
1426 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 I , NO. 9, DECEMBER 1993

Performance Management of Multiple
Access Communication Networks

Suk Lee, Member, IEEE,and Asok Ray, Senior Member, IEEE

Absfruct- This paper focuses on conceptual design, develop-
ment, and implementation of a performance management tool for
computer communication networks to serve large-scale integrated
systems. The objective is to improve the network performance
in handling various types of messages by on-line adjustment of
protocol parameters. The techniques of perturbation analysis of
Discrete Event Dynamic Systems (DEDS), stochastic approxima-
tion (SA), and learning automata have been used in formulating
the algorithm of performance management. The efficacy of the
performance management tool has been demonstrated on a net-
work testbed.

The conceptual design presented in this paper offers a step
forward to bridging the gap between management standards
and users’ demands for efficient network operations since most
standards such as I S 0 (International Standards Organization)
and IEEE address only the architecture, services, and interfaces
for network management. The proposed concept for performance
management can also be used as a general framework to assist de-
sign, operation, and management of various DEDS such as com-
puter integrated manufacturing and battlefield C3(Command,
Control, and Communications).

I. INTRODUCTION
ULTIPLE-access computer networks are designed to M provide communications between spatially distributed

heterogeneous devices via common media and flexibility for
changes in the system configuration. They are, therefore, well
suited to serve large-scale integrated systems like banking
and brokerage, battlefield command and control, autonomous
manufacturing and processing plants, and advanced aircraft
and spacecraft. Since the system requirements may widely
vary according to the specific application, a computer network
must be tailored at the design stage by selection of appropriate
protocols and assignment of the default parameters [11-[3].
However, since the condition under which a network actually
operates may change from that considered at the design
stage, control and management actions are required to adjust
the network parameters so that the design and operational
objectives are satisfied. For example, under crisis situations,
a military communication network may experience a traffic
pattern which is entirely different from that under the normal
peace-time operations. Similarly, in an aircraft control system
network, the AI-based decision support systems for vehicle

Manuscript received May 29, 1992; revised February 18, 1993. This work
was supported in part by the National Science Foundation under Research
Grant DDM-90- 15 173.

S. Lee is with the Department of Mechanical, Industrial, and Nuclear
Engineering, University of Cincinnati, Cincinnati, OH 45221.

A. Ray is with the Department of Mechanical Engineering, The Pennsyl-
vania State University, University Park, PA 16802.

IEEE Log Number 9212160.

management are expected to generate a significant amount
of additional traffic when dealing with component failures or
inflicted damage. Therefore, the network must always adapt to
the dynamic environment especially if it is required to serve
a large collection of heterogeneous users.

The responsibility of adapting the network to the dynamical
environment belongs to network management which aims
to maintain reliable, flexible, and efficient operations. The
discipline of network management is a relatively young field,
and its importance is being realized as the number and
diversity of the subscribers increase. Basic rules have been
reported on the architecture, service definition, protocol stan-
dardization, and distribution of network management functions
[4]-[6]. Several standards for network management have been
already published or under preparation as an important part
of the integrated protocol suite [2] , [3], [7], [8]. However,
analytical work has been largely limited to the classical
areas of routing and flow control [9]. Researchers have not
apparently addressed the key issue of how to accomplish
the network management tasks in real time as problems or
disruptions arise either in the network operations or in the
process that is served by the network. This has happened
partly because the development of a methodology for network
management is beyond the scope of standardization. Never-
theless, from the users’ point of view, network management
is extremely crucial for maintaining uninterrupted operators as
many important functions are dependent on the communication
services provided by the network.

The major components of network management are fault
management, configuration management, and performance
management. As its name implies,fault management is respon-
sible for detection, isolation, and recovery from component
failures and inflicted damage. Configuration management is
related to network initialization and accommodation of any
network configuration changes including those requested by
fault management and performance management. Performance
management is responsible for improving the network
performance by adjusting the protocol parameters, and is
critical for efficient operation of large-scale integrated systems
that operate in a dynamic environment. Network operations
with default settings of protocol parameters may not prove
to be efficient under diverse operating conditions for a
prolonged period of time. For example, a network for
Computer Integrated Manufacturing (CIM) should be able
to deliver various messages such as CAD (Computer Aided
Design) file transfer, interpersonnel electronic mail, sensor
and control signals within their time limits of delivery under

0733-8716/93$03.00 0 1993 IEEE

1427 LEE AND RAY: PERFORMANCE MANAGEMENT OF MAC NETWORKS

changing traffic patterns caused by common events like
arrival of new production orders and machinery breakdown.
Even though individual protocols offer mechanisms to handle
various types of messages efficiently, the key parameters of
the protocol suite which determine the network performance
are at the network operator’s disposal. Usually, the operator
adjusts these parameters on the basis of certain heuristics
and hisher individual experience because there is no
established relationship between protocol parameters and
network performance. Also, no systematic approach to
parameter adjustment exists.

This paper presents conceptual design, development,
and implementation of a performance management tool
for multiple-access computer communication networks. The
objective is to improve the network performance by on-
line adjustment of protocol parameters. To the best of the
authors’ knowledge, it is the first application of Perturbation
Analysis (PA) of Discrete Event Dynamic Systems (DEDS) to
multiple-access network protocols. Moroever, the technique of
PA has been combined with Stochastic Approximation (SA)
and Learning Automata (LA) to formulate the performance
management algorithm. This paper is organized into six
sections, including the Introduction and two Appendices.
Section I1 presents the main theme of the proposed
performance management tool, including the concepts of PA,
SA, and LA. Analytical formulation of the tool for the specific
case of a token bus protocol is presented in Section 111.
Details of implementation of the performance management
algorithm on a network testbed are described in Section IV.
The test results are presented and discussed in Section V.
Finally, the paper is summarized and concluded in Section
VI along with recommendations for future research. The
priority mechanism of the token bus protocol considered here
is briefly in Appendix A, and an example of perturbation
analysis of timer setting changes for the protocol is presented
in Appendix B.

11. PERFORMANCE MANAGEMENT
The role of performance management is to manipulate

the adjustable protocol parameters in real time so that the
network can adapt itself to a dynamic environment. Perfor-
mance management is divided into two tasks: i) performance
evaluation to find how changes in protocol parameters affect
the network performance measure; and ii) decision making
on how to adjust the protocol parameters. The first task is
essentially equivalent to finding a relationship between the
network performance and the protocol parameters, and may be
required to estimate the network performance at some points in
the neighborhood of the current parameter settings. The second
task is to decide the direction and magnitude of the parameter
adjustment vector, i.e., what are the next settings for improved
network performance, utilizing pieces of information provided
by the first task, and the performance history.

