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This paper presents a nonlinear stochastic model for prediction of fatigue crack 
damage in metallic materials. The model structure allows estimation of the 
current damage state and prediction of the remaining service life based on the 
underlying principle of Gauss-Markov processes without solving the extended 
Kalman filter equation in the Wiener integral setting or the Kolmogorov forward 
equation in the It6 integral setting. The model results have been verified with 
experimentally-generated statistical data of time-dependent fatigue cracks for 
2024-T3 and 7075-T6 aluminum alloys. Copyright 0 1996 Elsevier Science Ltd. 

1 INTRODUCTION 

Dynamic modeling of fatigue crack damage has been a 
topic of intensive research for several decades. Many 
researchers, cited by Suresh,’ have proposed empirical 
and semi-empirical models in the deterministic setting 
based on observed experimental data and attempted 
to provide a physical interpretation to these models. 
However, the sole usage of deterministic methods that 
model the mean path of the fatigue crack growth process 
fails to adequately represent the variability in estimated 
damage and predicted service life. This is evident even 
in experiments conducted in a controlled laboratory 
environment.2’3 

Modeling of fatigue crack growth via nonlinear 
stochastic differential equations is a relatively new area 
of research, and a list of the literature representing the 
state of the art is cited in Sobczyk and Spencer.4 One 
approach to stochastic modeling of fatigue crack growth 
is to randomize the coefficients of an established 
deterministic model to represent the material inhomo- 
geneity.5>6 Another approach is to generate the necessary 
stochastic information by multiplying the deterministic 
dynamics of fatigue crack growth with a nonnegative 
random process. ‘-I2 The process of fatigue crack 
growth is thus modeled by nonlinear stochastic dif- 
ferential equations in the It8 setting.i3 Specifically, 
Kolmogorov forward and backward diffusion equations, 
which require solutions of nonlinear partial differential 
equations, have been proposed to generate the statistical 
information required for risk analysis of mechanical 

structures. 14, is These nonlinear partial differential equa- 
tions can only be solved numerically; the numerical 
procedures, however, are computationally intensive as 
they rely on a fine-mesh model using finite-element or 
combined finite-difference and finite-element methods.16 
Therefore, although this numerical approach might be 
useful for making off-line decisions for design analysis 
and predictive maintenance, it is not sufficiently fast for 
on-line damage monitoring, failure prognosis, and 
remaining service life prediction. To enhance the 
computational efficiency for on-line execution of the 
damage estimation and life prediction algorithms, Ray 
and Tangirala17 have proposed an algorithm for real- 
time estimation of crack damage based on the under- 
lying principle of extended Kalman filtering.‘s In this 
approach, the first two moments of the stochastic 
damage state are computed on-line by constructing the 
stochastic differential equations in the Wiener form as 
opposed to the It6 form. The damage -estimation 
algorithm follows the two-state model structure,’ 
where the shaping filter is constructed with additive 
white Gaussian noise. The concept of extended Kalman 
filtering can be used with or without any sensor(s) for 
crack length measurement. The absence of any useful 
sensor data is equivalent to having the inverse of the 
intensity of measurement noise covariance tend to zero; 
in that case, the filter gain approaches zero. Conse- 
quently, the conditional density function generated by 
the filter becomes identical to the prior density function 
whose evolution is governed by the Kohnogorov forward 
equation.18 
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This paper proposes an alternative concept for 
stochastic modeling of fatigue crack damage, based on 
the underlying principle of Gauss-Markov processes, 
that does not require solutions of the extended Kalman 
filter equation in the Wiener integral setting or the 
Kolmogorov forward equation in the It8 integral 
setting. The model predictions are shown to be in close 
agreement with the results generated from experimental 
data of fatigue tests213 for 2024-T3 and 7075-T6 alu- 
minum alloys. The proposed model is significantly 
computationally faster than other reported stochastic 
models including our earlier model”,i9 and is suitable 
for on-line monitoring of fatigue crack damage in 
metallic materials which are commonly encountered in 
mechanical, power and chemical plants. The model 
verification so far has been restricted to constant 
amplitude cyclic loading at normal ambient conditions 
due to limited availability of random fatigue test data. It 
is recognized that the physics of fatigue damage under 
constant amplitude cyclic loading at normal ambient 
conditions is, in most cases, significantly different from 
that under varying amplitude loading at elevated 
temperatures and corrosive environment prevalent in 
actual plants. Nevertheless, the research work reported 
in this paper is a crucial step toward achieving the 
ultimate goal of constructing on-line damage monitor- 
ing systems which will be functional in the actual 
environments of plant operations. The objective here is 
to obtain a clear understanding of the random phenom- 
ena in fatigue and fracture of metallic materials and to 
establish a framework for on-line damage monitoring in 
the continuous-time setting. 

