
Stochastic optimal control under randomly varying distributed delays

NAN-CHYUAN TSAI² and ASOK RAY² ³

An output feedback control law is presented, hereafter called the linear quadratic
coupled delay compensator (LQCDC), for application to processes that are sub-
jected to randomly varying distributed delays. An example is future generation
aircraft, which are equipped with computer networks to serve as the communica-
tions link for the vehicle management system. The LQCDC is synthesized via
dynamic programming in the stochastic setting. A pair of discrete-time modi® ed
matrix Riccati equations and a pair of modi® ed matrix Lyapunov equations are
constructed by using lagrangian multipliers and the matrix minimum principle. The
performance cost is formulated as the conditional expectation of a quadratic func-
tional adjoined with an equality constraint involving the dynamics of the condi-
tional covariance of the closed-loop system state. Results of simulation experiments
are presented to demonstrate the e� cacy of the LQCDC for control of longitudinal
motion of an advanced aircraft.

1. Introduction

Computer networks are often employed in complex dynamic systems, such as
advanced aircraft, autonomous manufacturing and chemical plants, to interconnect
the spatially distributed subsystems or components (Ray 1987). Time-division-multi-
plexed networks such as ® bre distributed data interface protocols (Dykeman and
Bux 1988) are usually adequate for meeting the requirements of data rate, data
latency and reliability for information exchange, and have distinct advantages
over conventional point-to-point connections in terms of reduced wiring, ¯ exibility
of operations and evolutionary design. However, for real-time control applications,
the randomly varying distributed delays induced by the network could degrade the
system performance because the timely transfer of sensor and control signals from
one device to another is not guaranteed, and therefore these delays are sources of
potential instability (Halevi and Ray 1988, Ray and Halevi 1988). An application
example is future generation aircraft which are equipped with computer networks to
serve as the communications link for the vehicle management system. The commu-
nication and control system speci® cations are expected to have very stringent stan-
dards on safety and performance.

Liou and Ray (1991) proposed the synthesis of a stochastic regulator based on
the principles of dynamic programming and optimality. This control law follows the
structure of the standard linear quadratic regulator (LQR) and is formulated in the
presence of randomly varying delays from the controller to actuator under full state
feedback with no plant noise and disturbances; we will refer to this control structure
as the delay compensated linear quadratic regulator (DCLQR). Ray et al. (1993)
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formulated a minimum-variance state estimation ® lter to account for random delays
in the measurements based on the stipulation that the state vector can be replaced by
its estimate in this delay-compensated linear quadratic regulator. A control struc-
ture, called the delay compensated linear quadratic regulator. A control structure,
called the delay compensated linear quadratic gaussian (DCLQG), has been pro-
posed by Ray (1994) for the compensation of randomly varying distributed delays in
the stochastic setting. However, the certainty equivalence property (Bar-Shalom and
Tse 1974), which is valid for LQG, does not hold for DCLQG in general. Even
worse, if the plant state vector is replaced by its minimum variance estimate in the
optimal state feedback control law, then the resulting closed-loop control system,
namely DCLQG, is not guaranteed to retain its nominal stability.

Hyland and Bernstein (1984) proposed optimal projection equations for a ® xed
structure compensator in the continuous-time setting in the presence of additive
noise. Bernstein et al. (1986a) proposed a ® xed-structure sampled-data dynamic
compensator for systems that are subjected to computation delays in control signal
processing without and randomly varying delays such as those due to computer
communication networks. Bernstein and Haddad (1987) presented the concept of
optimal projection for discrete-time reduced-order dynamic compensation in the
presence of multiplicative white noise in the plant model and sensor data. The
controller and state estimator were coupled in the formulation of an optimal output
feedback law. The optimal projection technique was used to arrive at the coupled
structure of the reduced-order classical LQG problem. This approach, in fact,
implies that the separation between state estimation and state feedback control is
no longer valid, i.e. the certainty equivalence (Bar-Shalom and Tse 1974) breaks
down.

The main objective of this paper is to formulate a methodology for synthesis of
an optimal output feedback control law to compensate for the detrimental e� ects of
randomly varying distributed delays. The resulting controller is referred to as linear
quadratic coupled delay compensator (LQCDC) in which the state estimator and the
state feedback controller cannot be separated. The concept of simultaneous design of
the stochastic controller and state estimator is brought in to circumvent for the
problem of violation of the certainty equivalence principle. Furthermore, the e� ects
of the time skew due to mis-synchronization of the sampling instants of the
(possibly) non-collocated digital controller and sensor are compensated for as
well. Mean square stability of the stochastic control system has been established
based on the nominal models of plant dynamics and delay statistics. Simulation
results for longitudinal motion dynamics of an advanced aircraft are presented to
compare the proposed LQCDC with DCLQR (Liou and Ray 1991) and DCLQG
(Ray 1994). Although the modelling and analysis of uncertainties and the attendant
issues of robustness are not addressed in this paper, simulation results are presented
to illustrate the sensitivity of the LQCDC relative to probability distribution of the
random delays.

Apparently, no analytical methods are available to practising engineers for the
synthesis of control systems under randomly varying distributed delays. The work
reported in this paper is intended to serve as a step toward formulation of a control
synthesis methodology for dynamic processes that are subjected to randomly varying
distributed delays. The paper is organized into seven sections including the introduc-
tion: § 2 presents the pertinent assumptions. The discretized plant and measurement
models are established in § 3. The LQCDC law is proposed and proved in § 4. The
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design steps and their implications are brie¯ y described in § 5. Results of simulation
experiments under randomly varying distributed delays are presented in § 6 to
demonstrate the super performance of the LQCDC law relative to other control
laws. Finally, the paper is summarized and concluded in § 7, along with recommen-
dations for future research.

2. Pertinent assumptions

The pertinent assumptions needed to formulate the algorithm of the linear
quadratic coupled delay compensator (LQCDC) are delineated below. The under-
lying justi® cations are laid out in the paragraphs following each of these assump-
tions.

Assumption 1: The sensor and controller have the same sampling period T with a
skew ¢S between the sensor and controller sampling instants; ¢S is a very slowly
varying parameter to be periodically reset, and it is treated as a constant parameter.

As the clock rates for the sensor and controller computers are almost identical
with zero probability of being exactly identical, the skew ¢S varies quasi-statically.

Assumption 2: The delay ¢p in processing of the control signal is a constant.
Therefore, the gross time skew between the instants of sensor and control signal
generation, which is equal to the sum ¢ = ¢S + ¢p is also a constant. The processing
delay ¢p is set to zero without loss of generality.

The actual delay in the control signal processing is of the order of microseconds
in a high-speed control computer, whereas the sampling period T is at least of the
order of tens of milliseconds.

Assumption 3: The random delays from sensor to controller µk
sc and that from

controller to actuator tk are mutually independently and identically distributed
(i.i.d.), and each of them is white. Each of the induced delays has a priori known
statistics, and is bounded between 0 and T with probability 1. Therefore, the number
of sensor signals arriving at the controller terminal is 0, 1 or 2 during a controller
sampling period [kT, (k + 1) T ) ]. On the other hand, exactly one control signal
arrives at the actuator during a sampling period relative to the controller time frame.

This assumption follows the standard practice of network design (Ray 1987,
1994) in which the maximum data latency is constrained not to exceed the sampling
interval.