Performance Evaluation: The analytical techniques, such
as queueing theory [lo], often require unrealistic assumptions
like Poisson arrival, and tend to be mathematically untractable
as the structure of the performance measure becomes complex.

Furthermore, network traffic statistics such as message arrival
process and distribution of message length, which are required
as inputs to the analytical model, are very difficult to estimate
on-line. On the other hand, discrete-event simulation [113 is a
viable alternative to analytical techniques. A major advantage
of simulation over any analytical technique is that a DEDS can
be modeled with much less stringent assumptions, and more
complex performance measures can be handled with relative
ease. However, discrete-event simulation usually suffers from
signficant computational burden because a single simulation
run represents only one realization of a stochastic process. In
order to obtain an accurate performance estimate under a given
set of parameters, several independent runs (or a lengthy run
if the process is ergodic) are needed, and these runs should be
repeated for individual sets of pertinent parameters. In order to
avoid the estimation of network traffic statistics which are still
required, one can record time of arrival and length for each
message and feed this information into a simulation model.
However, this requires a large amount of information transfer
from each individual station to the performance manager,
which may degrade the overall network performance.

Over the last decade, Ho and his colleagues (1121, [13],
and references therein) have developed the technique of Per-
turbation Analysis (PA) to circumvent the difficulties of con-
ventional analysis and simulation in DEDS. PA estimates the
DEDS performance under perturbed conditions (with different
parameter values) by observing the sequence of events occur-
ring over a period of time in the nominal (i.e., unperturbed)
system. In fact, PA constructs parts of event sequence for the
perturbed system based on the nominal one. This approach
has a computational advantage over repetitive simulation runs,
especially when no analytic technique is available. When the
effects of n parameters on a performance measure are to be
evaluated, the conventional discrete-event simulation needs
n + 1 runs (one with the nominal parameters and 71 runs,
each with one perturbed parameter and the remaining nominal
values). On the other hand, PA needs only one run because
it calculates the performance measure of the perturbed system
based on the inherent information from the simulation with the
nominal parameter. Therefore, the ratio of computation time
can be approximately 1 to n + 1 if the processing time for PA
algorithms is negligible compared to that for discrete-event
simulation. For performance management, PA is very suitable
because this technique can directly utilize on-line observation
of events. This does not require any identification of statistical
parameters of the network traffic and is computationally more
efficient than discrete-event simulation. Furthermore, PA still
retains the inherent advantages of simulation over analytical
techniques.

Decision Making: This task requires parameter optimiza-
tion, and can be accomplished numerically by Stochastic
Approximation (SA) which utilizes random measurements
over a finite period of time to estimate the finite difference
quotient of the performance measure with respect to decision
variables [141. However, since the performance measure itself
is a random variable (with an unknown distribution) in this
situation, the estimated quotients have a nonzero variance at
every point. Consequently, the SA technique has to reduce

1428 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 , NO. 9, DECEMBER 1993

its step size as the extrema1 point is approached. In many
situations, however, more than one optimization algorithm
may be required because any individual algorithm is likely
to be efficient only in some region of the protocol parameter
settings under given statistics of network traffic. An additional
level of decision making is needed to select the most appropri-
ate optimization algorithm according to the current parameter
settings and traffic statistics. This approach is likely to enhance
the efficiency and credibility of performance management
in a dynamic operating environment whose characteristics
are unknown or partially known. Techniques like Learning
Automata (LA) can be used for decision making at the upper
level for selecting the most efficient and credible optimization
algorithm based on past performance [151.

A learning automaton consists of a set of actions, a cor-
responding set of action probabilities, and a reinforcement
scheme. The action probabilities are updated by the reinforce-
ment scheme according to the response from the environment
which reacts to the action of the learning automaton. A
Performance Evaluator (PE), as a part of the environment,
is required to interpret the response. If the interpretation is
favorable, then the probability of the chosen action is increased
and those for other actions are decreased. By repeating this
process, the learning automaton can select the best action
under the current environment. In a dynamic environment,
the performance management algorithm must know whether
the network traffic statistics have changed because: i) the
optimization algorithm is likely to have its own ability of
adaptation such as reduction of the step size in SA; and ii) a
change in network traffic may mislead the learning automaton
in evaluating the performance of the optimization algorithms.
Therefore, whenever any change in network traffic statistics
takes place, the step size of the optimization algorithm and
the PE may have to be reset.

111. FORMULATION OF A PERFORMANCE

MANAGEMENT PROCEDURE

The proposed performance management tool is based on the
principles of Perturbation Analysis (PA), Stochastic Approx-
imation (SA), and Learning Automata (LA), and its overall
structure is shown in Fig. 1. The Linear Token Passing Bus
(LTPB) protocol [8] has been selected to demonstrate the
efficacy of this performance management tool for adjustment
of a Token Holding Timer (THT) and three Token Rotation
Timers (TRT1, TRT2, and TRT3) in real time on the basis
of measured data. The operating principle of LTPB and its
priority mechanism are described in Appendix A.

A. Performance Evaluation Via Perturbation Analysis
The knowledge of the relationship between a selected per-

formance measure and the pertinent protocol parameters is a
critical requirement for performance management. In this case,
the behavior of the LTPB protocol with perturbed parameter
settings under the same stochastic realization is constructed
from a single observation with nominal parameters. The set-
tings of the four timers of LTPB directly influence data latency
(i.e., the time interval between the instant a message enters the

Random Traffic

Performance Information OA .
r , Network System

Pro1Ocol Nominal Time History
Network of Network

Perturbation

Analysis
Traffic

StallSUCS EVALUATION

1
Traffic Change Traffic Change

Switch 0.4 1

t T tl7 I OA Y-f
Selection RewardIPenalty

Learning Automaton DECISION
MAKING

OAi : Stochastic Optimization Algorithms

Fig. 1. Overall structure of performance management.

source station’s queue to the instant the last bit of the message
is received at the destination station), whose statistics are often
one of the most dominant factors in network performance.
How to assess the effects of change in timer settings on
network operations is illustrated by a simple example of an
LTPB network in Appendix B.

The PA Algorithm for the LTPB Protocol: To reduce the
complexity of the problem, we assume that there is no
queue saturation on both nominal and perturbed paths.
This assumption holds good for the majority of network
applications because the network is usually designed to operate
sufficiently below its full load and a safe margin is allowed
in the allocation of queue capacity. The PA algorithm consists
of two parts: i) detection of any possible difference between
the nominal path and a perturbed path: and ii) construction
of the portions of the perturbed path which differ from the
nominal one. No additional event scheduling in discrete-
event simulation is required for either of these two parts.
This is critical because a major share of computations in
discrete-event simulation results from event scheduling and
its execution.
Detection of Difference between Nominal and Perturbed Paths:
A portion of the perturbed path begins to differ from the
nominal one when the number of message transmissions from
a queue on a particular token reception are different from
each other. (Transfer of the right to transmit between the
queues of a station is also considered as a token reception.) In
order to establish the test conditions for a different number of
message transmissions on the perturbed path, several notations
are introduced.