The paper is organized in four sections including the 
introduction. Section 2 presents dynamic modeling of 
fatigue cracks in the stochastic setting. Section 3 verifies 
the model results with experimental data. Finally, the 
paper is summarized and concluded in Section 4. 

2 DYNAMIC MODELING OF FATIGUE 
CRACK GROWTH 

The deterministic fatigue crack growth model, adopted 
in this paper, is based on the short crack phenom- 
ena.2o121 While the Paris modelU is valid in the macro- 
crack range, the Newman model represents the fatigue 
crack growth process down to micro-cracks of the order 
of material defect sizes. The Newman model for crack 
growth is of the following form: 

- = CI WC&2 dN 

for N 1 No and pc(No) > 0 (1) 

where jam is the mean crack length; N is the number 

of cycles; dp=/dN is the so-called derivative of pc with 
respect to N as commonly used in the fracture 
mechanics literature;’ and A& = C3(1 - Cd &>, 
Km,, = &,,@KF, A%, = (Sm, - S&‘KF; So 1s 
the crack opening stress; F is the correction factor for 
finite width of the specimen; and S,, is the maximum 
applied remote stress. Alternatively, the crack growth 
rate can be determined by the look-up table as a 
function of AK,. In this setting, the crack growth rate 
is expressed as 

- = exp(m ln(AK&) + b) 
dN 

for N 1 No and pc(No) > 0 (2) 

where m is the slope and b is the intercept of the linear 
interpolation of the (log scale) A&-r-dc/dN look-up 
table. Details of this method are reported by Newman 
et aL*l It should be noted, however, that any deter- 
ministic fatigue crack growth law can be used in this 
formulation with the only criterion being that the 
observed experimental crack growth profile is accu- 
rately represented. For example, several researchers” lo, I6 
have used a cubic polynomial fit in ln( AKfl) to determine 
crack growth rate. Following Ray et al.,23 the crack 
growth equation is expressed in the continuous-time 
setting as 

for t 2 to and pc(to)>O (3) 

where eqn (1) or (2) is represented as dpc/dN = 
wm,,, S,, p,). The time-dependent fatigue damage 
may then be obtained by normalizing the crack length 
with respect to the critical crack length which is a 
function of the material, component geometry, and the 
operating condition. 

Most of the continuous-time diffusion process models 
of stochastic fatigue crack growth rate reported in the 
literature assume that the crack growth rate is a 
lognormal distributed stochastic process. This is a direct 
consequence of the fact that most deterministic fatigue 
crack growth models compute the crack growth rate as a 
function of the applied stress, current crack length, 
ambient conditions, and other factors.417 Furthermore, 
this assumption is motivated by the physical reality that 
crack growth rate can never be negative, i.e. crack healing 
is impossible unless the damaged component is repaired 
or replaced. Traditionally, the stochastic differential 
equation for the crack growth process dc(w, t)/dt is 
expressed in terms of the deterministic damage dynamics 
as 

Ww, 4 dr=exp(x(u,l)-+)gVtZ to 

given E[c(w, to)] = &to) and Cov[c(w, to)] = f’o (4) 
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Ww, t) ~ = -&(w, t) + w(w, t)) Vt 1 to dt 

given E[x(w, to)] = x0 and Cov[x(w, to)] = $$ (5) 

where w and t represent the sample point and time of the 
stochastic process, respectively; the filter parameter < is a 
measure of ‘coloredness’ of the auxiliary random process 
x(w, t); the correlated stationary Gauss-Markov pro- 
cess x(w, t) is modeled by using a first-order linear 
shaping filter which is driven by additive zero-mean 
white Gaussian noise W(W, t) of intensity Qo. This implies 
that the crack growth rate is a lognormal distributed 
Markov process. 