Assumption 4: In the sensor time frame, the plant disturbance, sensor noise and
binary measurement delay sequences {x s

k}, {t s
k}, and {zk}, respectively, are mutually

independent.

These assumptions are in line with the standard LQG problem and they represent
an approximation of the real situation for the mathematical tractability of control
systems analysis.
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Assumption 5: The sampler is ideal, and the digital-to-analogue conversion is
implemented via a zero-order-hold (ZOH) . The actuator operates as a continuous
device, i.e. the control input acts on the plant immediately after its arrival at the
actuator terminal.

This assumption is justi® ed in viewof the fact that the actuator is equipped with a
dedicated microprocessor which is sampled much more quickly (ten times or more,
for example) than the controller computer.

Assumption 6: The probability of data loss, due to noise in the communication
medium and protocol malfunctions, is zero.

The data communication network in future generation aircraft is expected to be
based on ® bre-optics in which the bit error rate is extremely small (10- 12 or less, for
example).

3. Discretized system modelling

The discrete-time frame k is based on the controller sampling instant instead of
the sensor sampling instant, except for certain speci® c cases. Consider a continuous-
time, linear, ® nite-dimensional plant model and the associated measurement model:

Çx(t) = a(t)x(t) + b(t)u(t) + g(t) x (t) (1)

y(t) = c(t)x( t) = t (t) (2)

where the plant state x( t) ÎR n, control u(t) ÎR n and measurement y(t) ÎR r;
matrices a(t) , b(t) , c(t) and g(t) are real deterministic with appropriate dimensions;
x (t) and t (t) are independent, zero-mean, white noise for the plant and sensor
models, respectively.

To distinguish from controller time frame, the superscript s is used to particularly
indicate the time instant based on the sensor time frame, i.e.

( )́ s
k º ( )́k- d (3)

where ( )́ is any arbitrary vector or matrix which may be hereafter referred to. The
normalized time skew d := ¢ /T where ¢ represents the time skew due to mis-syn-
chronization of sensor and controller sampling instants, and T is the sampling
period.

Two sets of input matrices {u
k
0, u

k
1} and {y k- 1

0 , y k- 1
1 } during the kth sensor’s

sampling period [kT - ¢, (k + 1) T - ¢) are de® ned as follows:

u k
0 = ò

(k+1- d ) T

kT+ tk
U ( (k + 1 - d ) T,¿)b(¿) d¿, if tk < (1 - d )T

0, if tk ³ (1 - d )T

ìïï
íïïî

(4a)

u
k
1 = ò

(k+1- d ) T

kT
U ( (k + 1 - d ) T,¿)b(¿) d¿ - u

k
0 (4b)
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y k
0 =

ò
(k+1) T

kT+tk
U ( (k + 1) T,¿)b(¿) d¿, if tk ³ (1 - d ) T

ò
(k+1) T

(k+1- d ) T
U ( (k + 1) T,¿)b(¿) d¿, if tk < (1 - d ) T

ìïïïï
íïïïïî

(4c)

y k
1 = ò

(k+1) T

(k+1- d ) T
U ( (k + 1) T,¿)b(¿) d¿ - y k

0 (4d)

U ( ,́ )́ is the state transition matrix. The random time epoch tk is the arrival instant of
control command uk at the actuator where the instant of the kth controller sampling
is set to be the time origin. That is, tk = 0 if the control command uk arrives exactly
at the kth controller sampling instant. Based on Assumption 2, the plant model and
its measurement based on sensor time frame now can be described as follows.

3.1. Plant model

xs
k+1 = U s

kxs
k + å

2

i=0

b k
i uk- i + x s

k (5a)

where

U s
k = U ( (k + 1 - d ) T , (k - d ) T) (5b)

b k
0 = u

k
0 (5c)

b k
1 = u k

1 + y k- 1
0 (5d)

b k
2 = y k- 1

1 (5e)

x s
k = ò

(k+1- d ) T

(k- d ) T
U ( (k + 1 - d ) T ,¿)g(¿) x (¿) d¿ (5 f )

U s
k is de® ned as the state transition matrix from the kth to the (k + 1)th sampling

instant in the sensor time frame; uk, uk- 1 and uk- 2 are the three consecutive control
commands applied during the time interval [(k - d ) T , (k + 1 - d ) T ) ; x s

k is the zero-
mean white discretized plant noise.

3.2. Measurement model
We have considered continuous-time processes with sampled data sensing

(Franklin et al. 1990) similar to what is practised in aircraft inertial navigational
system (INS) sensors and power and chemical plant instrumentation. In reality, the
standard deviation of the measurement noise is often reduced by sampled data
averaging but it can never be eliminated. The sampled measurements are modelled
in the following form regardless of whether the A/D device in the sensing systemuses
sample averaging (Bernstein et al. 1986a).

ys
k = cs

kxs
k + t s

k (6)

In (5) and (6) the noise vectors x s
k and t s

k are assumed to be zero-mean, mutually
independent, white gaussian and strictly stationary with symmetric covariances V1
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and V2, respectively. As usual, V1 is assumed to be non-negative de® nite and V2
positive de® nite, respectively. In addition, the random sequence {x s

k} or {t s
k} is

individually assumed to be independently identically distributed.
The sensor data to be used for generating the (k + 1)th control command,

denoted as zk, is subjected to binary random delays such that zk = ys
k or

zk = ys
k- 1, depending on whether the fresh sensor data or the previous data is to

be used for generation of uk+1. That is

zk = (1 - zk)ys
k + zkys

k- 1 (7)

where {zk} is the random delay sequence from sensor to controller with binary
distribution with the expected value

E[1 - zk] = ak (8)

It is noted that ak, in fact, represents the probability of timely arrival of fresh sensor
data, ys

k. With zk as the dynamic output feedback instead of ys
k, which is normally

used in the standard stochastic output feedback regulation problem, a linear delay
compensated state estimator is proposed:

x̂s
k+1 + L̂ kx̂s

k + K̂kzk + å
2

i=0

b k
i uk- i (9)

Remark 1: The plant state estimator in (9) is of full order. The rationale for a
full-order plant state estimator is that the sensor data are subjected to
communication network delays and noise in addition to the sensor noise. A
reduced-order estimator is not suitable because of direct feedback of the delayed
sensor data into the control signal. This is avoided by constructing a full-order
estimator. u

To compensate the random delays of control commands, the control law is
constructed to include the feedback of three past consecutive control signals.

uk = f̂ k
1 uk- 1 + f̂ k

2 uk- 2 + f̂ k
3 uk- 3 + F̂kx̂s

k = F̂k
aux̂kau (10a)

where

F̂k
au º [ f̂ k

1 f̂ k
2 f̂ k

3 F̂k] is the augmented control gain matrix (10b)

and

x̂k
au º [uT

k- 1 uT
k- 2 uT

k- 3 ( x̂s
k)

T]T is the augmented state estimate. (10c)

With the augmentation of the plant state to include state estimate and the three past
consecutive control commands, the closed-loop system under randomly varying
distributed delays is therefore established as follows.