Number of messages just transmitted from the current
queue on the nominal path, m = 0,1,2,

Number of messages waiting in the current queue after
m transmissions on the nominal path, q = 0,1,2,

m:

q:

1429 LEE AND RAY: PERFORMANCE MANAGEMENT OF MAC NETWORKS

L k : Transmission time of the lcth message, =

T: Nominal token circulation time of the current queue,
i.e., the time interval between the previous and current token
reception instants.

1,2,. ‘ . ,m.

THT: Nominal length of THT.
ATHT:
TRT;: Nominal length of TRT;.
ATRT;:
The following tests must be executed before passing the

TEST0 [test for priority class 01

Perturbation in THT, THT + ATHT > 0.

Perturbation in TRTi, TRTi + ATRTi > 0.

token to the next queue after m message transmissions.

Case a) ATHT > 0 and m > 0:
m

L k < (THT + ATHT) and q > 0
k = l

Case 6) ATHT < 0 and m > 1:
m - 1

L k 2 (THT + ATHT)
k = l

TESTi [test for priority class, i, i = 1,2,3]
Case a) (TRT; - T) > 0, ATRT; > 0 and m > 0:

m

L~ < (TRT, + ATRT, - T) and q > o
k=l

path while there would be at least one transmission on the
perturbed path for TESTO(b). TESTi(c) implies that some
transmissions are possible on the perturbed path while there
has been no transmission on the nominal path due to expiration
of TRTZ. If TESTi(d), which can be considered as a special
case of TESTi(b), is satisfied, then no transmission is allowed
on the perturbed path while one transmission was possible on
the perturbed path.

Construction of the Perturbed Path: The construction of a
perturbed path consists of three parts: maintenance of the
perturbed queue status; calculation of the perturbed timer
status; and propagation of the effects of perturbation on the
instant of token reception. Records associated with a message
such as generation time and message length are kept even
after the message is transmitted on the nominal path. These
records are discarded only after the message is transmitted on
both nominal and perturbed paths. In this way, queue contents
on the perturbed path are available for construction of the
perturbed path.

For the priority level 0, THT status is independent of the
token circulation time T since THT is always reset to its
full value at each token reception. Therefore, upon a token
reception, the remaining interval of THT on the nominal path
R(0) is always equal to THT during which the priority 0
queue can start to transmit its messages. On the perturbed
path, the interval R’(0) is

Case b) (TRT; - T) > 0, ATRTi < 0 and m > 1: R’(0) = THT + ATHT.

For the lower-priority levels, the remaining interval of TRTi
on the nominal path is equal to R(i) = max (TRTi - T , 0)
upon a token reception, where m a (. , .) denotes the larger
of the two arguments. Since the interval is dependent on T ,
the perturbation on the instants on the current and previous
token receptions at a queue should be considered, which are
denoted by AC and AP, respectively. The perturbation on the

m-1

k=l
(TRT; + ATRT; - T) 5 L k

Case c) (TRT; - T) 5 0 and ATRT, > 0:

(TRT; + ATRTi - T) > 0 and q > 0
remaining time when the token is received, AR(i), is

Case d) (TRT; - T) > 0, ATRT; < 0 and m = 1:
AP - AC + ATRT;

(TRT, + ATRT; - T) 5 0.

TESTO(a) is applicable if a priority class 0 queue can
transmit more message(s) on the perturbed path in addition
to m transmitted messages on the nominal path. Additional
transmission is possible only when THT is increased and there
has been at least one message transmission on the nominal
path. (No transmission on the nominal path implies that the
queue is empty upon token reception.) Further, the increased
THT should be long enough so that the perturbed THT is not
expired even after m trnasmissions and the queue should not
be empty for additional transmission(s). TESTO(b) is opposite
to TESTO(a). If TESTO(b) is satisfied, then the number of
transmissions on the perturbed path is less than the number m
of transmissions on the nominal path. In this case, ATHT
should be negative and the perturbed THT should expire
during the (m - 1)st transmission at the latest. TESTi(a) and
TESTi(b) are largely equivalent to TESTO(a) and TESTO(b),
respectively. TESTi(b) represents a slightly different situation
compared to TESTO(b) in the following sense. TESTi(b)
could imply that no transmission is allowed on the perturbed

{ A P - AC + ATRT, + TRZ - T
if (TRT; - T) > 0

AR(i) =

The first case applies when the timer is not expired on the
nominal path as shown in Fig. 2. The second case applies
when the timer is already expired prior to the token reception
as shown in Fig. 3. Then, at the token reception, the remaining
interval on the perturbed path R’(i), during which priority z
transmissions can start, is:

R’(i) = max(R(i) + AR(i),O).

AC for the next queue is yet to be obtained for construction
of the perturbed path. The time X(Z), spent in transmitting
messages from the current queue, is known from the nominal
path. The time, X’(i) , spent for message transmissions on the
perturbed path can be obtained on the basis of the perturbed
queue status and the perturbed remaining time R‘(Z). X ’ (i) is
calculated by summing up the transmission time, L j , of the j t h
message from the perturbed queue either until the perturbed
queue becomes empty or until the perturbed TRTi is expired

1430 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 , NO. 9, DECEMBER 1993

Previous Token Current Token
Receptlon Instant Receptlon Instant
on Nominal Path on Nominal Path

Nominal Timer

Perturbed Timer

Previous Token Current Token
Receptlon Instant Reception Instant
on Pemrbed Path on Perturbed Path

Current Token Previous Token
Reception Instant Reception Instant
on Nominal Path on Nominal Path 1 + ;:@‘-AC+TRT, -T

Nominal Timer

Perturbed Timer

Previous Token Current Token
Reception Instant Recepuon Instant

on Perturbed Path on Perturbed Path

Fig. 3 . Perturbed remaining interval of TRT, (case 2).