There are certain shortcomings of the lognormal 
distributed crack growth (LDCG) model described by 
(4) and (5). It is very difficult, if not impossible, to 
establish validity of the assumption of lognormal dis- 
tribution due to the noise capture phenomenon which 
may occur whenever a numerical difference method is 
applied to obtain crack growth rates from experimental 
data. Moreover, there is a finite probability that, for a 
given sample, the fatigue crack growth rate may be 
large enough to completely rupture the structure in 
one cycle of loading with an extremely low stress level. 
This would occur if the crack growth increment in a 
cycle is equal to the critical crack length minus the 
current crack length, i.e. dc/dNl, = c,,+~ - c(t). Conversely, 
there is a finite probability that the crack growth rate, 
for a given sample, will be very small or zero under an 
extremely high applied stress level. These probabilities 
are small but nonzero, and therefore these models may 
not always accurately represent the physics of the crack 
growth process. More importantly, the assumption that 
the shaping filter which models the nonwhite auxiliary 
stochastic process, x(w, t), is a stationary random process 
is violated. This is evident from Fig. 1 where R,(t + 8, t) 
is determined by numerically computing the crack growth 
rates from experimental data.’ Although the numerical 
derivatives of crack length computed from experimental 
data are noisy to some extent, the observation that 

with t in steps of 20,000 cycles I 

R.&t, t) as a functio 

0 5 IO 15 20 
Time t and (t+B) in units of cycles x 104 

Fig. 1. Profile of autocorrelation R,(t, f + 8). 

&.( t + 6, t) is strongly dependent on the time param- 
eter, t, leads to the conclusion that x(w, 2) is not likely to 
be a stationary random process. If x(w, t) was indeed 
stationary, R,(t, t) would be a constant for all t and 
R,( t + 8, t) would be an identical function of 8 for all 
values of t. Neither of these conditions are satisfied as 
seen in Fig. 1 and, therefore, the assumption that x(w, t) 
is stationary cannot be justified. This apparently erron- 
eous assumption possibly contributes to the degraded 
quality of the standard deviation prediction of crack 
length near the end of the time frame under considera- 
tion by Ray and Tangirala.” Furthermore, the trend of 
the standard deviation predictions is inaccurate as is the 
shape of the density function predictions reported by 
Ennekingi6 and Spencer and Tang.’ These observations 
suggest that an alternative formulation that does not 
model x(w, t) as a stationary random process may 
provide more accurate predictions. One such model is 
presented in the next section. 

2.1 Lognormal distributed crack length (LDCL) model 

An alternative approach to stochastic modeling of 
fatigue damage is proposed in this paper. This model 
is based on the assumption that crack length, as opposed 
to crack growth rate, is lognormal distributed. The 
resulting lognonnal distributed crack length (LDCL) 
model can be experimentally verified by showing that 
either crack length measurements are approximately 
lognormal distributed or the natural logarithm of crack 
length is approximately Gaussian. Specifically, this 
approach deals with experimental data of the measured 
crack length instead of the derived values of crack 
growth rate and, therefore, allows application of 
standard statistical tests to examine validity of this 
assumption. This model, as derived below, eliminates 
the need to solve computationally expensive stochastic 
differential equations and thereby requires only the 
solution of the deterministic fatigue crack growth 
differential equation (l), (2) or (3). 

The major concern in assuming lognormal distribu- 
tion of the crack length is that the probability of the 
nonphysical event having a negative crack growth 
increment is nonzero. This is in contrast to the prob- 
ability of having infinite or zero crack growth rates with 
an arbitrary load in the LDCG model as discussed 
earlier. Such problems are unavoidable whenever the 
lognormal distribution is used to model the statistics of 
crack length or crack growth rate. However, as shown 
below, the purpose of this model formulation is only to 
predict the standard deviation of crack length either as a 
function of time, or as a function of cycles, in conjunction 
with the expected value obtained by the deterministic 
model of fatigue crack growth. This approach allows 
construction of the two-parameter lognormal distribu- 
tion function to describe the statistics of crack length as 
delineated below. 
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We postulate the fatigue-induced crack length, c(w, t), 
to be a lognonnal distributed stochastic process which is 
defined as 

c(w,~)=&)exp(z(w,r)-9) Vt>to (6) 

where t indicates (discrete) time in units of cycles; p=(t) 
represents the expected value of crack length; and 
pLc(t) > 0 Vr 2 to. Based on the mean and variance of 
lognormal distributed random variables, (6) implies that 

IMJJ, 01 = ~~(4 and 

44 = hk(t)~exp(ot) - 1 Vt 2 t0 (7) 

where z(w, I) N N(O,&(t)) Vt 1 lo is the zero-mean 
process defined as 

z(w,t) := in(s) - E[ln($#)] 

It follows from (8) that the following relation: 

B[ln(s)] = -9 

= -iVar[ln($#)] Vt 2 to (9) 

should be satisfied for validity of the postulation in 
eqn (6). The results generated from (9) are in close 
agreement with the statistical data of Virkler et aL2 and 
Ghonem and Dore3 for 2024-T3 and 7075T6 aluminum 
alloys, respectively, at different levels of constant cyclic 
stress amplitude as reported by Tangirala.” It is noted, 
however, that satisfying eqn (9) is a necessary (but not a 
sufficient) condition for the crack growth process to be 
lognormal distributed. Results of other statistical tests, 
namely, Chi-square and Kolmogorov-Smirnov tests, do 
not contradict the postulation of eqn (6). 