3.3. Closed-loop model

~xk+1 =
~
Ak

~xk +
~
Gk

~
X k (11)

where
~xk = [(xs

k)T uT
k- 1 uT

k- 2 uT
k- 3 ( x̂s

k)T (12)
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~
Ak =

Ak
au + ¢k

A Bk
auF̂k

K̂kC
k
au + ¢k

C L̂ = z[ ] (13a)

Ak
au =

U s
k b k

1 b k
2 0

0 0 0 0

0 Im 0 0

0 0 Im 0

é
êêêêêë

ùúúúúúû
(13b)

Bk
au = [( b k

0)T Im 0 0]T (14)

Ck
au º [ck

0 ck
q1 ck

q2 ck
q3] (15a)

ck
0 º (1 - zk)c

s
k + zkcs

k- 1( U
s
k- 1)

- 1 (15b)

ck
q1 º - zkc

s
k- 1( U

s
k- 1)

- 1 b k- 1
0 (15c)

ck
q2 º - zkc

s
k- 1( U

s
k- 1)

- 1 b k- 1
1 (15d)

ck
q3 º - zkc

s
k- 1( U

s
k- 1)-

1 b k- 1
2 (15e)

L̂ = z = L̂k + ¢k
0 (16a)

¢k
0 = b k

0F̂k (16b)

¢k
A = Bk

au f̂ k
auP01 (17a)

P01 = [03m´n I3m] (17b)

f̂ k
au = [ f̂ k

1 f̂ k
2 f̂ k

3 ] (17c)

¢k
C = [0n ¢k

q1 ¢k
q2 ¢k

q3] (18a)

¢k
q1 = b k

1 + b k
0 f̂ k

1 (18b)

¢k
q2 = b k

2 + b k
0 f̂ k

2 (18c)

¢k
q3 = b k

0 f̂ k
3 (18d)

~
Gk =

In´n 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 gk
q1 gk

q2 gk
q3

é
êêêêêêêêë

ùúúúúúúúúû

(19a)

gk
q1 = - zkK̂kcs

k- 1( U
s
k- 1)

- 1 (19b)

gk
q2 = (1 - zk)K̂k (19c)
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gk
q3 = zkK̂k (19d)

~
X k = [( x s

k)
T ( x s

k- 1)
T ( t s

k)
T ( t s

k- 1)
T]T (20)

It is noted that the triplet (Ak
au,Bk

au,Ck
au) is nothing but the state-space representation

of the delayed system based on the sensor time frame. Thre noise sequence {~
X k} is

neither white nor Markov. If ¢k
A = 0 and ¢k

C = 0, the closed-loop system matrix
~
Ak

reduces to a linear quadratic guassian (LQG) model.
In this paper the linear quadratic random delay compensation law characterized

by {L̂ *
k,K̂*

k , (F̂k
au)*} is to be constructed to minimize the performance cost functional

~
Jk( L̂ k,K̂k,F̂k

au, ~
Zk- 1) = 1

2E[~xT
k

~
Rk

~xk| ~
Zk- 1] + E[ ~

J*
k+1(

~
Zk) | ~

Zk- 1] (21a)

with the terminal condition
~
J*

N( ~
ZN- 1) = 1

2E[~xT
N

~
RN

~xN| ~
ZN- 1] (21b)

where
~
J*

k ( ~
Zk- 1) º

~
Jk( L̂*

k,K̂*
k , (F̂k

au)*, ~
Zk- 1) (22)

~
Rk =

R1 0n´ (n+3m)

0(n+3m)´n (F̂k
au) 2F̂k

au

é
ë

ù
û

(23)

RN =
R 0n´ (n+3m)

0(n+3m)´n 0n+3m[ ] (24)

The superscript * is used to denote optimality;
~
Zk is the random delay history:

~
Zk º {zk,zk- 1, . . . ,z1; tk,tk- 1, . . . ,t1}; N is the time horizon over which the perfor-
mance is evaluated; R1 ³ 0 and R2 > 0 are the state deviation and control penalty
matrices, respectively, as k < N; R ³ 0 is the ® nal-stage state deviation matrix at
k = N. For the synthesis of the compensator triplet {L̂ k,K̂k,F̂k

au}, the estimation gain
matrix K̂k and the control gain matrix F̂k

au are identi® ed o� -line; and the open-loop
state transition matrix L̂ k of the stochastic state etimator is calculated on-line to take
advantage of all available recorded data.

Remark 2: As explained in Remark 1, there is no direct feedback of the
measurements in the feedback control law proposed in (10a), i.e. the direct
coupling matrix is zero in the control law. Therefore, the performance functional
in (21a) does not include the cross-weighting of the state and control vectors (see
equation (3.3) and Remark 4.3 of Hyland and Kapila (1995)). u

4. Formulation of the LQCDC law

If the augmented state transition matrix of the closed-loop system
~
Ak is stable

in the mean square sense, then the compensator {L̂ k,K̂k,F̂k
au} is mean-square

stabilizing. Therefore, attention is focused on the set of stabilizing and minimum
compensator:

Ŝk = {( L̂k,K̂k,F̂k
au) | ~

Ak is stable in mean square sense and {L̂ k,K̂k,F̂k
au} is minimal}

The following lemma for projective factorization (Bernstein et al. 1986b) is summar-
ized and required to prove Proposition 1.
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Lemma 1: Let ¿ ÎR nau´nau, then

¿2 = ¿ (25)

rank (¿) = nc (26)

if and only if there exist G and C ÎR nc´nau such that

GT C = ¿ (27)

C GT = Inc
(28)

Proof: For the proof, see Bernstein et al. (1986a,b).
Let G and C satisfying (27) and (28) be named as a projective factorization of ¿.

Furthermore, de® ne the set of contragradiently diagonalizing transformation (Rao
and Mitra 1971) as

~
D(Q,P) º {W ÎR n´n : W - 1Q W - Tand W TPW are diagonal}

It directly follows from Theorem 6.2.5 of Rao and Mitra (1971) that
~

D(Q,P) is
always non-empty if Q and P are both symmetric and non-negative de® nite. u

De® ne the conditional covariance matrix for zero-input regulation problems as

Qk = E[~xk
~xT

k | ~
Zk- 1] (29)

which has the dynamics presented in Lemma 2 below.

Lemma 2:

Qk+1 = E[ ~
AkQk

~
AT

k | ~
Zk] +

~
V k

eq, k = 1,2, . . . ,N - 1 (30)

where

~
V k

eq =

V1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0
~
V k

2

é
êêêêêêêêë

ùúúúúúúúúû

(31a)

~
V k

2 = K̂k{V2 + E[z2
k| ~

Zk]cs
k- 1( U

s
k- 1)

- 1V1[cs
k- 1( U

s
k- 1)

- 1]T}K̂T
k (31b)

Proof: It follows from (11) that

Qk+1 = E[ ~
Ak

~xk
~xT

k
~
AT

k | ~
Zk] + E[ ~

Ak
~xk

~
X T

k
~
GT

k | ~
Zk] + E[ ~

Gk
~
X k

~xT
k

~
AT

k | ~
Zk] + E[ ~

Gk
~
X k

~
X T

k
~
GT

k | ~
Zk]

(32)

As
~
Ak =

~
Ak( ~

Zk)

E[ ~
Ak

~xk
~xT

k
~
AT

k | ~
Zk] = E[ ~

AkE[~xk
~xT

k | ~
Zk] ~

AT
k | ~

Zk] (33)

From the closed-loop system model in (11), the delay data {zk,tk}provided by
~
Zk is

super¯ uous in the conditional expectation E[~xk
~xT

k | ~
Zk]. Therefore

Stochastic optimal control under delays 1187



E[ ~
Ak

~xk
~xT

k
~
AT

k | ~
Zk] = E[ ~

AkQk
~
AT

k | ~
Zk] (34)

For estimation process, randomly delayed measurement zk is available when
~
Zk has

occurred. Hence the plant state xs
k+1 and its estimation x̂s

k+1 are always uncorrelated
for given

~
Zk, i.e.