Fig. 2. Perturbed remaining interval of TRT, (case 1).
backward finite-difference quotient qf [IC]. The ith diagonal
element of r [k] is:

~ ; [I c] = rnax(c;re~[”,~)
i.e., R‘(i) - X ’ (i) 5 0. While calculating X ’ (i) , observations
like data latency on the perturbed path can be recorded for
estimating the perturbed performance.

of token reception for the next queue is obtained as:

where ci is a positive constant for the initial step size, T E
(0,l) is a reduction factor, e i [k] is an integer counter variable
indicating the number of sign reveals in the ith quotient q:[k],

Defining AX(;) = X’(i) - X (z) , perturbation at the instant

AC(i + 1) = AC(i)+ A X (i) and 1 is the lower bound common to all diagonal element. The
forward or backward quotient of the observed performance
g (z [k] , w[IC]) at a sample point u[k] is defined as: where the indices i and i + 1 indicate that the current and next

queues are based on modulo 4, i.e., they range from 0 to 3.

tion analysis of the LTPB procotol is summarized in four steps
Summary of the PA Algorithm: The algorithm for perturba- g (z [k] + A 4 + i , 4 4) - s(z[k1,4kl)

Ax; [kl qf[kI =

as delineated.
Step 1 : Perform appropriate test (TEST0 and TESTi,i =

1,2,3) just before passing the token to the next queue or
station. Set the flag if any of the tests are satisfied.

Step 2: If the flag is not set, repeat Step 1 for the next queue
or station. Otherwise, proceed to Step 3.

Step 3: Execute the construction procedure for the current
queue before passing the token.

Step 4: Repeat Step 3 until all queues have AC = 0 and
A P = 0 during a token circulation. If so, clear the flag and
go to Step 1.

B . Stochastic Approximation
Although the Stochastic Approximation (SA) technique

described in [141 has been proven to converge in a stochastic
sense, it is known to have a slow convergence in many
practical situations due to the fact that its step size is uniformly
reduced regardless of the current value of decision variable
z [k] (a 4 x 1 vector of timer settings in this paper) at the
k t h iteration. To circumvent this difficulty, the conventional
algorithm is modified following Ho et al. [161. This modified
algorithm, hereafter referred to as the Modified Stochastic
Approximation (MSA), can be written as follows.

~ [I C + 11 = z[k] - r[lc]f(q*[k],. . . , q*[k - m, + 11).

r [k] is a diagonal matrix whose nonzero elements are not
restricted to be identically equal and are dependent on the
number of sign reversals in the corresponding forward or

where ui is the ith unit vector, a positive perturbation Ax:;[k]
for ith decision variable is used for forward difference, and
a negative perturbation Ax:;[k] for backward difference. The
MSA algorithm also utilizes past quotients to smooth the
adjustments in 2[IC]. Function f takes a weighted average of
m, recent quotient vectors q*[k] = CY==, q f [k]u i . That is,
the ith element of f is written as:

fi(Q* [kl, . . * , !J*F - mu + 11)

4 k I
- g (s [k] , w [k]) W j X i [k - j + l]q’[k - j + 11

j=1 g(z[k - j + 11, w[k - j + l)]) -

where C?!=,wj = 1 and wj 2 OVj.
Remark: The basic idea behind the MSA algorithm is that

the sign of the quotient changes more frequently as z [k]
approaches its optimal point since the noise contained in the
quotient is likely to determine the sign. The MSA algorithm
adapts its step size based on the number of sign reversals in
the quotient in contrast with uniform reduction in stochas-
tic approximation. Weighted averaging function f serves to
reduce the length of a period to measure the performace and
avoid alternating directions of the parameter adjustments. With
an appropriate choice of the window size m, and weighting
factors wj, inherent noise in measurements may be reduced
without sacrificing the speed of convergence. However, a
rigorous proof of the convergence for MSA algorithms has
not been established. This is apparently untractable because of
the dependence of the step size on past history.

LEE AND RAY: PERFORMANCE MANAGEMENT OF MAC NETWORKS

Apl[k] =

1431

ifa[IC] = 1 andp[lc] = 0.25,
or ifa[k] = 2andP[k] = 0.75

ifa[IC] = 1 andp[IC] = 0.75,
or ifa[k] = 2andP[k] = 0.25

ifa[k] = landp[k] = 1,

M

0 ifP[k] = 0.5
-1 . -
M
-

M
\ or ifa[k] = 2and/3[k] = 0

C. Learning Automata

For autonomous selection of the optimization algorithm,
the Variable-Structure Stochastic Automaton (VSSA) [151 has
been adopted because greater flexibility can be exercised
within a smaller structure in comparison to those in fixed
or deterministic settings. The reinforcement scheme in VSSA
updates the action probabilities in discrete time based on the
responses from the Performance Evaluator (PE). The next
action of the automaton is selected on the basis of the updated
action probabilities whose sum is equal fo 1. A simplified
VSSA is represented by the triple { E , P , A } where 5 =
(01, a2, c y a } , ,L? = { P I , ,&, . . . , pS} , and A: E x + E is
the reinforcement scheme. CU is the set of available actions (is.,
optimization algorithms); a [k] denotes the action at instant I C . P
is the set of responses (i.e., possible levels of performance
of the current optimization algorithm) that are inputs to the
automaton, and the response at instant IC is denoted by p [k] .

The discrete reinforcement scheme for performance man-
agement has been formulated following the concept of discrete
reward/penalty (DRP) automaton [17]. In this case, the au-
tomaton has two available actions (i.e., there is a choice
between two alternative optimization algorithms) in response
to five possible inputs, namely 0, 0.25, 0.5, 0.75, and 1, from
the environment. Among these inputs /?I = 0 indicates the
most favorable response while ,Os = 1 is the most unfavorable
one. The reinforcement scheme has M + 1 states (i.e., the
action probability is allowed to assume one of the M + 1
values) where M is an even number greater than 2. The
reinforcement scheme is presented:

I ifa[k] = landP[k] = 0,
or ifcu[k] = 2andP[k] = 1

and

where pl [IC] is the probability of selecting "1. The probability
of selecting a2 is given as pn[k] = 1 - pl[k]Vk.

Iv . Ih4PLEMENTATION OF THE
PERFORMANCE MANAGEMENT TOOL

The performance management algorithm has been imple-
mented on a network testbed where the LTPB protocol [8]
under consideration was emulated by two interacting ap-
plication processes. The testbed is operated on the IEEE
802.4 token bus protocol in the environment of the (10 Mb/s
broadband) Manufacturing Automation Protocol (MAP) [2].

The physical configuration of the testbed consists of a length
of coaxial cable, a head-end remodualtor, and three hosts.
Each host computer is equipped with two network cards from
Industrial Networking Incorporated (INI) [18]. One of the
hosts operates as a network management console for initial
downloading of the protocols to the remaining two hosts. At
each of these two hosts, a software package emulates a number
of LTPB stations by generating, transmitting, and receiving
messages which are essentially packets of the Association
Control Service Element (ACSE) of MAP [2] .

