., the next station in 
the logical ring sequence) without any transmission. 

The LTPB protocol has a priority mechanism of four levels, 
namely 0, 1, 2, and 3, among which the priority level 0 has 
the highest priviledge of medium access. Each priority level 
has a queue to provide temporary waiting space for messages 
of the corresponding priority level. A Token Holding Timer 
(THT) and three Token Rotation Timers, i.e., TRT1, TRT2, and 
TRT3, regulate message transmissions for the priority level 
0, 1, 2, and 3, respectively. The priority level 0 messages 
are allowed to start transmission within a period equal to 
the length of THT. For the lower priority level messages, 
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the initiation of a transmission must not occur beyond the 
residual period (i.e., the time left until its expiration) of the 
corresponding timer. If a timer expires while the corresponding 
priority message is being transmitted, the transmission will be 
continued to completely finish the current message and no 
further transmission is allowed until the instant of next token 
reception. 

If a station receives the token, it performs self-diagnostics 
during the period of Response Time (RT) before any transmis- 
sion. At the end of RT, the station resets THT to its full value 
and checks whether any message is waiting in the priority 
0 queue. If the queue is empty, the chance of transmission 
is given to priority level 1; otherwise, the station starts its 
THT and begins to transmit the oldest message in the priority 
0 queue. At the completion of a message transmission, the 
station checks whether THT has expired and whether there 
are more messages waiting in the priority 0 queue. If THT 
is not expired and the queue is not empty, the station starts 
another message transmission. This procedure continues either 
until the queue becomes empty or until THT expires. 

After the station finishes this procedure for the priority level 
0 messages, it checks if TRTl has expired. If it is expired or 
the priority 1 queue is empty, then TRTl is reset to its full 
value and restarted, and the chance of transmission is passed to 
the priority level 2 messages without any transmission of the 
priority 1 message. If TRTl is not expired and the priority 1 
queue is not empty, then THT is restarted after being reset 
to the remaining value of TRTl, and TRTl is reset to its 
full value and restarted. The priority level 1 messages can 

be transmitted consecutively either until THT expires or until 
there is no message in the priority 1 queue. 

When one of two conditions (namely THT expiration and 
empty priority 1 queue) is satisfied, the station begins the same 
procedure for TRT2 and the priority 2 queue, and continues 
for TRT3 and the priority 3 queue. After the station completes 
the procedure for priority level 3, the token is passed to the 
successor station. This priority mechanism is summarized by 
a flowchart in Fig. 6. 

APPENDIX B 
PERTURBATION ANALYSIS VIA TIMER 

SETTING CHANCES OF THE LTPB PROTOCOL 

The network under consideration in this example consists 
of three stations which have only one Token Rotation Timer 
(TRT) and one Token Holding Timer (THT), which is used 
as a dummy timer to store the remaining time of TRT. For 
simplicity, it is assumed that message transmissions are solely 
controlled by the status of TRT. Therefore, each station is 
considered to have only one queue. Fig. 7 depicts the evolution 
of a network with nominal TRT setting (nominal path) and an 
evolution with perturbed TRT setting (perturbed path). The 
status changes of the station i,i = 1 , 2 , 3  are represented by 
S; and S;l for the nominal and perturbed paths, respectively. S; 
consists of four elements, namely Message Generation Instant 
(MSG), Message Transmission Instant (XMT), Token Holding 
Timer status (THT), and Token Rotation Timer status (TRT). 
For the perturbed path, Si consists of three perturbed elements 
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where MSG is excluded because the instants of message 
generation are identical for both. 

MSG is essentially the instant of message insertion into the 
queue. It is denoted by a down arrow with an appropriate iden- 
tifier, Mi( j ) ,  for the j t h  message at station i .  XMT indicates 
the time interval of transmission and contains two kinds of 
transmissions. A block with a letter T denotes transmission 
of the token, and message transmission is depicted by a block 
with an appropriate message identifier. For THT and TRT, a 
block represents the time period while the corresponding timer 
counts down, which always starts with a letter S (start). The 
block ends with a letter R (reset) if the timer is reset before 
expiration. Otherwise, i.e., if the timer is expired, the block is 
shaded and ends with a letter E (expire). 