E[xs
k+1( x̂s

k+1)
T| ~

Zk] = E[xs
k+1| ~

Zk]E[( x̂s
k+1)

T| ~
Zk] (35)

Moreover, because the plant disturbance and sensor noise are both assumed to be
zero-mean, the noise cross-covariance between the plant state xs

k+1 and its estimation
x̂s

k+1 is zero. Similarly

E[um( x̂s
k+1)

T| ~
Zk] = E[um| ~

Zk]E[( x̂s
k+1)

T| ~
Zk] (36a)

E[um(xs
k+1)

T| ~
Zk] = E[um| ~

Zk]E[(xs
k+1)

T| ~
Zk] (36b)

where m = k, k = 1, k - 2. Equations (35) and (36) imply that the noise cross-covar-
iances in (32) are all zeros.

E[ ~
Ak

~xk
~
X T

k
~
GT

k | ~
Zk] = 0 (37)

Lastly, calculating E[ ~
Gk

~
X k

~
X T

k
~
GT

k | ~
Zk] yields

~
V k

eq. Equation (32) is reduced to
(30). u

The main results are now presented as Proposition 1 to provide an optimal
solution to the control problem under randomly varying delays.

Proposition 1: Let the random delay history, {t j,zj; j = 0, . . . ,k - 1}, be available
for synthesizing the control command uk and the optimal linear quadratic coupled
delay compensator ( LQCDC) triplet {L̂ *

k,K̂*
k , (F̂k

au)*}ÎŜk at the kth sensor
sampling interval. Then the optimal LQCDC, consisting of a linear modi® ed
dynamic output feedback controller in which the state estimator is embedded to
circumvent the randomly varying distributed delays, can be presented as follows.

For k = 0,1, . . . ,N - 1, there exist non-negative de® nite matrices, Qk
x,

^̂
Qk

x, Pk
x and^̂

Pk
x all with dimensions (n + 3m) ´ (n + 3m) such that the following state estimation law

and control law are formed.

State estimation law:

x̂s
k+1 = L̂ *

kx̂s
k + K̂*

kzk + å
2

i=0

b k
i uk- i (38)

Optimal control law:

uk = (F̂k
au)*x̂k

au (39)

where

L̂ *
k = C k( (A

k
au + ¢k

A) - Bk
au( R̂k

2s)
- 1P̂k

x0 - Q̂k
s ( V̂ k

2s)
- 1Ck

au]GT
k

- b k
0 F̂*

k - (¢k
C)*GT

k (40a)

(¢k
C)* = [0n b k

1 + b k
0 ( f̂ k

1 )* b k
2 + b k

0 ( f̂ k
2 )* b k

0 ( f̂ k
3 )*] (40b)
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K̂*
k = C kQ̂k

s ( V̂ k
2s)-

1 (41)

(F̂k
au)* = [F̂*

k ( f̂ k
1 )* ( f̂ k

2 )* ( f̂ k
3 )*] (42a)

F̂*
k = - ( R̂k

2s)
- 1P̂k

x0G
T
k (42b)

( f̂ k
1 )* = - ( R̂k

2s)
- 1P̂q1 (42c)

( f̂ k
2 )* = - ( R̂k

2s)
- 1P̂q2 (42d)

( f̂ k
3 )* = 0m´m (42e)

with the following matrix de® nitions:

V̂ k
2s = V k

2 + E[Ck
auQk

x(Ck
au)T] (43a)

V k
2 = V2 + (1 - ak)cs

k- 1( U
s
k- 1)-

1V1[cs
k- 1( U

s
k- 1)-

1]T (43b)

Q̂k
s = E{[Ak

au + ¢k
A - GT

k+1(¢
k
C)*]Qk

x(Ck
au)T} (44)

R̂k
2s = R2 + E[(Bk

au)TQk
xBk

au] (45)

P̂k
xs = E[(Bk

au)TPk
xAk

au] (46a)

P̂k
xs can be partitioned into four submatrices of dimension m ´ n, m ´ m, m ´ m and

m ´ m as follows:

Pk
xs = [P̂k

0 P̂k
q1 P̂k

q2 0m´m] (46b)

based on which P̂k
x0 in (42b) is de® ned as

P̂k
x0 = [P̂k

0 0m´3m] (47)

where Qk
x,

^̂
Qk

x, Pk
x and

^̂
Pk

x satisfy the following pairs of modi® ed matrix Riccati and
Lyapunov equations.

Qk+1
x = E(Ak

au + ¢k
A)Qk

x(Ak
au + ¢k

A)T| ~
Zk] + V k

x + ¿k
^

^̂
Qk+1

x (¿k )̂T

- Q̂k
s ( V̂ k

2s)-
1(Q̂k

s )T - GT
k+1E[¢k

CQk
x(¢k

C)T| ~
Zk]Gk+1

- Q̂k
s ( V̂ k

2s)-
1E[Ck

auQk
x(¢k

C)T| ~
Zk]Gk+1

- {Q̂k
s ( V̂ k

2s)-
1E[Ck

auQk
x(¢k

C)T| ~
Zk]Gk+1}T (48)
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^̂
Qk+1

x = E{[Ak
au + ¢k

A - Bk
au( R̂k

2s)-
1P̂k

x0]¿k- 1
^̂
Qk

x¿T
k- 1[Ak

au + ¢k
A - Bk

au( R̂k
2s)-

1P̂k
x0]T| ~

Zk}

+ Q̂k
s ( V̂ k

2s)-
1(Q̂k

s )T + GT
k+1E[¢k

CQk
x(¢k

C)T| ~
Zk]Gk+1

+ Q̂k
s ( V̂ k

2s)
- 1E[Ck

auQk
x(¢k

C)T| ~
Zk]Gk+1

+ {Q̂k
s ( V̂ k

2s)-
1E[Ck

auQk
x(¢k

C)T| ~
Zk]Gk+1}T (49)

Pk+1
x = E[(Ak

au)TPk
xAk

au| ~
Zk] + Rk

x + (¿k- 1
^ )T^̂

Pk- 1
x ¿k- 1

^

- ( P̂k
xs)

T( R̂k
xs)

- 1P̂k
xs (50)

^̂
Pk- 1

x = E{[Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s)-
1Ck

au - GT
k+1¢k

C]T¿T
k

^̂
Pk

x¿k

´ [Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s)-
1Ck

au - GT
k+1¢k

C]| ~
Zk}+ (P̂k

x0)
T( R̂k

2s)-
1P̂k

x0 (51)

where

Rk
x =

R1 0n´3m

03m´n 03m[ ] (52)

V k
x =

V1 0n´3m

03m´n 03m[ ] (53)

¿k
^ = In´3m - ¿k (54)

and ¿k is the optimal projection matrix, de® ned as

¿k = GT
k+1 C k (55)

with the factorization
¿k = W kIx W - 1

k (56a)

Ix =
In 0n´3m

03m´n 03m´3m[ ] (56b)

for some W k Î ~
D(

^̂
Qk+1

x , ^̂
Pk

x) such that W - 1
k (

^̂
Qk+1

x
^̂
Pk

x) W k is diagonal.