A . Implementation Strategy

Since the PA algorithm involves only logic and addition op-
erations, it has been implemented in a distributed manner to be
executed at each station to estimate the network performance
under perturbations in each one of the four timer settings of the
LTPB priority mechanism. Perturbation in the token reception
instant is included in the token to be passed to the next
station in the logical ring. In this distributed implementation,
additional traffic due to management operations is expected to
be significantly smaller than that for a centralized PA algorithm
which requires information on contents of queues and timer
status from all stations. On the other hand, the decision-
making module that includes stochastic approximation and
learning algorithms is centralized at a designated station,
hereafter referred to as performance manager. Even though
the network may have more than one station with partial
or complete capability to execute decision-making functions,
the centralized strategy allows only one active copy of each
decision-making function. The rationale for selecting central-
ized decision making is that the distributed strategy, where
every station could make decisions autonomously based only
on its local performance, would result in inconsistency and
conflict by having different timer settings over the network.

Network operations under the proposed performance man-
agement tool involve a series of iterations, which consist of
an observation period and subsequent management actions. At
the beginning, the performance manager broadcasts the initial
timer settings and timer perturbation vectors to all stations.
During an observation period, each station executes its own
PA algorithm, and the performance manager monitors the
messages flowing over the network. When the performance
manager depicts that enough data have been collected, it waits
for the token and then broadcasts the request for a performance
report to all stations. Then, the performance manager passes
the token without any further message transmission. Once
this request from the performance manager is received, other
stations interrupt their normal operations, prepare the perfor-
mance reports, and transmit these reports as soon as the token
is received. After one complete token circulation, the manager
receives the token against and, by this time, reports from all
other stations have been received. Then, the manager processes
the reports, computes new timer settings, and broadcasts them
with new timer perturbation vectors for the next iteration.
Upon reception of the new settings and perturbation vectors,
all stations set their corresponding variables and wait for the
token to resume normal operations.

1432 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 9, DECEMBER 1993

B . Implementation Details

In this implementation, a measure of the network perfor-
mance has been formulated on the basis of observed data
latency. Throughput of the network is excluded from the per-
formance measure since network traffic is assumed to be below
network capacity, which implies that all messages entering the
network are eventually transmitted to their destination. In other
words, throughput is equal to offered traffic. Therefore, the
main focus of the performance measure is on data latency, i.e.,
how long it takes for a message to reach its destination relative
to the instant of its generation. The network performance g(. , .)
is expressed as a function of data latency:

where p E [0,1] is a weighting factor, rn,[k] is the number
of messages observed during the kth iteration, z denotes
priority level, rn;[k] is the number of the priority level i
messages during the lcth iteration related to m,[k] by m,[k] =
C:=omi[k] , and S j (z [k] , w [k]) is the data latency of the j t h
priority level i message during the lcth iteration. Fi(.) is a
penalty function for priority level i messages and is defined
as:

with penalty threshold 0; and penaly band b; for priority level
i messages.

The first term of the performance measure represents the av-
erage penalty over all messages such that a message of which
data latency exceeds the corresponding threshold is penalized
according to the penalty function F;(.). This is analogous to
variance of data latency. This form of penalty is especially
useful for messages carrying time-critical information such as
control signals and sensor data, interrupt signals, and video
and voice data. The second part of the performance measure
takes into account the square of average data latency over all
messages. For network emulation on the testbed, p is set to
1 because the two terms of the performance measure were
found to have a very close correlation with each other from
simulation experiments.

The Performance Evaluator (PE) assesses the performance
of an optimization algorithm by observing various items after
timer settings have been changed. To this end, the performance
of an optimization algorithm has been formulated focusing on
its stepwise behavior rather than the asymptotic one. In fact,
the asymptotic performance of an algorithm may not be mea-
sureable because the performance manager usually switches
from one algorithm to another. The PE maintains history of

the network performance and adjustment of the timer settings
in order to provide criteria for evaluation of the recent action
by the learning automaton. In this implementation, records
for the past five iterations are maintained. The PE compares
the current network performance with the average network
performance of the past iterations. Also, the magnitude and
signs of current timer changes are compared to those of the
averaged timer changes for past iterations. Since perturbation
analysis is executed all the time, the signs of the next changes
are available for the PE to compare the signs of the current
changes to those of the next changes. According to these
comparisons, the PE selects one value for p [k] out of five
possible values.

v. RESULTS AND DISCUSSION

The first part of this section presents the results from
simulation experiments which were conducted to investigate
the accuracy of the PA algorithm, which is an important
ingredient of the performance management tool. The second
part focuses on the results from emulation experiments the
network testbed to demonstrate the efficacy of the proposed
tool.

A. Results for Simulation Experiments

An LTPB network with 10 stations has been simulated with
the transmission rate of 50 Mbls and queue capacity of 10
messages for every queue. The network traffic is composed
of messages at four priority levels. The total network takes
70% of the network capacity on the average: 10% for priority
level 0 and 20% each for priority levels 1, 2, and 3. The PA
algorithm formulated in Section 111-A has been implemented
in the simulation. This implementation maintains four separate
perturbed paths and only one timer setting can be perturbed
in each path. The simulation result under a typical scenario is
discussed below.

Having set the timers THT, TRT1, TRT2, and TRT3 at the
nominal values of 150, 1000,800, and 600 ps, respectively, the
PA algorithm was used to estimate the perturbed performance
under four different perturbations on TRT3: -100, -50,50,
and 100 ps. Four additional simulation experiments have also
been performed to obtain network performance with four sets
of perturbed timer settings without using the PA algorithm.

Fig. 4 shows the absolute values of percent error in esti-
mating the perturbed network performance with TRT3 pertur-
bations. In Fig. 4, S denotes the number of future message
generations considered by the PA algorithm. For S = 0 where
no future message is taken into consideration (shown by solid
black bars), the error for positive perturbation is much larger
than that for a negative one. The rationale is that a positive
increment in a timer setting is likely to make the perturbation
in token reception instant AC positive during a major part
of the simulation experiment because an increased timer
setting enables the corresponding queues to transmit more
messages compared to the nominal path. If AC is positive,
the PA algorithm has to construct the perturbed path with no
knowledge on any potential change in the queue contents from
the present time t . In order to reduce errors in estimating the

LEE AND RAY PERFORMANCE MANAGEMENT OF MAC NETWORKS
1433

1 .o

0.8

E 3 0.6

.5

0.4 z

0.;

O.(

I s = o
S = l

-100 -50 50 100

TRT3 Perturbation @sec)

Fig. 4. Percent error of the PA algorithm with TRT3 perturbations.

perturbed performance, the PA algorithm has been modified
to look into the event calendar so that the next message
generation at a given queue can be considered in constructing
the perturbed path. This idea has been extended to consider
message generations further in the future by scheduling more
than one message generation for a given queue. The shaded
bars for S = 1 in Fig. 4 show a significant reduction in the
absolute values of the percent error when one future message
generation at each queue is considered by the PA algorithm.
However, this method for reducing errors is applicable only
to simulation experiments. Simulation results show that the
PA algorithm is capable of estimating the performance of
the LTPB network under perturbed parameters by using the
results of a single simulation experiment under the nominal
condition. The estimation errors are found to be within 3%
from all simulation experiments for perturbations in THT,
TRT1, TRT2, and TRT3.

