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Abstract

This paper presents a stochastic model of fatigue-induced crack propagation in metallic materials. The crack growth

rate predicted by the model is guaranteed to be non-negative. The model structure is built upon the underlying principle

of Karhunen±Lo�eve expansion and does not require solutions of stochastic di�erential equations in either Wiener in-

tegral or Itô integral setting. As such this crack propagation model can be readily adapted to damage monitoring and

remaining life prediction of stressed structures. The model results have been veri®ed by comparison with experimental

data of time-dependent fatigue crack statistics for 2024-T3 and 7075-T6 aluminum alloys. Ó 1998 Elsevier Science

Inc. All rights reserved.
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1. Introduction

Stochastic modeling of fatigue crack propagation in metallic materials is a relatively new area
of research, and an extensive list of technical literature representing the state of the art is cited by
Sobczyk and Spencer (1992), and the special issue of engineering fracture mechanics (Schueller,
1996) presents recent developments in this ®eld. One approach to stochastic modeling of fatigue
crack growth is to randomize the coe�cients of an established deterministic model to represent
material inhomogeneity (Ditlevsen and Olsen, 1986). Another approach is to generate the neces-
sary stochastic information by multiplying the deterministic dynamics of fatigue crack growth
with a non-negative random process (Lin and Yang, 1985; Spencer et al., 1989). The process of
fatigue crack propagation is thus modeled by nonlinear stochastic di�erential equations in the
Itô setting (Kloeden and Platen, 1995). Speci®cally, Kolmogorov forward and backward di�usion
equations, which require solutions of nonlinear partial di�erential equations, have been proposed
to generate the statistical information required for risk analysis of mechanical structures (Ishika-
wa et al., 1993; Bolotin, 1989). These nonlinear partial di�erential equations can only be solved
numerically; the computational procedures, however, are computationally intensive as they rely
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on ®ne-mesh models using ®nite-element or combined ®nite-di�erence and ®nite-element methods
(Sobczyk and Spencer, 1992). Therefore, although this numerical approach might be useful for
making o�-line decisions for design analysis and predictive maintenance, it is not su�ciently fast
for on-line damage monitoring, failure prognosis, and prediction of remaining service life. Cascia-
ti et al. (1992) have analytically approximated the solution of Itô equations by Hermite moments
to obtain a probability distribution function of the crack length. To enhance the computational
e�ciency for on-line execution of the damage estimation and life prediction algorithms, Ray and
Tangirala (1996) have developed an algorithm for real-time estimation of fatigue crack damage
based on the underlying principle of extended Kalman ®ltering. In this approach, the ®rst two
moments of the stochastic damage state are computed on-line by constructing the stochastic dif-
ferential equations in the Wiener setting as opposed to the Itô setting.

This paper presents the development of a lognormal distributed crack length (LDCL) model,
and veri®es the model predictions with the experimental data of fatigue crack growth (Virkler et
al., 1979; Ghonem and Dore, 1987) for 2024-T3 and 7075-T6 aluminum alloys.

The LDCL model, presented here, is an enhancement of an earlier model (Ray and Tangirala,
1997), and major di�erences between these two models are summarized below.
1. The crack growth rate model in the present paper is guaranteed to be non-negative with prob-

ability one as compared to the earlier model which yields the non-physical phenomenon of a
negative crack growth rate with a small probability.

2. The present model is based on Karhunen±Lo�eve expansion of the crack length process itself in
contrast to the earlier model which is based on logarithm of the crack length. This new ap-
proach provides an additional free parameter for tuning the probability distribution function.

3. Nonlinear characteristics of the eigenfunctions in the Karhunen±Lo�eve expansion provide bet-
ter accuracy than the linear representation in the earlier model. This approach allows the model
to capture certain nonlinear features of the crack growth statistic. Consequently, model predic-
tions are more accurate.