Proof:

(1) Create the langrangian to be minimized. By applying the conventional
minimization method using N lagrangian multipliers Pk 0 £ k £ N - 1. we de® ne
lagrangian z k, 0 £ k £ N- 1, by adjoining the following equality constraint
obtained from Lemma 2 to the performance cost functional, as follows:

z k(Qk,Qk+1, . . . ,QN; Pk,Pk+1, . . . ,PN- 1; L̂k,K̂k, F̂k
au, ~

Zk)

= 1
2 tr{Qk

~
Rk + (Qk+1 - E[ ~

AkQk
~
AT

k | ~
Zk] +

~
V k

eq)Pk}
+ E[ z *

k+1(Qk+1,Qk+2, . . . ,QN; Pk+1,Pk+2, . . . ,PN- 1;
~
Zk+1) | ~

Zk],
0 £ k £ N - 1 (57a)

1190 N.-C. Tsai and A. Ray



with the terminal condition

z *
N(QN) = QN

~
R (57b)

where

z *
k(Qk,Qk+1, . . . ,QN; Pk,Pk+1, . . . ,PN- 1;

~
Zk)

= z *
k(Qk,Qk+1, . . . ,QN; Pk,Pk+1, . . . ,PN- 1; L̂ *

k,K̂*
k , (F̂k

au)*;
~
Zk) ,

0 £ k £ N - 1 (58)

Gor simplicity and consistency, Qk, Pk and
~
V k

eq are partitioned into
(n + 3m) ´ (n + 3m) , (n + 3m) ´ n and n ´ n submatrices, respectively, as follows:

Qk = [ Qk
x Qk

xq

(Qk
xq)

T Qk
q ] (59)

Pk = [ Pk
x Pk

xq

(Pk
xq)

T Pk
q ] (60)

~
V k

eq =
V k

x 0(n´3m)´n

0(n´3m)´n
~
V k

2[ ] (61)

(2) Create the projection equations. As the state estimator is designed to minimize
the performance index z k, the derivative of z k with respect to the estimator matrix "̂k
must be equal to zero as a necessary condition. For a linear state estimator, the
estimator matrix "̂k is restricted and formulated in the following form based on the
plant dynamic model in (11):

"̂k = [K̂kC
k
au + ¢k

C L̂ = z ] (62)

To synthesize the optimal linear state estimator, the derivatives of z k with respect to
the closed-loop transition matrix L̂ = z and the estimation gain matrix K̂k (which has
been assumed to be synthesized o� -line) in expectation are both forced to be equal
to zero. That is ¶z k /¶"̂k = 0, ¶z k /¶L̂ = z = 0 and E[¶z k /¶K̂k] = 0. In the matrix
expansion

Pk
q( L̂ k

= z )*(Qk
xq)

T + (Pk
xq)

T(Ak
au + ¢k

A)Qk
x + (Pk

xq)
TBk

auF̂k(Q
k
xq)

T

+ Pk
q(K̂*

k Ck
au + ¢k

C)Qk
x = 0 (63)

(Pk
xq)

T(Ak
au + ¢k

A)Qk
xq + (Pk

xq)
TBk

auF̂kQk
q + Pk

q( L̂ k
= z )*Qk

q + Pk
q(K̂*

k Ck
au + ¢k

C)Qk
x = 0

(64)

E{( Pk
xq)

T(Ak
au + ¢k

A)Qk
x(Ck

au)T + (Pk
xq)

TBk
auFk(Qk

xq)
T(Ck

au)T

+ Pk
q L̂ k

= z (Q
k
xq)

T(Ck
au)T + Pk

qK̂*
k [V k

2 + Ck
auQk

x(Ck
au)T] + Pk

q¢k
CQk

x(Ck
au)T}= 0 (65)

Similarly, on the control side, after taking matrix derivatives on z k with respect to F̂*
k

and ( f̂ k
au)*, 0 £ k £ N - 1, by the matrix minimum principle and then setting their
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expected values to zero, respectively, E[¶z k /¶F̂k] = 0 and E[¶z k /¶f̂ k
au] = 0 can be

described together in a single matrix equation as follows:

E{ [(Bk
au)TPk

xBk
au + R2][F̂*

k ( f̂ k
au)*][ Qk

q (Qk
xq)

TPT
01

P01Qk
xq P01Qk

xPT
01 ]

+ (Bk
au)TPk

xAk
au[Qk

xq Qk
xPT

01] + (Bk
au)TPk

xq[ L̂ k= z K̂kCk
au + ¢k

C]

´[ Qk
q (Qk

xq)
TPT

01

Qk
xq Qk

xPT
01 ]} = 0 (66)

(3) Establish optimal gain relations of L̂ *
k, K̂*

k , F̂*
k and ( f̂ k

au)*: It follows from (64)
that

( L̂ k
= z )* = C k(A

k
au + ¢k

A)GT
k + C kBk

auF̂k - (K̂kCk
au + ¢k

C)GT
k (67)

where Gk and C k are a pair of projective factors (Bernstein and Haddad 1987)
de® ned as follows:

Gk = (Qk
q)- 1(Qk

xq)
T (68a)

C k = - (Pk
q)- 1(Pk

xq)
T (68b)

In addition, de® ne

Qk
x = Qk

x - Q̂k
x (69a)

Q̂k
x = Qk

xq(Q
k
q )- 1(Qk

xq)
T (69b)

Equation (41) is obtained by substituting (67) into (65). Applying (63) and (64) to
(66) yields

E[(Bk
au)TPk

xBk
au + R2][F̂*

k ( f̂ k
au)*][ Qk

q (Qk
xq)

TPT
01

P01Q
k
xq P01Q

k
xPT

01 ]
= - E[(Bk

au)TPk
xAk

au[Qk
xq Qk

xPT
01] (70)

where

Pk
x = Pk

x - ^̂
Pk

x (71a)

P̂k
x = Pk

xq(P
k
q)- 1(Pk

xq)
T (71b)

As the last m columns of Ak
au are zero, from (70) we must have ( f̂ k

3 )* = 0m. Let

( f̂ k
au)* = - ( R̂k

2s)
- 1[P̂k

q1 P̂k
q2 0m] (72)

then from (70)

F̂*
k = - ( R̂k

2s)-
1P̂k

x0G
T
k (73)
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where
P̂k

x0 = E[(Bk
au)TPk

x(Ak
au + ¢k

A) ] + R2( f̂ k
au)*P01 (74)

Substituting (72) into (74) yields (47). The gain relations in (40) and (42) are con-
structed.