B . Results of Emulation Experiments on the Testbed
Three experiments, conducted on the network testbed, are

reported here as typical results. For each of these experiments,
the emulated network was run for 100 iterations which are
equivalent to 300,000 message transmissions. During the first
25 iterations, the network was operated without any perfor-
mance management action in order to achieve the steady-state
operations. Four timers of the LTPB priority mechanism were
adjusted on-line during the remaining 75 iterations. For these
experiments, two different MSA algorithms (described in Sec-
tion 111-B) were used: one is referred to as conservative and the
other as liberal. The conservative MSA algorithm has smaller
values for initial step size c i , reduction factor T , and weighting
factor w1 compared to the liberal algorithm. In other words,
the conservative algorithm tends to adjust timers in smaller
increments and to reduce its step size faster than the liberal
algorithm. For the first two experiments, the two algorithms

0.50

0.40

0.30
- - - - O - - - . No PM

Conservative SPM

5 DPM

I . , .

100
0.20- . ' * ' -

0 20 40 60 80

Iteration Number

Comparison of cumulative performance. Fig. 5.

were used separately and one at a time for performance
management without the learning scheme. This is referred
to as the single-algorithm performance management (SPM).
The conservative SPM was found to yield better cumulative
performance than the liberal SPM. For the third experiment,
both algorithms were employed togehter for performance
management but one and only one of the two algorithms is
selected by the learning automaton at any given iteration. This
is referred to as the dual-algorithm performance management
(DPM).

Fig. 5 shows a comparison between the cumulative network
performance of the DPM and the conservative SPM. As a ref-
erence, the network without any performance management is
also shown in Fig. 5. Up to 50 iterations, both SPM and DPM
yield comparable network performance which is significantly
superior to that without any performance management. Then
onwards, the cumulative performance using DPM improves
faster than that using conservative SPM. The rationale is that
the DPM selects the liberal SPM (which has relatively larger
stp sizes) more frequently to change the timer settings in larger
increments, while the conservative SPM changes the settings
in smaller increments which are reduced prematurely.

VI. SUMMARY A N D CONCLUSIONS

A performance management algorithm for multiple access
networks has been conceptualized, and formulated for a token
bus protocol by using the principles of: i) perturbation analysis
of discrete-event dynamic systems; ii) stochastic approxima-
tion; and iii) learning automata. The procedure is aimed to
improve the network performance in handling various types
of messages by on-line adjustment of protocol parameters,
and has been emulated on a network testbed. The conceptual
design presented in this paper offers a step forward to bridging

1434 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 1 , NO. 9, DECEMBER 1993

the gap between management standards and user's demands
for efficient network operations since most standards such as
IS0 and IEEE address only the architecture, services, and
interfaces for network management. The proposeed concept
for performance management can also be used as a general
framework to assist design, operation, and management of
various DEDS such as computer integrated manufacturing and
battlefield C3. The following major conclusions are derived
from the results of simulation and emulation of performance
management of Linear Token Passing Bus (LTPB) protocols.

The perturbation analysis algorithm can estimate the
performance of an LTPB network by using the results of a
single simulation experiment under the nominal condition.
The estimation errors are found to be within 3% for all
simulation experiments.
The performance of an LTPB network can be maintained
by on-line adjustment of its timers. Identification of the
network traffic statistics is not required.
The discrete reward/penalty (DRP) reinforcement scheme
is well suited as an ingredient of on-line performance
management under unknown and dynamically changing
environment.

Some of the topics that are directly related to performance
management are briefly discussed and recommended for future
research.

Extension to Other Protocols: The techniques used in
this research can be applied to other medium access
control (MAC) layer protocols. For example, the prob-
ability of transmission and backoff time of a p-persistent
Carrier-Sense Multiple Access (CSMA) protocol can be
adjusted depending on the network traffic. Upper-layer
protocols can be managed within a framework similar to
that developed in this research. Especially for network-
and transport-layer protocols, routing and flow control
algorithms can adapt themselves by incorporating a per-
formance management procedure.
Application of Evolving Techniques for Decision Making:
The decision-making functions of a performance manage-
ment procedure can be formulated by using the evolving
techniques like fuzzy set theory, expert systems, and
neural networks. Decisions for performance management
may have to be made with insufficient a priori knowledge
of the environment, and the problem could be highly
nonlinear and time varying.

APPENDIX A
LINEAR TOKEN PASSING Bus PROTOCOL

A token bus protocol is a distributed controlled-access
protocol for the Medium Access Control (MAC) layer. The
right to use the medium is explicitly controlled by a special
bit pattern called a token, and the responsibility of controlling
the use of the medium lies with every station. This Appendix
describes the priority mechanism of the Linear Token Passing
Protocol (LTPB) [8], which is used in this paper to demonstrate
efficacy of the proposed performance management tool.

A token bus network consists of a number of stations
connected via a broadcast medium on which any transmission

Response. T ime

?-I i = O

i = O

No

Reset THT to
Residual Value of TRTi

and Start

Reset TRTi to
its Full Value i and Start

A - 1
Transmit

& ' N o < A

t

Fig. 6. Priority mechanism of LTPB protocol.

from a station can be heard by all stations. The right to transmit
a message is given to a station when it receives a special bit
pattern called a token. The token is passed from one station
to another following a sequence of station addresses. The last
station in the sequence sends the token back to the first station
to form a logical ring. A station may transmit its messages
before it passes the token to the next station in the logical ring
sequence. A station with the token has complete control of the
medium for a finite period of time. The length of this period
depends on the number of waiting messages and the status of
several timers. A station can transmit a number of messages
or can pass the token to its successor (i.e., the next station in
the logical ring sequence) without any transmission.