The crack propagation process is an explicit function 
of the continuous variable am and is only implicitly 
dependent on the parameter t as seen in (6). Therefore, it 
is appropriate to model the stochastic processes, c(w, t) 
and z(w, t), and their mean square derivatives with a 
continuous function of pc (t) as the independent variable 
in lieu of time, t. To this effect, we introduce a function 
of the average crack length, am, as 

vt E [to, T), t<ca (10) 

The dimensionless parameter 7, which is a monotonic- 
ally increasing continuous function of the (discrete) time 
parameter, I, is used as the independent variable in the 
sequel. 

In view of the definition in (lo), the Gaussian process 
{z(w, t): t 2 to} is denoted as {z7: T 2 0). It is postu- 
lated that the random variable zo = z,.I,,~ is independ- 
ent of the random process {z7 - zo: 7) 0) based on 

the rationale that, after an inspection of a structural 
component, the mean pc(te) and variance &to) of the 
crack length at time to (i.e. at r(t) = 0) are obtained in 
terms of the measurement data and precision of the 
measuring instrument. Subsequently, as the structural 
component undergoes load cycles (i.e. for r(t) CO), the 
crack growth process is subjected to material-dependent 
uncertainties which are independent of measurement 
uncertainties. 

Statistical information for {z,: r >_ 0) has been 
generated from each of the four sets of experimental 
data, namely, one data set of Virkler et aL2 and three 
data sets of Ghonem and Dore.3 The profiles of the 
autocorrelation function R, is shown in the plots of 
Fig. 2 for all four data sets. The autocorrelation function 
R, is observed to approximately 
relationship for each of the four 
data: 

R,,(T + 8, T) = R,,(q r) + k(r)@ 

for-r20 and (r+o)>O 

obey the following 
sets of fatigue test 

(11) 
where k(.) is a monotonically increasing continuous 
function with k(0) = 0. 

Since z7 is a zero-mean process with a continuous 
covariance function, it can be ex ressed 
Karhunen-Loive (K-L) expansion. 2t 

via the 
Let the con- 

tinuous process z, be discretized at m points beyond 
~=Oasz=[zt-z. ~~-~~~~~z,-z~]~wherez~:= 
j = 1,2,..+,m. 

ZTY 
The covariance matrix R, E 7Zmxm 

can be expressed as QA@r with (PT@ = I and A = 
diag[X, . . . A,]. The deterministic matrix @ is composed 
of columns, 4J, which are the eigenvectors of R,. 
Therefore, the Gaussian random vector z can be defined 
as 

z := @A’ where Cov(X) = A = diag[At . . . A,] 

(12) 
Since z, is postulated to be a Gaussian process, 
orthogonality of the K-L expansion ensures that the 
random vector X = {Xi - N(O,Xj), j= 1,2,...,m} is 
a set of independent random variables. This leads to 

z~=zo+~(+ifixj)~ k= 1,2,...,m (13) 
j=l 

where +$ := +j(~) is the kth element of the eigenvector 
44 and xi N N(0, l), i = 1,2,. . . , m are independent 
and identically distributed with Xi = fiixi. It is a 
well-known fact24 that if the m eigenvalues of R,, 
are ordered as X1 > X2 2 . 2 A,, an approximation 
.&k(M) := P,(M) of the random variable zk := zQ, with 
i. := zo, is obtained from the first M eigenvectors as 

.&(M) := zo + 2 &q/Ijxr, 
j=l 

k = 1,2,... ,m and l<M-cm (‘4) 
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having the minimum mean square error 

(15) 
Since zo is independent of {z, - zo: r > 0) as discussed 
earlier, z. must be independent of each of xi, 
j = 1,2,. . . , m and therefore is also independent of 
each of 5j.-ro, j= 1,2,...,M for 1 <M<m. Using 
the statistical orthonormality (i.e. independence) prop- 
tXtyOfXj,j= 1,2,*.+, M, it follows that the covariance 
of the approximated random process I, can be obtained 
as 