Fig. 7 illustrates network operations from the initial time 
t = 0 when none of the three stations have any waiting 
message(s) and station 1 just received the token. Each token 
pass is assumed to take one unit of time, including the time 
required for the source station to transmit the token and that 
for the destination station to respond. The normal length of 
TRT is taken to be 7 units ot time. 

On the nominal path (focusing on SI. Sz, and S3 in Fig. 
7), since the queue of station 1 is empty, the token is passed 
to station 2 immediately after resetting and restarting its THT 
and TRT. At t - 1, station 2 receives the token. This process 
continues until station 2 receives the token again at t = 4. 
At this moment, its queue contains two messages and TRT 
is not yet expired. Therefore, station 2 resets and starts its 
THT having the remaining time of its TRT (4 units) and its 
disposal, and resets and starts its TRT. Almost simultaneously 
(it is assumed that timers are reset and started instantaneously), 
station 2 begins to transmit its first message Mz( 1) which takes 
3 units of time to be transmitted. When the first message is 
finished, THT still has one unit of time left and the second 
message hfz(2) is started. After finishing M2(2), the token 
is passed to station 3 which starts its TRT and passes the 
token to station 1. Upon token arrival at t = 11) station 1 has 
one waiting message. However, its transmission is not allowed 
because of TRT expiration at t = 10 before token reception. 
When station 3 receives the token t = 13, it can transmit 
M3( 1) of two units since the message is already in the queue 
and TRT still has 4 units of time left to its expiration. When the 
token returns to station 1 at t = 17, station 1 finds one unit of 
time left on its TRT and starts transmitting M I  (1) of four units. 
After this transmission, the network becomes empty, resulting 
in token circulations without any message transmission. 

For the perturbed path (Si, Si, and SA in Fig. 7), the TRT 
in station 2 has been perturbed by -2 units of time while 
keeping TRT unchanged in stations 1 and 3. This change is 
solely for the purpose of illustration, since a timer is usually 
set identically for all stations in standard protocols. Effects 
of the perturbation do not appear on the perturbed path until 
Mz(1) is finished at t = 7 (compare S2 and Si at t = 7). Due 
to the reduced length of TRT, THT of station 2 has started 
with only 2 units when the token is received and expires while 
M2( 1) is being transmitted. Therefore, no further transmission 
is allowed and M2(2) should wait for the next opportunity. 
Due to the deferred transmission, stations 3 and 1 receive the 

token 2 time units earlier [which is required for transmission 
of M2(2)] on the perturbed path. At t = 9, station 1 has one 
unit of remaining TRT due to earlier token reception and can 
transmit Ml(1). When the token returns to station 2 at t = 14, 
station 2 is again disallowed to transmit M2(2) because of 
TRT expiration. Station 3 also loses the opportunity to transmit 
M3(1) for the same reason. Eventually, Mz(2)  and M3(1) are 
transmitted at t = 17 and t = 20, respectively. 

After transmission of M3(1) on the perturbed path, the 
perturbed instant of the token reception by station 1 at t = 24 
conicides with that on the nominal path even though the 
statuses of its TRT’s are different from each other. This implies 
that the instants of token reception by a given station on the 
nominal and perturbed paths become identical after transmis- 
sion of all messages that are affected by timer perturbation. 
The timer status on the perturbed path also becomes identical 
to that on the nominal path after one more token circulation 
(from t = 27), except station 2 where the timer is perturbed. 

It follows from Fig. 7 that it is impossible to predict 
the time of M2(2) transmision on the perturbed path with- 
out considering the queue contents and timer status, after 
detecting that Mz(2)  cannot be transmitted at t = 7 due 
to the perturbation in TRT. This is because the order of 
transmissions is dependent on the status of TRT, which is, in 
turn, dependent on the previous token circulation. Therefore, 
in order to compute the perturbed performance, the only choice 
is to construct the perturbed path, which is essentially an 
Extended Perturbation Analysis with Brute Force Algorithm 
(EPADFA) [13]. However, the brute force construction of the 
perturbed path is required only for the portion of the perturbed 
path which differs from the nominal one because the queue 
contents, timer status and event sequence of the perturbed 
path become identical to those on the nominal one as shown 
in Fig. 7. Therefore, the PA algorithm for this problem needs 
to check whether the perturbed path begins to differ from the 
nominal one while both paths are identical. After a difference 
between the two paths is detected, the algorithm constructs the 
perturbed path until it concides with the nominal one again. 
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