The LTPB protocol has a priority mechanism of four levels,
namely 0, 1, 2, and 3, among which the priority level 0 has
the highest priviledge of medium access. Each priority level
has a queue to provide temporary waiting space for messages
of the corresponding priority level. A Token Holding Timer
(THT) and three Token Rotation Timers, i.e., TRT1, TRT2, and
TRT3, regulate message transmissions for the priority level
0, 1, 2, and 3, respectively. The priority level 0 messages
are allowed to start transmission within a period equal to
the length of THT. For the lower priority level messages,

LEE AND RAY PERFORMANCE MANAGEMENT OF MAC NETWORKS

0 4 7 9 10 11 13 14 17 20 24 27 Time
I I I I l l 1 1 I I I I m

1435

Legend

s,
Nominal
Station i

Perturbed
Station i

S' I

i

a
Iw,o)l

m

Dl

Message
Generation

Token

Message

Timer Stan
and Reset

Timer Star
and

Expiration

Fig. 7. Effects of TRT perturbation on network operations.

the initiation of a transmission must not occur beyond the
residual period (i.e., the time left until its expiration) of the
corresponding timer. If a timer expires while the corresponding
priority message is being transmitted, the transmission will be
continued to completely finish the current message and no
further transmission is allowed until the instant of next token
reception.

If a station receives the token, it performs self-diagnostics
during the period of Response Time (RT) before any transmis-
sion. At the end of RT, the station resets THT to its full value
and checks whether any message is waiting in the priority
0 queue. If the queue is empty, the chance of transmission
is given to priority level 1; otherwise, the station starts its
THT and begins to transmit the oldest message in the priority
0 queue. At the completion of a message transmission, the
station checks whether THT has expired and whether there
are more messages waiting in the priority 0 queue. If THT
is not expired and the queue is not empty, the station starts
another message transmission. This procedure continues either
until the queue becomes empty or until THT expires.

After the station finishes this procedure for the priority level
0 messages, it checks if TRTl has expired. If it is expired or
the priority 1 queue is empty, then TRTl is reset to its full
value and restarted, and the chance of transmission is passed to
the priority level 2 messages without any transmission of the
priority 1 message. If TRTl is not expired and the priority 1
queue is not empty, then THT is restarted after being reset
to the remaining value of TRTl, and TRTl is reset to its
full value and restarted. The priority level 1 messages can

be transmitted consecutively either until THT expires or until
there is no message in the priority 1 queue.

When one of two conditions (namely THT expiration and
empty priority 1 queue) is satisfied, the station begins the same
procedure for TRT2 and the priority 2 queue, and continues
for TRT3 and the priority 3 queue. After the station completes
the procedure for priority level 3, the token is passed to the
successor station. This priority mechanism is summarized by
a flowchart in Fig. 6.

APPENDIX B
PERTURBATION ANALYSIS VIA TIMER

SETTING CHANCES OF THE LTPB PROTOCOL

The network under consideration in this example consists
of three stations which have only one Token Rotation Timer
(TRT) and one Token Holding Timer (THT), which is used
as a dummy timer to store the remaining time of TRT. For
simplicity, it is assumed that message transmissions are solely
controlled by the status of TRT. Therefore, each station is
considered to have only one queue. Fig. 7 depicts the evolution
of a network with nominal TRT setting (nominal path) and an
evolution with perturbed TRT setting (perturbed path). The
status changes of the station i,i = 1 , 2 , 3 are represented by
S; and S;l for the nominal and perturbed paths, respectively. S;
consists of four elements, namely Message Generation Instant
(MSG), Message Transmission Instant (XMT), Token Holding
Timer status (THT), and Token Rotation Timer status (TRT).
For the perturbed path, Si consists of three perturbed elements

1436 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 9, DECEMBER 1993

where MSG is excluded because the instants of message
generation are identical for both.

MSG is essentially the instant of message insertion into the
queue. It is denoted by a down arrow with an appropriate iden-
tifier, Mi(j) , for the j t h message at station i . XMT indicates
the time interval of transmission and contains two kinds of
transmissions. A block with a letter T denotes transmission
of the token, and message transmission is depicted by a block
with an appropriate message identifier. For THT and TRT, a
block represents the time period while the corresponding timer
counts down, which always starts with a letter S (start). The
block ends with a letter R (reset) if the timer is reset before
expiration. Otherwise, i.e., if the timer is expired, the block is
shaded and ends with a letter E (expire).

Fig. 7 illustrates network operations from the initial time
t = 0 when none of the three stations have any waiting
message(s) and station 1 just received the token. Each token
pass is assumed to take one unit of time, including the time
required for the source station to transmit the token and that
for the destination station to respond. The normal length of
TRT is taken to be 7 units ot time.

On the nominal path (focusing on SI. Sz, and S3 in Fig.
7), since the queue of station 1 is empty, the token is passed
to station 2 immediately after resetting and restarting its THT
and TRT. At t - 1, station 2 receives the token. This process
continues until station 2 receives the token again at t = 4.
At this moment, its queue contains two messages and TRT
is not yet expired. Therefore, station 2 resets and starts its
THT having the remaining time of its TRT (4 units) and its
disposal, and resets and starts its TRT. Almost simultaneously
(it is assumed that timers are reset and started instantaneously),
station 2 begins to transmit its first message Mz(1) which takes
3 units of time to be transmitted. When the first message is
finished, THT still has one unit of time left and the second
message hfz(2) is started. After finishing M2(2), the token
is passed to station 3 which starts its TRT and passes the
token to station 1. Upon token arrival at t = 11) station 1 has
one waiting message. However, its transmission is not allowed
because of TRT expiration at t = 10 before token reception.
When station 3 receives the token t = 13, it can transmit
M3(1) of two units since the message is already in the queue
and TRT still has 4 units of time left to its expiration. When the
token returns to station 1 at t = 17, station 1 finds one unit of
time left on its TRT and starts transmitting M I (1) of four units.
After this transmission, the network becomes empty, resulting
in token circulations without any message transmission.

For the perturbed path (Si, Si, and SA in Fig. 7), the TRT
in station 2 has been perturbed by -2 units of time while
keeping TRT unchanged in stations 1 and 3. This change is
solely for the purpose of illustration, since a timer is usually
set identically for all stations in standard protocols. Effects
of the perturbation do not appear on the perturbed path until
Mz(1) is finished at t = 7 (compare S2 and Si at t = 7). Due
to the reduced length of TRT, THT of station 2 has started
with only 2 units when the token is received and expires while
M2(1) is being transmitted. Therefore, no further transmission
is allowed and M2(2) should wait for the next opportunity.
Due to the deferred transmission, stations 3 and 1 receive the

token 2 time units earlier [which is required for transmission
of M2(2)] on the perturbed path. At t = 9, station 1 has one
unit of remaining TRT due to earlier token reception and can
transmit Ml(1). When the token returns to station 2 at t = 14,
station 2 is again disallowed to transmit M2(2) because of
TRT expiration. Station 3 also loses the opportunity to transmit
M3(1) for the same reason. Eventually, Mz(2) and M3(1) are
transmitted at t = 17 and t = 20, respectively.

