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Abstract. Recently, a model of fatigue damage dynamics h a s  been reported, which 
allows the damage information on critical plant components to be integrated with the 
plant dynamics for both on-line life prediction and off-line control synthesis. This 
paper proposes a neural network implementation of the fatigue damage,model in 
order to alleviate the problem of slow computation via conventional numerical 
methods. The results of simulation experiments reveal that a neural network 
a!gori?hm cou!d be used as an intel l igent  instrument for on-line monitoring of fatigue 
damage and also as a tool for failure prognostics and service life prediction. 

1. Introduction 

A major objective in control of complex mechanical 
systems such as electric power plants, advanced air- 
craft, and spacecraft is to achieve the mission objectives 
with increased reliability, availability, component 
durability, and maintainability. Therefore, performance, 
service life, and cost of maintenance and operation should 
be taken into consideration during the design process. 
In view of high performance requirements and avail- 
ability of improved materials that may have si&cantly 
different damage characteristics relative to conventionat 
materials, the lack of appropriate knowledge about 
the properties of these materials will lead to either of the 
following: (i) less than achievable performance due to 
overly conservative design; or (ii) over-straining of the 
mechanical structures leading to unexpected failures 
and drastic reduction of the service life. 

Ray et ai (1994a,b) have proposed a concept for 
damage-mitigating control of complex structures, in 
which the dynamics of fatigue damage are modeled 
in continuous time in contrast to the usual notion of 
expressing the fatigue damage rate relative to the 
number of cycles. A unique advantage of this damage 
model in the continuous-time setting is that it can be 
directly incorporated within the control system struc- 
ture to provide the necessary information for on-line 
damage-mitigating control as well as for off-line synthe- 
sis of a control law (Ray ef ai, 1994~). However, for 
on-line damage-mitigating control, traditional numen- 
cal computation of cumulative damage at several critical 
points may not satisfy the stringent requirements of data 
processing time because the damage model involves 
many complex non-linear calculations. This problem 
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can be circumvented by neural computation (Troudet 
and Merrill, 1990). 

This paper demonstrates the feasibility of the artificial 
neural network concept for real-time implementation of 
the continuous-time fatigue damage model. While the 
feedfonvard layered neural network is multiplexed for 
on-line calculations of fatigue damage at several critical 
points of the mechanical structure, the recursive error 
back-propagation concept is used to train this network. 
This class of neural networks has the capacity of repre- 
senting any function to a desired degree of accuracy by a 
suiticiently large number of neurons (Hornik et ai, 1989). 
The paper is organized in five sections including the 
Introduction. Section 2 reviews the continuous-time 
fatigue damage model based on the work of Ray and 
Wu (1994a). Section 3 describes the back-propagation 
neural network where the momentum method and the 
adaptive learning rate update rule are used to accelerate , 
the convergence rate of the network during its training 
phase. Section 4 presents implementation of the neural 
network representation of the fatigue damage model 
and reports the results of simulation experiments. 
Finally, the paper is summarized and concluded in 
section 5 along with recommendations for future work. 

2. The continuous-time fatigue damage model 

The fatigue damage model in the continuous-time 
setting, reported by Ray and Wu (1994a), is first derived 
based on linear damage accumulation using a combina- 
tion of Co5n-Manson and Basquin relationships 
(Bannantine et ai, 1990). Then this linear damage 
model is m o d ~ e d  following the damage curve approach 
(Bolotin, 1989) to account for dependence of the damage 
rate on the current level of accumulated damage. Only 
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Figure 1. Representation of fatigue damage dynamics. 

the essential features of this fatigue damage model are 
presented in this section. 