R&T-~, T,) - R,(O, 0) = Cov(2, - zo, 4 - zo) 

(16) 

The statistical results derived from each of the four 
sets of discrete experimental data233 show that the 
eigenvector corresponding to the largest eigenvalue, Xi, 
can be fitted as a continuous function of r 

h) = (/iq (17) 

and the mean square error in (15) is in the range of 
2-S% if M is chosen to be 1, i.e. if only the first (largest) 

eigenvalue is considered. In that case, (16) is modified as 

Rii(7 + 8, T) - R&O, 0) = QT(T + 0) (18) 

where R,(O,O) is obtained from (7) in terms of the 
mean, ,uc(to) and variance, g( to), of the crack length. 

R,,(O,O) = R&40) = ln(l + d(td/d,“cto)) (19) 

A comparison of (11) and (18) leads to the following 
conclusion: 

R,(T, 7) = Rii(7, T) x R,(O, 0) + QT* 

and k(T) M QT (20) 

Remark. The Karhunen-Loeve expansion may be used 
directly with the crack length to express the covariance 
of crack length as a function of pC( t). The development 
parallels the formulation described above and is 
supported by experimental data in that R&,p) and 
R&J + V,P) could be approximated by continuous 
functions of (PC(t) - pc(t,-,))* and (PC(t) - pc(to))v for 
v >O, respectively. The reason for using the natural log 
of crack length via the auxiliary stochastic process, z7, 
instead of the actual crack length itself is that the quality 
of the linear fit for REp(p + v, p) is not as good as that 
for Ri2(7 + 0,~) in eqn (18). This leads to larger 
prediction errors if the first eigenvector is approximated 
by a linear function of (PC(t) - pc(to))2. 
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Based on the physical understanding of 
growth and the analysis of experimental 
following conditions are postulated as: 

the crack 
data, the 

The above results are expressed in the state-variable 
setting as 

~W7,&jl 
&l&2 

exists VT] = ~~ = T and k(r) 

is twice continuously differentiable with k(0) = 0. 

The above postulation and (11) lead to the following 
conclusion: 

(21) 

This implies that w exists at each 71 = 72 = 7 
which is a necessary and sufficient condition for the 
existence of the mean square derivative, i,, of the 
random process z, at each r>O. Therefore, it follows 
from (21) that 

Rri(7,7) = Riz(~,~) = k(7) VT >0 (22) 

Furthermore, since z, is a zero-mean Gaussian process 

& (z$) = 2&z, in the m.s. sense (23) 

which, by application of the Schwarz inequality, yields 

It follows from (22) and (24) that 

= R,(O, 0) + 2 (25) 

Equation (25) along with the application of a standard 
theorem of mean square calculus” yields 

=&(T) = Rii(~,,) VT, 0 (26) 

Since z, is Gaussian, its mean square derivative i, is also 
Gaussian. Hence, (26) implies that i, is an independent 
increment process and that i, can be regarded as a 
(possibly varying diffusion) Brownian motion process 
with 

mc+e - iA = E[iz,,@l - qi271 
Alternatively, (26) can be rewritten as 

(27) 

di, = j/i(T) d& (28) 

where p, is the unit diffusion Brownian motion process. 

(29) 
where k(0) = 0 and f(0) is known; and the variance of z, 
at r = 0 is obtained from (19) as 05, = R,,(O, 0). Equation 
(29) can be simplified by using the experimentally- 
observed approximation k(7) = QT of (20) as dz, = 8 d7 
under constant amplitude load where the Gaussian 
random variable 8 - N(0, Q) is independent of zo, i.e. 
the process z, at T  = 0. A physical interpretation of the 
governing equations of the LDCL model is presented in 
the following remark. 

Remark. As a structural component is subjected to load 
cycles, the mean crack length, pc(t) is obtained via the 
deterministic model of crack growth in (I), (2) or (3); 
T(Z) and &, are obtained from eqns (10) and (19) 
respectively. The impact of mechanical load (e.g. stress 
amplitude and peak stress) on the uncertainties of the 
crack growth behavior is realized by the variance Q of 
the random variable 8. For constant amplitude loading, 
Q remains constant. For variable amplitude loading 
(which has not yet been experimentally verified), Q 
varies with the load amplitude, and hence the random 
variable 6 becomes a stochastic process as depicted in 
the stochastic differential eqn (29). 