After transmission of M3(1) on the perturbed path, the
perturbed instant of the token reception by station 1 at t = 24
conicides with that on the nominal path even though the
statuses of its TRT’s are different from each other. This implies
that the instants of token reception by a given station on the
nominal and perturbed paths become identical after transmis-
sion of all messages that are affected by timer perturbation.
The timer status on the perturbed path also becomes identical
to that on the nominal path after one more token circulation
(from t = 27), except station 2 where the timer is perturbed.

It follows from Fig. 7 that it is impossible to predict
the time of M2(2) transmision on the perturbed path with-
out considering the queue contents and timer status, after
detecting that Mz(2) cannot be transmitted at t = 7 due
to the perturbation in TRT. This is because the order of
transmissions is dependent on the status of TRT, which is, in
turn, dependent on the previous token circulation. Therefore,
in order to compute the perturbed performance, the only choice
is to construct the perturbed path, which is essentially an
Extended Perturbation Analysis with Brute Force Algorithm
(EPADFA) [13]. However, the brute force construction of the
perturbed path is required only for the portion of the perturbed
path which differs from the nominal one because the queue
contents, timer status and event sequence of the perturbed
path become identical to those on the nominal one as shown
in Fig. 7. Therefore, the PA algorithm for this problem needs
to check whether the perturbed path begins to differ from the
nominal one while both paths are identical. After a difference
between the two paths is detected, the algorithm constructs the
perturbed path until it concides with the nominal one again.

REFERENCES

A. Ray, “Networking for computer-integrated manufacturing,” IEEE
Network, vol. 2, no. 3, pp. 4 W 7 , May 1988.
Manufacturing Automation Protocol (MAP) 3 .O Implementation Release,
Available through MAPFOP Users Group, Dearbom, MI.
Technical and Office Protocols (TOP) 3.0 Implementation Release, Avail-
able through MAPnOP Users Group, Dearbom, MI.
D. M. Thompson, “LAN management standards-Architecture and
protocols,” in Proc. lEEE INFOCOM ’86, pp. 355-363.
T. Saydam and A. S . Sethi, “Token bus/ring local area network manage-
men1 concepts and architecture,” IEEE INFOCOM ‘87, pp. 988-993.
S. M. Klerer, “The OS1 management architecture: An overview,” IEEE
Network, vol. 2, no. 2, pp. 20-29, Mar. 1988.
ANSIflEEE Standard 802.1,‘‘ Supplement B: Systems Management,”
Draft M, Jan. 1987.
Linear Token Passing Multiplexed Data Bus Standard. Version 3.0, Soc.
of Automobile Engin., May 1987.
D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ:
Prentice Hall, 1987.
L. Kleinrock, Queueing Systems, Vol. I : Theory. New York: Wiley,
1975.
A. M. Law and W. D. Kelton, Simulation Modeling and Analysis. New
York: McGraw-Hill, 1991.
Y-C. Ho and X-R. Cao, Perturbation Analysis of Discrete Event Dy-
namic Systems. New York: Kluwer, 1991.

LEE AND RAY: PERFORMANCE MANAGEMENT OF MAC NETWORKS 1437

1131 Y-C. Ho and S. Li, “Extensions of infinitesimal perturbation analysis,”
IEEE Trans. Automat. Contr., vol. AC-33, no. 5, pp. 427-438, May
1988.

[141 R. Y. Rubinstein, Monte Carlo Optimization, Simulation and Sensitivity
of Queueing Networks.

[IS] K. S. Narendra and M. A. S. Thatachar, Learning Automata. Engle-
wood Cliffs, NJ: Prentice Hall, 1989.

[I61 Y. C. Ho and X.-R. Cao, “Perturbation analysis and optimization of
queueing networks,” J. Oprim. Theory and Applic., vol. 40, no. 4, pp.
559-582, Aug. 1983.

[I71 B. J . Oommen and J. P. Christensen, i -optimal discretized linear
reward-penalty learning automata,” IEEE Trans. Syst., Man and Cyber-
net. , vol. SMC-18, no. 3, pp. 451458, May/June 1988.

XXX; Industrial Network-
ing Inc., July 1987.

New York: Wiley, 1986.

[181 MP-400 Programming Reference Manual.

Suk Lee (M’92) was born in Seoul, Korea, in
1961. He received the B.S. degree in mechanical
engineering from Seoul National University in 1984,
and the M.S. and Ph.D. degrees in mechanical
engineering from the Pennsylvania State University
in 1985 and 1990, respectively.

From 1985 to 1990, he was a Graduate Research
Assistant working on network management and
evaluation of fly-by-wire flight control systems.
Upon completion of graduate study, he joined the
Center for Advanced Manufacturing Systems at the

University of Cincinnati as a Research Assistant Professor. His current
research interests include network management and control, modeling and
performance evaluation of communication networks, perturbation analysis,
computer networking for manufacturing, design, and evaluation of flexible
manufacturing systems, and control of machining processes for composite
materials.

Dr. Lee is an Associate Member of ASME and a Senior Member of SME.

Asok Ray (SM’83) received the Ph.D. degree in
mechanical engineering from Northeastern Univer-
sity, Boston, MA, in 1976, and has received de-
grees in electrical engineering, computer science,
and mathematics. He joined the Pennsylvania State
University in July 1985, and is currently a Pro-
fessor of Mechanical Engineering. Prior to joining
Penn State, he held research and academic positions
at the Massachusetts Institute of Technology and
Camegie-Mellon University as well as research and
management positions at GTE Strategic Systems

Division, Charles Stark Draper Laboratory, and MITRE Corporation. His
research experience and interests include control and optimization of con-
tinuously varying and discrete-event dynamic systems in both deterministic
and stochastic settings, intelligent instrumentation for real-time distributed
processes, and design of fault-accommodating and robust control systems as
applied to aeronautics and astronautics, power and processing plants, and
autonomous manufacturing. He has authored or co-authored over two hundred
research publications, including eighty-five scholarly articles in refereed
journals and a research monograph entitled An Zntegrated System for Zntelligenr
Seam Tracking in Robotic Welding (Springer-Verlag).He is currently serving
as an Associate Editor for two journals, namely, Journal ofDynamic Sysrems,
Measurement and Control, Transactions of the American Society of Mechanical
Engineers. and International Journal of Flexible Manufacturing Systems. He
is registered as a Professional Electrical Engineer in the Commonwealth of
Massachusetts.

Dr. Ray is an Associate Fellow of AIAA and a member of ASME.