Converting the strain amplitudes into stress 
amplitudes from the cyclic stress-strain curve, the rates 
of both elastic damage 6, and plastic damage 6, are 
computed through differentiation as: 

If U 2 ur, then 

,_,A(( u-ur )-*& 
dt du 2(u;-um 

-I 

‘du 
(1-%)-“> - dt 

(1) 
otherwise, 

dS,/dt = 0 and dS,/dt = 0 

where the current stress U and the stress rate du/dt are 
obtained from the structural model; U< is the reference 
stress obtained using the raiEf.ow method @ow!ing, 
1983; Rychlik, 1993); um = (u+ur)/2 is the mean 
stress; and U;, E;, 6, c, K’ ,  n‘ are the material parameters 
(Bannantine et ai, 1990) under cyclic operations. The 
damage rate dS/dt is obtained as the weighted average 
of the elastic and plastic damage rates such that 

(2) 
dS dS, 
dt dt dt 
-= w-+ (1 - w)- 

where the weighting function, w, is selected as the ratio of 

Equations (1) and (2) are then used to obtain the damage 
&e e!&z s?rzi;;n aT.p!it& azd total aF.p!ii&. 

rate at any instant. Smce mechanical structures are 
generally subjected to loads of varying amplitude, 
equation (I), which is based on the linear rule of damage 
accumulation, will lead to erroneous results due to the 
sequence effect (Suresh, 1991). Therefore, the linear 
damage is modified via a non-linear damage rule as 
follows: 

where D and S are the current states of non-hear and 
linear damage accumulation, respectively, and ua is the 
stress amplitude. Equation (3) generates the following 
incremental change: 

(4) 

It follows from a crack propagation model such as the 
Paris model (Paris and Erdogau, 1963) that the crack 
growth rate is dependent not only on the stress 
amplitude but also on the current crack length. Since 
the characteristics of 7. in (4) may strongly depend on 
the type of the material, availability of pertinent experi- 
mental data for the correct material is essential for 
damage-mitigating concol. An approach to evaluate 7 
at selected discrete levels of stress amplitude by inter- 
polation based on the experimental data of Swain et ai 
(1990) for the material AIS1 4340 steel is given in Ray 

Figure 1 shows a neural network representation of 
the fatigue damage model having four inputs and one 
output. It follows from (1) to (4) that the damage 
increment ADk at the time instant tk depends on the 
corresponding damage accumulation Dk, the current 
stress u k ,  and the reference stress U+. The input -1, 
used as the bias or threshold term (Haykin, 1994), 
provides an additional degree of freedom such that 
the process of training the neural network is ewe- 
a : + d  Tlra+m:.r:-.nin+n mr:on~..nm+~rl~r,.rr rhn,n~..+:...r 

of the govemiug equations (1) to (4) of fatigue damage. 
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Figure 2. Structure of the error back-propagation neural network. 
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3. Neural network training via recursive back- 
propagation 

The proposed neural network is fed with sets of input 
and desired output patterns during the iterative process 
of training. Random weights are provided to initialize 
the network, and learning is accomplished by succes- 
sively adjusting these weights based on the set of input 
patterns and the corresponding set of desired output 
patterns which, in this paper, are generated from the 
fatigue damage modei described in sec~on 2. Let an 
I-dimensional input pattern {inp; : i = 1, 2, . . . , I }  be 
presented to the network and propagated forward 
through the layers of neurons of the network, and the 
resulting output signal be an L-dimensional pattern 
{ o l : l = l , 2  ,..., L } . N o t e t h a t I = 4 a n d L = l  in 
the network shown in figure 1. However, this section 
presents a general procedure for neural network imple- 
mentation of fatigue damage, which is not restricted to 
the single output configuration. 