(4) Create two pairs of modi® ed matrix Riccati and Lyapunov equations. After
taking derivatives of z k with respect to Pk and Qk and by setting them to be zero

¶z k

¶Pk
= 0: Qk+1 = E[ ~

AkQk
~
AT

k | ~
Zk] +

~
V k

eq (75)

¶z k

¶Qk
= 0: Pk+1 = E[ ~

AT
k Pk

~
Ak| ~

Zk] +
~
Rk (76)

Expansion of (75) and (76) yields

E{[Ak
au + ¢k

A - ( R̂k
2s)

- 1P̂k
x0]Q̂k

x[Ak
au + ¢k

A - ( R̂k
2s)

- 1P̂k
x0]T| ~

Zk}

+ E[(Ak
au + ¢k

A)Qk
x(Ak

au + ¢k
A)T| ~

Zk] + V k
x - Qk+1

x - Q̂k+1
x = 0 (77a)

{E{[Ak
au + ¢k

A - ( R̂k
2s)-

1P̂k
x0]Q̂k

x[Ak
au + ¢k

A - ( R̂k
2s)-

1P̂k
x0]T| ~

Zk}

+ {Q̂k
s ( V̂ k

2s)
- 1E[Ck

auQk
x(¢k

C)T| ~
Zk]( C - R

k )T}T

+ E[(Ak
au + ¢k

A)Qk
x(¢k

C)T| ~
Zk]( C - R

k )T + Q̂k
s ( V̂ k

2s)-
1(Q̂k

s )T}C T
k - Qk+1

xq = 0 (77b)

C k{E{[Ak
au + ¢k

A - ( R̂k
2s)-

1P̂k
x0]Q̂k

x[Ak
au + ¢k

A - ( R̂k
2s) -

1P̂k
x0]T| ~

Zk}

+ C - R
k E[¢k

CQk
x(¢k

C)T| ~
Zk]( C - R

k )T + Q̂k
s ( V̂ k

2s)-
1E[Ck

auQk
x(¢k

C)T| ~
Zk]( C - R

k )T

+ {Q̂k
s ( V̂ k

2s)-
1E[Ck

auQk
x(¢k

C) T| ~
Zk]( C - R

k )T}T + Q̂k
s ( V̂ k

2s)-
1(Q̂k

s )T}C T
k - Qk+1

xq = 0 (77c)

E[(Ak
au + ¢k

A)TPk
x(Ak

au + ¢k
A) | ~

Zk] + E{[Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s)-
1Ck

au - C - R
k ¢k

C]TP̂k
x

´ [Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s)-
1Ck

au - C - R
k ¢k

C]| ~
Zk}+ R

« k
x - Pk- 1

x - P̂k- 1
x = 0 (78a)

{E{[Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s)-
1Ck

au - C - R
k ¢k

C]TP̂k
x

´ [Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s)-
1Ck

au - C - R
k ¢k

C]| ~
Zk}

+ (P̂k
x0)

T( R̂k
2s)-

1P̂k
x0}GT

k + Pk- 1
xq = 0 (78b)

Gk{E{[Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s)
- 1Ck

au - C - R
k ¢k

C]TP̂k
x

´ [Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s) -
1Ck

au - C - R
k ¢k

C]| ~
Zk}

+ (P̂k
x0)

T( R̂k
2s)-

1P̂k
x0}GT

k - Pk- 1
xq = 0 (78c)
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with the matrix de® nitions

C k C - R
k = In (79)

R
«k

x =
R1 0n´3m

03m´n ( f̂ k
au) 2 f̂ k

au

é
ë

ù
û

(80)

Let
^̂
Qk+1

x = E{[Ak
au + ¢k

A - Bk
au( R̂k

2s)-
1P̂k

x0] ^̂Qk
x ´ [Ak

au + ¢k
A - Bk

au( R̂k
2s)-

1P̂k
x0]T| ~

Zk}

+ C - R
k E[¢k

CQk
x( k

C) - T| ~
Zk]( C - R

k )T + Q̂k
s ( V̂ k

2s) -
1E[Ck

auQk
x(¢k

C) - T| ~
Zk]( C - R

k )T

+ {Q̂k
s ( V̂ k

2s) -
1E[Ck

auQk
x(¢k

C) - T| ~
Zk]( C - R

k ) T}T + Q̂k
s ( V̂ k

2s)-
1(Q̂k

s ) - T (81)

and
^̂
Pk- 1

x = E{[Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s) -
1Ck

au - C - R
k ¢k

C]- TP̂k
x

´ [Ak
au + ¢k

A - Q̂k
s ( V̂ k

2s) -
1Ck

au - C - R
k ¢k

C]| ~
Zk}+ (P̂k

x0)
T( R̂k

2s) -
1P̂k

x0 (82)

By substituting (67) into (65), a relation between (77b) and (77c) is established as
follows:

C kQ
k+1
xq = Qk+1

q (83)

Hence, C kG- T
k+1 = In. From Lemma 1, ¿2

k = ¿k by de® ning the projection matrix
¿k = GT

k+1 C k. Moreover, the following equalities always hold.

¿kQ̂k+1
x ¿T

k = ¿kQ̂k+1
x = Q̂k+1

x ¿T
k = Q̂k+1

x (84a)

¿T
k P̂k

x¿k = ¿T
k P̂k

x = P̂k
x¿k = P̂k

x (84b)

It follows from (77b) that by applying (81) and (83)

¿k(
^̂
Qk+1

x - Q̂k+1
x ) C T

k Gk+1 = 0 (85)

Equation (85), via application of (84a), becomes

Q̂k+1
x = ¿kQk+1

x ¿T
k (86)

Similarly, derived from (78b), a dual result ends up with

P̂k
x = ¿T

k
^̂
Pk

x¿k (87)

Substituting (86) and (87) into (81) and (82), respectively, yields (49) and (51).
Finally, successive application of (86) and the calculation of

(77a) + GT
k+1 C k(77b)Gk+1 - (77b)Gk+1 - {(77b)Gk+1}T

yields (48). Similarly, successive application of (72) and (87) and calculation of
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(78a) + C T
k Gk+1(78b) C k - (78b) C k - {(78b) C k}T

yields (50). Thus the two pairs of modi® ed matrix Riccati and Lyapunov recursions
in (48) ± (51) are all established.

(5) Establish the eigenprojection. It follows from Lemma 1 that rank (¿k) = n. As
¿k is idempotent and has rank n, there exists some modal matrix Sk such that

¿k = SkIxS- 1
k (88)

It follows from (84a) or (84b) that

¿k = Q̂k+1
x P̂k

x(Q̂k+1
x P̂k

x) # (89)

where # indicates the general group matrix inverse (Rao and Mitra 1971). For^̂
Qk+1

x and
^̂
Pk

x are both symmetric and non-negative de® nite, there exists some
W k Î ~

D(
^̂
Qk+1

x , ^̂
Pk

x) such that Dk
Q = W - 1

k
^̂
Qk+1

x W - T
k and Dk

P = W T
k
^̂
Pk

x W k are diagonal.
Therefore

^̂
Qk+1

x
^̂
Pk

x = W kDk
QDk

P W - 1
k (90)

Substituting (86), (87), (88) and (90) into (89) yields

¿k = HkH
#
k (91a)

where

Hk = SkIx(S- 1
k W k)D

k
Q(S- 1

k W k) - TIx(S- 1
k W k) - TDk

P(S- 1
k W k) - 1IxS- 1

k (91b)

Let Sk = W k, then
¿k = HkH#

k = SkIxS- 1
k = W kIx W - 1

k (92)

The factorization of the projection matrix ¿k is accomplished. The proposition is
proved. u

Remark 3: The optimal projection equations (48) ± (51) become similar in
structure to equations (4.9) ± (4.12) of Haddad and Kapila (1995) in the absence of
random delays, i.e. if the conditional expectation operator E[ ´| ´ ] is taken out.
Instead of the pair (Qk

x,
^̂
Qk

x) as used in our paper, Haddad and Kapila (1995)
have used an equivalent form of the pair (Qk

x, Q̂k
x) . The relationship, via a

transformation, between Q̂k
x and

^̂
Qk

x is stated in (86) where the transformation
matrix ¿k has rank equal to n. Similarly, the transformation between P̂k

x and
^̂
Pk

x is
given in (87) by duality. The tank conditions of the two Lyapunov matrices are

rank(
^̂
Qk

x) = n, rank (
^̂
Pk

x) = n

5. Controller design procedure and implications

So that the structure of each design iteration is satis® ed and remains tractable, we
present a systematic procedure for sequentially re® ning estimates of the optimal
projection and synthesizing the steady-state LQCDC gain matrix for linear time-
invariant systems that are excited by wide sense stationary noise. The design steps
are as follows.