3 VERIFICATION AND DISCUSSION 
OF MODEL RESULTS 

The stochastic damage model is tuned using the 
statistical data of fatigue crack growth collected by 
Virkler et aL2 and Ghonem and Dore3 for 2024-T3 and 
7075-T6 aluminum alloys, respectively, in which the 
tests were conducted under different constant load 
amplitudes at ambient temperature. The Virkler data 
set was generated at a single load level with peak 
nominal stress of 60.33 MPa (8.75 ksi) and stress ratio 
R = 0.2. Ghonem and Dore data was generated at three 
different load levels: (i) Set 1 with peak nominal stress of 
141.30 MPa (20.49 ksi) and R = 0.6; (ii) Set 2 with peak 
nominal stress of 137.95 MPa (20*00 ksi) and R = O-5; 
and (iii) Set 3 with peak nominal stress of 94.18 MPa 
(13.66 ksi) and R = 0.4. Four plots in Fig. 3 display 
comparisons of model-predicted standard deviation of 
crack length with the respective statistics based on the 
four sets of experimental data as a function of load 
cycle. The model predictions are in close agreement with 
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Fig. 3. Standard deviation of crack length for 2024-T3 and 707%T6 aluminum alloys. 

the respective experimental results derived from each of 
the four dam sets. The value of Q, in all cases, is 
determined using the methods described in the previous 
section and yields a close fit of the experimental data. 
Apparently, the stochastic model parameter Q is 
dependent on both material, stress level (i.e. peak 
stress and R) and the initial crack length. 

The results, obtained from the lognormal distributed 
crack length (LDCL) model, are comparable or superior 
in accuracy to those generated by the lognormal distrib- 
uted crack growth (LDCG) model of Spencer and 
Tang,’ Spencer et al.,” and Ennekingi6 that involved 
numerical solution of the Kolmogorov diffusion equa- 
tions to obtain the statistics of crack length. It has 
been pointed out by Ray and Tangirala17 that real-time 
solution of the partial differential equations in the 
Kolmogorov equations is not computationally feasible 
even on mainframe computers. In contrast, the LDCL 
model requires the solution of only a few algebraic 
identities which can be conveniently executed in real- 
time on a microcomputer. However, it should be noted 
that the Kolmogorov equations yield the conditional 
density as a function of time while the proposed LDCL 
model, in the present form, generates the two-parameter 
lognormal distribution function from the first two 
moments of crack length. The assumption of lognormal 
distribution of crack length is justified by experimental 
data. In addition, if the crack growth process is assumed 
to be perfectly correlated over a finite horizon of crack 
length, it is possible to model both crack length and 
crack growth rate as lognormal distributed. 

4 SUMMARY AND CONCLUSIONS 

The stochastic model of fatigue crack dynamics, 
presented in this paper, is based on the principle of 
Gauss-Markov processes and is formulated under the 
assumption that crack length is lognormal distributed 
instead of the more common assumption that crack 
growth rate is lognormal distributed. The standard 
deviation of crack length is obtained as a solution of 
algebraic identities that is computationally much faster 
than solving the Kolmogorov forward equation in the 
It8 integral setting or the extended Kalman filter 
equation in the Wiener integral setting. The proposed 
lognormal distributed crack length (LDCL) model has 
been verified with experimental fatigue crack growth 
data of 2024-T3 and 7075T6 aluminum alloys at 
different levels of constant amplitude load excitation. 
Extension of this model to load excitation of varying 
amplitude is the subject of current research. 

The probability distribution of (nonstationary) random 
crack length can be generated from the first two 
moments based on the assumption of lognormal distri- 
bution. This information suffices to determine, at a given 
level of confidence, the time-dependent remaining life of 
mechanical structures subjected to a specified antici- 
pated load profile. The stochastic damage information 
can be used in hypothesis testing algorithms to generate 
early warnings of impending failures in real-time and 
also for making dynamic decisions regarding plant 
operations and maintenance schedules. In essence, the 
increased speed of the proposed model for computation 
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of the statistics of fatigue crack length makes it ideally 
suited to real-time damage monitoring and failure 
prognostic applications. 

While the stochastic modeling approach, described 
here, focuses on the inherent material uncertainties, there 
are .two other major sources of uncertainties, namely, 
random loading effects and unknown initial conditions 
which have not been considered here. A unified model 
that accounts for all three primary sources of uncertain- 
ties in fatigue crack growth needs to be developed before 
practical applications become viable. 
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