Figure 2 exhibits the structure of the proposed three- 
layer feedfonvard neural network which consists of two 
hidden layers and the output layer in addition to the 
input layer. The error between the actual output 01 of 
the neural network and the desired output dl is back- 
propagated through the network as a feedback signal 
to adjust the weights, {wj!}, { w ; ~ } ,  and {&} of the net- 
work shown in figure 2. Each neuron forwards the 
weighted sum of the previous layer’s outputs into an 
activation function which is represented by sigmoid 
functions at the two hidden layers and the output layer 
as follows: 

j = l  

K 
oi = f ( e : )  = [I +exp(e:)l-’ e: = C&yk (54 

k = l  

where the weights {w;!}, {w:~} ,  and {wh} from the 
unit i of the input layer to the unit I of the output 
layer are to be optimized during the training phase of 
the neural network. The rules of updating the weights 
for a pattern pair are derived by minimizing the 
squared Euclidean norm of the error function at the nth 
iteration via the steepest descent method mumelhart 
and McClelland, 1986). The squared norm E(n) is 
defined as 

where (dr(n) - o&)) is the error signal for unit I of the 
output layer at the nth iteration. The weights at the first 
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and second hidden layers and the output layer in figure 2 
are updated as: 

w h ( n  4- 1) = w&) + A&(n + 1) 

for the output layer, 

wkj(n 2 + 1) = w&) 2 + Aw& + 1) 

for the second hidden layer, and 

w$(n + 1) = wj;(n) + Awj?(n + 1) 

( 7 4  

(74 

for the first hidden layer, where q is the learning rate 
parameter of the back-propagation algorithm, which 
is selected by the designer. The back-propagation 
algorithm for training the neural network starts at the 
output layer by passing the error signals backward 
through the network, layer by layer, and recursively 
computing the local gradient for each neuron (Haykin, 
1994). This iterative learning process is continued until 
the network output signals satisfy the criterion of E 4 5, 
where E is the specified tolerance. A typical value of E is 
0.0012 in this application. 

Since the error surfaces possess properties that might 
slow down convergence of the steepest descent procedure 
(Jacobs, 1988), a variety of techniques have been 
reported in literature to accelerate the convergence rate 
of network training. F o p  heuristics were proposed by 
Jacobs that provide guidelines to achieve rates of 
convergence faster than those obtained by steepest 
descent techniques. A brief discussion follows. 

First, every weight should have its own individual 
learning rate. The rationale is that the step size for 
adjusting any one weight is not necessarily appropriate 
for adjusting other weights. Second, every learning rate 
should be allowed to vary over time. It is common for 
error surfaces to possess different properties in different 
regions. In order to take an appropriate step size, the 
learning rate needs to be varied. Third, when the partial 
derivative of the error function with respect to one 
weight has the same sign for several consecutive time 
steps, the learning rate for that weight should be 
increased. As the sign of the derivative behaves in this 
manner, the error surface at the current point is likely 
to have a small curvature, and therefore, the slope 
continues in the same direction for a significant 
distance. By increasing the learning rate for this weight, 
the number of time steps required to traverse this 
distance can be reduced. Fourth, when the sign of the 
partial derivative of the error function with respect to 
one weight alternates for several consecutive time steps, 
the learning rate for that weight should be decreased. 
When the sign. of the derivative behaves in this manner, 
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the error surface at the current point is likely to have a 
large curvature, and therefore, the slope of this area of 
the error surface may quickly change sign. In order to 
prevent oscillations of the weight, the corresponding 
learning rate should he decreased. 

Several possible implementations of the heuristics 
described above have been reported (Jacobs, 1988;) 
Vogl et al, 1988). The momentum method and the learn- 
ing rate update rule have been adopted in this paper. 