Stochastic optimal control under delays 1195



Step 1. Let the projection matrix ¿0 = In+3m and its factorization factor
G0 = [In 0n´3m] to obtain a set of starting values of control and estimation
gains (F̂0

au,K̂0) after a preset convergence tolerance is achieved such that the
initial design of LQCDC is set as close as to the full-order dynamic output
feedback compensator. Meanwhile, the pair of non-negative de® nite
matrices (Q0

x,P0
x) is simultaneously found by iteration of the pair of mod-

i® ed matrix Riccati equations.

Step 2. Using (F̂0
au,K̂0) from step 1, the starting values of (

^̂
Q0

x,
^̂
P0

x) are thus set by
iteration of the pair of modi® ed matrix Lyapunov equations.

Step 3. Establish steady-state projection matrix ¿s. Applying the procedure of
constructing the projection matrix ¿k described in the last section, and the
pair of modi® ed matrix Lyapunov recursions of (

^̂
Qk

x,
^̂
Pk

x) , the steady-state
projection matrix ¿s is uniquely determined. So is the steady-state pair
(
^̂
Q s

x, ^̂
Ps

x) .

Step 4. The steady-state values of LQCDC gains (F̂s
au,K̂s) and estimator transition

matrix L̂ s are ® nally synthesized by convergent recursion of (Qk
x,Pk

x) once
the steady state projection matrix, ¿s, is employed. The steady state pair
(Qs

x,Ps
x) is obtained at the same time.

Details of the control synthesis procedure and the design implications are given
in § 4.3 of Tsai (1995). The motivation and implied meaning of each step are stated
below.

As the optimal projection matrix of LQCDC becomes oblique for the state
estimation problem, the initial projection matrix ¿0 = In+3m is selected so that the
induced steady-state projection matrix is modi® ed to be close to the full-order case
through the convergence of the pair of modi® ed matrix Lyapunov recursion of
(
^̂
Qk

x, ^̂Pk
x) . The full-order projection matrix thus becomes a special case in which no

modi® cation of the initial projection matrix is needed. The only purpose of step 2 is
to prepare the initial values of (

^̂
Qk

x.
^̂
Pk

x) such that its recursion and the steady-state
projection matrix in step 3 converges quickly without having to start from zeros. For
numerical sensitivity of ® nding eigenvalues and eigenvectors of

^̂
Qk+1

x
^̂
Pk

x, (
^̂
Qk

x, ^̂Pk
x) is

made to converge as smoothly and quickly as possible. During the procedure of
establishing projection matrix in step 3, it is also noted that the suggested approx-
imation of the projection matrix described in (42) is only used for faster and
smoother convergence of the recursion of the pair (

^̂
Qk

x,
^̂
Pk

x) . When the matrix
g k £ I3m becomes su� ciently small, it is dropped o� ® nally. In other words, (34) is
the ® nal solution of the steady-state projection matrix. This implies that the eigen-
spaces of

^̂
Q s

x,
^̂
Ps

x associated with the 3m smallest eigenvalues are deleted. By inspect-
ing the sensor output with binary random delay zk through an estimation gain,
K̂*

k = C kQ̂
k
s V̂ k

2s, as the state estimator input, i.e. the second term in the equation

x̂s
k+1 = L̂ kx̂s

k + K̂kzk + å
2

i=0

b k
i uk- i (93)
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it is noted that the state estimator input K̂kzk is annihilated unless it belongs to the
subspace N (̂ C k) where N and ^ denote null space and orthogonal compliment
space, respectively (Kailath 1980). As the equality N (̂ C k) = R( C T

k ) always holds,
where R denotes the range space and ¿T

k = C T
k Gk+1, R(¿T

k ) represents the estimation
subspace of LQCDC. On the control side, the ® rst term of the plant input

uk = ( R̂k
2s)

- 1Pk
x0G

T
k x̂s

k + f̂ k
1 uk- 1 + f̂ k

2 uk- 2 (94)

must belong to the range space of GT
k , or R(¿k) , which represents the control sub-

space of LQCDC instead. Equivalently, the column and row spaces of GT
k and C k,

factored from the projection matrix, respectively, constitute the control and estima-
tion subspaces and jointly comprises the projection transformation by ¿k = GT

k+1 C k.
This also illustrates the signi® cance of the eigenvalues of

^̂
Q s

x
^̂
Ps

x as the natural meas-
ures of the relative importance of the various eigenspaces in the optimal projection.
Furthermore, because

^̂
Qk+1

x and
^̂
Pk

x are balanced by means of the transformation
W k Î ~

D
^̂
Qk+1

x , ^̂
Pk

x) , it follows that W L
k

^̂
Qk+1

x
^̂
Pk

x W R
k is diagonal. Hence,

^̂
Qk+1

x
^̂
Pk

x is semi-
simple, i.e. the geometric multiplicity of each eigenvalue of

^̂
Qk+1

x
^̂
Pk

x is always equal to
unity. The eigenvalues of

^̂
Qk+1

x
^̂
Pk

x are always real and non-negative because
Dk

QP = Dk
QDk

P holds, where Dk
Q º W L

k
^̂
Qk=1

x ( W L
k )T and Dk

P º ( W R
k ) T ^̂

PW R
k . The ® nal

step, step 4, is made to ® nd the steady-state LQCDC by using the same procedure
as the synthesizing LQG as usual with a ® xed projection matrix which is not the
identity matrix, in general.

6. Simulation of a ¯ ight control system

This section presents simulation experiments of an application example that
utilizes the LQCDC technique for the control of the longitudinal motion of an
advanced aircraft where the sensor and actuator signals are subjected to randomly
varying delays. The preformance of the LQCDC control law is compared with those
of DCLQR (Liou and Ray 1991a, b) and DCLQG (Ray 1994) for the compensation
of randomly varying distributed delays. The control laws were synthesized in the
MATLAB environment on a Pentium. The following notations are used in the
simulation example after discretization of the continuous-time linear time-invariant
plant model.

c denotes the output matrix; V1 and V2 denote the covariances of zero-mean
plant disturbance and zero-mean sensor noise, respectively; R1 and R2 are the state
deviation and cost penalty matrices orderly; R dictates the state deviation matrix at
® nal stage, i.e. when k = N. The plant state vector and its estimate are, respectively,
denoted as xs

k and x̂s
k at the kth sensor sampling period.