3.1. The momentum method 

The momentum method implements the heuristics by 
adding a new term to the weight update equations (7). 
At the nth iteration, each weight w ( n )  of the network, at 
the two hidden layers and the output layer, is updated 
according to the following rule: 

Aw(n)  = -(I-  a)q- + aAw(n - 1) 
W n )  

with Aw(n - k) = 0 for k 2 n (8 )  

By iteration, (8) is modfied to (9) as follows: 

where a E [OJ) is the momentum factor that determines 
the contribution of the current and past partial deriva- 
tives relative to the current weight change. This is 
achieved by the exponentially weighted sum of the 
weight's current and past partial derivatives in which 
a is the base and the time from the current step is the 

Adjust leaming rates 
Atteouate leaming 

Generate new weights Generare new weights 

by seaing d i n  Eq.(8) 
with m m "  without momentum 

I 1 
I A 

mI: Error norm in the previous iteratioo 
ERRZ: Error norm in the current itemtion 

Figure 3. Flowchart of the  modified back-propagation 
algorithm. 

exponent. The parameter a is to be specified by the user 
and a'typical value of a is 0.9. 

The momentum is considered to be an implementa- 
tion of the heuristics for the following reasons. If the 
consecutive derivatives of a weight are of the same 
sign, the exponentially weighted sum grows large in 
magnitude and the weight is adjusted accordingly. 
Similarly, if consecutive derivatives of a weight are of 
opposite sign, then this sum becomes small in magnitude 
and the weight is adjusted by a small amount. 

3.2. Modified back-propagation algorithm 

Jacobs (1988) derived a learning rate update rule that 
performs steepest descent on an error surface defined 
over the learning rate parameter space. In this 
approach, the learning rate is updated at each iteration 
by minimizing the norm, E(n), of the error function 
relative to the learning rate qkj(n) in contrast to a single 
learning rate, q(n) for all weights in (9) for the momen- 
tum method. However, as pointed out by Jacobs, this 
leaming rate update rule becomes unpractical if the 
local curvature of the error surface is very small or 
very high, which is encountered in the training patterns 
for the fatigue damage model. Therefore, we propose 
a modsed back-propagation algorithm in which the 
momentum method is modified by including a learning 
rate update rule. This algorithm combines the accelerat- 
ing methods with part of the back-propagation 
modifications as suggested by Vogl et a1 (1988). The 
modified back-propagation rule is delineated below for 
the three-layer network in figure 3: 

(10) 
where the non-negative scalars P and q5 are user-selected 
learning-rate adjustment parameters; and 

+ epjk(n - 1) for 6' E [0,1). 
Figure 3 shows the flowchart of the modified back- 

propagation algorithm. First the weights, {&, { w $ } ,  
and { w k }  of the network shown in figure 2 areinitialized 
in step 1, and the error norm in the previous step is set to 
a large value. Now the learning process begins to feed an 
input pattern into the network to accumulate the squared 
errors of the corresponding output pattern until every 
training pattern is presented in step 2. If the norm of 
the current error in step 3 is less than the previous 
error, the algorithm switches to step 4.1 to adjust the 
learning rates based on (10). Then step 5.1 calculates 
the new weights by =sing the F-omeEtim- meth.od in 
(8). If the current error in step 3 exceeds the previous 
error, then the algorithm switches to step 4.2 to adjust 
the leaming rates that are attenuated by a factor li, < 1. 
Then step 5.2 calculates the new weights by setting a = 0 
in (S), i.e. without using the momentum term. The itera- 
tive procedure of learning is continued until the error 
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Table 1. The user-selected parameters. 

Momentum parameter Ly = 0.9 
Learning-rate adjustment parameters 

Attenuation parameter in step 4.2 of figure 3 

p = 0.05 
4 = 0.13 += 0.7 

Error criterion in step 6 of figure 3 E = 0.0012 

criterion E is satisfied in step 6. The user-selected param- 
eters are iisted in tabie i. 