The longitudinal motion of the aircraft under consideration is characterized by
the pitch, pitch rate, and the velocity components along the X-axis and the Y -axis of
the aircraft. The X-axis is chosen to coincide with the longitudinal axis when the
aircraft performs a stationary horizontal ¯ ight. The control variables and system
inputs for this motion are the engine thrust and the elevator de¯ ection, whereas the
controlled variables, system outputs, are the speed along the X-axis and the pitch.
From the inertial and aerodynamic laws governing the motion of the aircraft (Nelson
1989), a linearized longitudinal equations of motion around the nominal point which
consists of horizontal ¯ ight with constant speed can be established, with contamina-
tion of the white zero-mean plant disturbance and sensor noise.
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Let

xº [UT
X UT

Y zT ¹T]T and u = [ H T sT]T

as the state and input vectors, respectively, where UX is the incremental velocity in
m/s along the X-axis of aircraft, UY is the velocity in m/s along the Y -axis, of the
aircraft, z is the pitch in rad and ¹ is the pitch rate in rad/s; H is the incremental
engine thrust in N and s is the elevator de¯ ection in rad. The numerical continuous-
time system and input matrices are given as follows:

a =

- 1.580´ 10- 2 2.633´ 10- 2 - 9.810 0

- 1.571´ 10- 1 - 1.030 0 1.205´ 102

0 0 0 1

5.274´ 10- 4 - 1.652´ 10- 2 0 - 1.466

é
êêêêêë

ùúúúúúû
,

b =

6.056´- 4 0

0 - 9.496

0 0

0 - 5.556

é
êêêêêë

ùúúúúúû
,

c =
1 0 0 0

0 0 1 0[ ]
The sampling time in this example is chosen as T = 0.025s. Assuming that a devia-
tion of 10m/s in the slight speed along the X-axis of aircraft is considered to be
unacceptable; a deviation of 0.2 rad in the pitch and a deviation of 500N in the
engine thrust are about as acceptable as a deviation of 0.2 rad in the elevator de¯ ec-
tion. This leads to the construction of the following weighting matrices R1 and R2
for state deviation and control input vectors, respectively:

R1 =

5 ´ 10- 1 0 0 0

0 0 0 0

0 0 1.25 ´ 103 0

0 0 0 0

é
êêêêêë

ùúúúúúû
, R2 =

4 ´ 10- 9 0

0 2.5 ´ 10- 2[ ]
The other matrices needed for the synthesis of the LQCDC law are

V1 = diag (6.25 ´ 10- 2,6.25 ´ 10- 2,3.5156´ 10- 6,6.25 ´ 10- 14)

V2 = diag (6.25 ´ 10- 4,6.25 ´ 10- 8) ,
R = 04´4

The following initial conditions for the perturbed plant state and the unperturbed
plant state estimate are prescribed in the sensor time frame to obtain the transient
responses:

xs
0 = [50.0 0 0.5 0]T and x̂s

0 = [0 0 0 0]T
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Note that the plant initial condition has been perturbed from the equilibrium point
(i.e. the zero state) by 50m/s in the indremental velocity UX along the X -axis and by
0.5rad in the pitch angle z. These perturbations are equivalent to having impulse
response in the respective variables at time zero. Extensive simulation experiments
were conducted with a wide range of parameters respresenting the statistics of net-
work-induced delays, plant noise, sensor noise and the skew ¢ as well as with
di� erent initial conditions for the plant model and the state estimation ® lter. Some
of the results are summarized below and plotted in Figs 1 and 2.

Figure 1 shows the transient response of the incremental engine thrust under the
three control laws, LQCDC, DCLQG amd DCLQR. In general, for output feedback
in the presence of noise, the performance of LQCDC is superior (in terms of faster
response) to that of DCLQG because the composite design of DCLQR preserves the
optimality of the closed loop system via coupled estimation and feedback control.
However, the performance of LQCDC with full state feedback is not superior to that
of DCLQR because DCLQR generates the best performance provided that there is
no plant disturbance and the full plant state is available. The coupled design of the
controller and state estimator yields the stochastic optimal performance. For the
time skew ¢ = T and time horizon N = 200, the performance cost of LQCDC was
25.6281 (´200) and that of DCLQG goes up to 30.9176 (´200) .

In the standard LQR, the control penalty matrix R2 plays an esential role for
placing the poles of the closed-loop system; it also indicates how fast the plant states
are regulated to zeros. In other words, with large R2 a conservative action is expected
to be taken so that only unstable poles are moved with slow regulation and relatively
poor performance since the control energy is heavily penalized. Figure 2 shows a
comparison to demonstrate that similar results are obtained by LQCDC. With total
time skew ® xed at 0.25T , where T is the sampling period, the cost penalty matrix R2
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is replaced by g cR2 to inspect the e� ect of the weighting factor g c. As expected, it is
found that the performance is indeed degraded as g c is increased. Although the poles
of the closed-loop system show no obvious evidence that LQCDC has the same
behaviour as LQR for pole allocation.

For di� erent delay statistics, LQCDC appears to be robust in stability and
performance. Results for the following three di� erent probability distribution func-
tions (PDFs) are demonstrated:

Fd0(q) = [1 - exp (8.0q2 /T2) ] /[1 - exp (- 8.0) ]
Fd1(q) = [1 - exp (- 80q2 /T2) ]
Fd2(q) = exp (- 16(1 - q/T2) ]

üïï
ýïïþ

, for 0 < q < T (48)

The PDF Fd0 represents the most likely case in network-induced delay tra� c with
approximate 0.25T as the delay that corresponds to the peak value of probability
density function (p.d.f.). The PDF Fd1 represents a delay tra� c with smaller variance
and lower expected value than Fd0. It implies that the problem of random delays in
the tra� c is greatly alleviated. Fd2 represents a more severe case of random delay
whose lowest limit is 0.4T and the expected value is approximately located at 0.8T .
Fig. 2 shows the transients of normal speed (along the Y -axis) to demonstrate the
impact of the delay statistic on robust stability and performance of LQCDC. As
described above, LQCDC has the best performance for delay statistics Fd1 which has
a relatively less serious random delay problem. Nevertheless, even for the worst delay
statistics Fd2 LQCDC has an excellent performance with each plant state continu-
ously exhibiting small oscillations and retaijing fast zero regulation. It has also
demonstrated the deterioration of the performance when the delay problem is
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worse. Apparently, LQCDC remains stable no matter how severely the delay statis-
tics are perturbed. This is a subject of further analytical research.

7. Summary and conclusions

The linear quadratic coupled delay compensator (LQCDC) presented in this
paper is potentially applicable to network-based distributed control systems that
are subjected to random delays between the sensor and controller and between the
controller and actuator. The LQCDC algorithm is shown to be stochasitically opti-
mal. Although a linear stochastic control problem can be solved as two separate
optimal control and optimal estimation problems in the deterministic setting, this is
not true in general for stochastic systems especially under the in¯ uence of random
delays. In that case, the controller and estimator must be synthesized simultaneously
as a single composite compensator. In contrast to the conventional LQG problem,
the two pairs of modi® ed matrix Riccati and matrix Lyapunov equations for
LQCDC are coupled by a projection matrix whose column and row spaces are,
respectively, the control and estimation subspaces. When the global optimality is
achieved, the controller and the state estimator are simultaneously determined by its
eigenprojection. Results of simulation experiments are presented to demonstrate
e� cacy of the LQCDC for control of longitudinal motion of an advanced aircraft
in contrast to other techniques. It is also shown that LQCDC is not very sensitive to
the small changes in the delay statistics.
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