4. Simulation results and discussion 

This section presents a neural network structure of 
fatigue damage dynamics while focusing on simnlation 
experiments to demonstrate efficacy of the network. As 
indicated in figure 4, the neural network model of fatigue 
dmage d_yn_afin: consist: of two fimctinna! h!ock>: a 
rainflow counting block and a neural network block. 
First, a load sequence {U,) acting on a critical compo- 
nent of the mechanical structure is injected into the 
raidow counting block to identify a series of time- 
dependent stresses and the corresponding reference 
stresses. The stress mk, reference stress U,,,  the total 
damage D, at the instant k, and a bias -1 are propa- 
gated forward to the three-layer neural network block 
as four inputs to obtain the single output, namely, the 
damage increment AD,. The rationale for using the bids 
-1 as an additional input is to provide a threshold to 
each neuron in the network (Haykin, 1994). The instan- 
taneous cumulative fatigue damage D,+ is fed back into 
the input stage of the neural network block as the input 
for the next time instant. The damage rate is approxi- 
mated by the first-order forward differential equation for 
the sampling time At as: 

The training set consists of a total of 1260 input- 
output patterns generated from the fatigue damage 
model in section 2. Note that the input patterns are 
uniformly mapped into or are shifted to a suitable 
range for training, and that the output patterns are 
taken in the logarithm scale to circumvent the numeri- 
cal resolution problem. The range of the data set for 

Figure 4. Neural network model of fatigue damage 
dynamics at the  kth instant. 

training the neural network was selected corresponding 
to an early stage of crack initiation as listed below: 

Range of input patterns: 
Dk E [0.01, 0.51 with an increment of 0.005 is 

U, E [70, 901 ksi which implies that UQ E 170, 901 

". 1o impiementauon of aciivation functions 

scaled over t0.1, 0.91 

and E br,k., go] 

in (9, ranges of ur,, and uk are shifted as follows: 
ur,, E [I, 211 with an increment of 4 
U, E [u~,,, 211 with an increment of 0.4. 

LogarithmofAD, E [2.173 x 10-30,8.149 x 

The number of neurons in the hidden layers is an 
important parameter in the back-propagation network. 
Lippmann (1987) has discussed how decision regions are 
formed by single- and multi-layer perceptrons with one 
and two hidden layers and two inputs. This discussion is 
primarily based on the networks in which hard limiting 
non-linearities are used. Since it is diflicult to analyze the 
neural network problems with sigmoid activation func- 
tions, a trial and error approach has been used to decide 
the number of neutrons. The results of three different 
codigurations are shown in table 2. The configuration 
column shows the number of neurons in each layer of 
the networks. The number ofparameters in the networks 
with different configurations are different as shown in the 
column of the number of weights. Mean and standard 
deviation of epochs until a solution is reached for each 
case are listed in table 2, in which the initial weights in 
iifteen tests are randomly chosen. It follows from table 2 
that the number of iterations needed to reach a solution, 
satisfying the error criteria in table 1 on the average, 
decreases with an increase in the number of neurons. A 

Range of output patterns: 

is taken and then scaled over [0.1,0.9]. 

Table 2 Comparison of results of back-propagation simulation. 

Epochs until solution 

Number of Number of Stand a r d 
Configuration weights tests Mean deviatlon 

Case A 4-20-161 416 15 6664.0 6 244.3 
Case B 4-18-12-1 300 15 8033.1 8 174.9 
Case C 4-13-1 1-1 206 15 12070.3 10447.3 
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Figure5. Profile of transient errors during training of the  neural network. 

large number of neurons generate more local minima 
in the error surface of the network, which might satisfy 
the error criterion and. therefore. it is more likely that 
the network would iind a solution in fewer iterations. 
However, further research is needed to establish general 
validity of this observation. 

Figure 5 exhibits the transient errors during the 
training phase until solutions are reached for three 
different tests corresponding to case A in table 2. It is 
the randomly chosen initial weights that result in differ- 
ent transient paths and different total number of epochs. 
Figure 6 shox,vs r&tiVe erccr cf 1009 training 
patterns, which is defined as the difference of damage 
increments between desired solutions and neural network 

solutions. The relative error of training results are largely 
conhed within 5 percent. The error threshold E listed in 
table 1 was used to terminate the training of the network 
as seen in the flowchart of figure 3. Other approaches such 
as the radial basis function technique may lead to faster 
convergence of the network weights. 

Figure 7 shows a comparison of the results of 
the continuous-time damage model with those of the 
trained neural network model. A sequence of 20000 
random inputs of load (i.e. stress) was fed into both the 
continuous-time damage model presented in section 2 
and the neural network model of figure 4. The relative 
error of the neural network model with respect to the 
analytical model is within 10 percent for most of 

-I5l -20 

I 
0 100 200 300 400 500 6W 700 800 9W 1OW 

.251 

1000 Random Pauems 

Figure 6. Relative error of 1000 random patterns for testing t h e  
training results. 
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Figure 7. Comparison 0~ ihe resuiis generaied anaiyiicai and 
neural network models. 

the random load, and the mean and standard deviation 
of the relative error are -3.961 x lo-' and 1.689 x lo-*, 
respectively. Ray and Wu (1994b) have reported that 
mean and standard deviation of relative error of the 
analytical model, described in section 2, is of the order 
of lo-' and lo-', respectively, when compared with the 
test data obtained from fatigue damage experiments. 
The agreement between the analytical model and the 
neural network model is one order of magnitude closer 
than that between the analytical model and the experi- 
mental data. Therefore, it is concluded that the neural 
network model developed in this paper has the potential 
of serving as an intelligent instrument for on-line 
monitoring of fatigue damage dynamics. 

5. Conclusions and future work 

The notion of damage-mitigation as perceived in this 
paper is to generate the information of fatigue damage 
for the critical plant components so that decisions for 
damage monitoring, diagnosis, prognosis and conpol 
can be made for structural durability and life extension 
of these components. A fatigue damage model (Ray and 
Wu, 1994a), formulated in the continuous-time setting, 

numerical techniques may not satisfy the stringent 
requirements of data processing time for simultaneous 
damage prediction at several critical points because the 
damage model involves complex non-linear calculations. 
Potentially, an art5cial neural network can be used to 
circumvent the problems associated with data processing 
delays. Since errors surfaces in the back-propagation 
neural network may slow down convergence of the train- 
ing procedure, a modifced back-propagation algorithm 
nas ocen ucvci~pcu LO accicrarc LUC wuvcrgenE rare. 
This procedure is a combination of two methods, 
namely, momentum and adaptive learning rate. On this 
basis, a neural network has been synthesized and its 
prediction of fatigue damage is shown to be in close 
agreement with that of the non-linear differential equa- 
tions that represent the fatigue damage dynamics. These 
results of simulation experiments suggest that this neural 
network algorithm is potentially an intelligent instrument 
for on-line monitoring of fatigue damage dynamics and 
also a tool for prediction of the remaining service lie. 

has heen used for chis pi19osel Howeve!, tra&&nd 
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Future research is recommended for application 
of this neural network structure for on-line estima- 
tion of the cumulative damage at several critical points 
such as blades of gas turbines. In this approach, the 
cumulative damage is fed back after one time step 
delay to the input stage of the neural network to predict 
the damage hcrement durhg the next time step. Due to 
the property of highly parallel structure in the neural 
network, the cumulative damage of these critical points 
can be very quickly obtained as a part of the real- 
time control system. Therefore, for those critical 
points in which the range of operating load is similar, 
a single neural-network-based damage predictor can 
be multiplexed to obtain the necessary information in 
real time. This implementation may also serve as an 
instrument for on-line monitoring of fatigue damage 
dynamics. 

The neural network approach presented in this 
paper can also incorporate alternative fatigue damage 
models, such as the small fatigue crack model of 
Newman (1992) which can be converted from the cycle 
base to the continuous-time base following the procedure 
outlined by Ray et al(1994a). Nevertheless, the proposed 
neural-network-based damage predictor should be 
updated with new models of fatigue and damage 
~ C C U E I ~ ~ ~ ~ Q C  they bPc0g.e avafi;lh!el 
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