2. Modeling of fatigue crack length

The stochastic model of fatigue crack damage, presented in this paper, is built upon a deter-
ministic model of fatigue crack growth (Newman, 1981) which is based on the principle of short
crack growth. The Newman model represents the mean value of the fatigue crack growth process
down to micro-cracks of the order of material defect size and has the following form:

dlc�t� � C DKeff� �m dt; lc�t0� > 0; t P t0; �1�
DKeff � Smax ÿ S0� � �������plc

p
F ; �2�

where lc�t� � E�c�x; t�jc x;t0� ��lc0

� is the expected value of the (time-dependent) crack length pro-
cess c(x,t) conditioned on the initial crack length c(x,t0); a sample of the stressed component is
indicated by x; the time t is expressed in units of number of cycles and t0 is the initial time; dlc is
the so-called di�erential of lc as commonly used in the fracture mechanics literature (Suresh,
1991); DKeff is the e�ective stress intensity factor range; the material-dependent constant m is
the slope and the other constant C is the exponential of the intercept of the linear interpolation
of the (log scale) DKeff ÿ dlc=dt look-up table; Smax is the maximum applied remote stress; S0 is
the crack opening stress; and F is correction factor for geometrical con®guration. Details of this
model are reported by Newman (1981). It should be noted, however, that any deterministic fa-
tigue crack growth law can be used in this formulation provided that the average characteristics
of the crack growth pro®le is accurately represented.
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Ray and Tangirala (1997) have modeled the crack length process c(x,t) to be implicitly depen-
dent on the (discrete) time parameter, t, and the (conditional) variance
r2

c�t� � Var�c�x; t�jc x;t0� ��lc0

� to be explicitly dependent on the (conditional) expected value
lc(t) which is directly obtained by solving Eq. (1). Following this approach, the second order sta-
tistic of c(x, t) is modeled with lc(t) as the independent variable in lieu of time, t. To this e�ect, a
(dimensionless) continuous function of lc�t� is introduced below:

s�t� :� lc�t�
lc�t0� ÿ 1

� �
8t 2 t0; tf

� �
for tf <1: �3�

The dimensionless parameter s, which is a monotonically non-decreasing continuous function of
t, is used as the independent variable in the sequel. In view of the de®nition in Eq. (3), the stochas-
tic process c�x; t�: t P t0f g is denoted as cs�x�: s P 0f g.

It is postulated that the random variable c0�x� � cs�x�js�0 is statistically independent of the
random crack increment process de®ned as

ws�x� :� cs�x�
c0�x� for s P 0: �Note that w0 � 1:� �4�

This postulation of independence is based on the rationale that, after an inspection of a structural
component, the mean lc0

� lc�t0� and variance r2
c0
� r2

c�t0� of the crack length at time t0, i.e., at
s� 0, are obtained in terms of the measurement data and precision of the measuring instrument.
Subsequently, as the structural component undergoes load cycles (i.e., for s > 0), the crack prop-
agation process is subjected to material-dependent uncertainties which are independent of mea-
surement uncertainties.

Since the crack length process is a continuous function of s in the mean square sense, the crack
increment process ws has a continuous covariance function (Jazwinski, 1970) and therefore can be
expressed via Karhunen±Lo�eve expansion (Fukunaga, 1990). The continuous process ws is dis-
cretized at m points beyond s� 0 as an m-dimensional random vector
W � w1 w2 . . . wm� �T and wj :� wsj

; j � 1; 2; . . . ;m. The covariance matrix KWW of the random vec-
tor W is decomposed as

W�x� :� E W� � � UZ�x�; Cov�Z� � K � diag k1 � � � km� �; �5�
where the orthogonal matrix U is the modal matrix of KWW and orthogonality of the Karhunen±
Lo�eve expansion ensures that the random vector Z � z1 z2 . . . zm� � is a set of zero-mean indepen-
dent random variables. This leads to:

wk � E wk� � �
Xm

j�1

/j
k zj

ÿ �
; k � 1; 2; . . . ;m; �6�

where wk :� wsk
and E wk� � � E csk=c0

��
c0�lc0

� �
� lc�sk�=lc0

; and /j
k � /j�sk� is the kth element of

the eigenvector /j. If the ®rst M eigenvalues are dominant, then the random variable wk can
be approximated as ŵk�M� by truncation of the last (m ) M) terms in Eq. (6) as

ŵk�M� � E wk� � �
XM

j�1

/j
k zj

ÿ �
; k � 1; 2; . . . ;m; 16M < m: �7�

Consequently, because of the orthogonality property of the Karhunen±Lo�eve expansion, the co-
variance of the continuous process, ŵs, can be expressed as

Kŵŵ�sk; sl� � Cov�ŵk; ŵl� �
XM

j�1

kj/
j
k/

j
l �8�
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having the associated minimum mean square error

�e2�M� � E �Wÿ Ŵ�M��T�Wÿ Ŵ�M��
h i

�
Xm

j�M�1

kj: �9�

The statistical information generated from each of the four (discrete) sets of fatigue test data
(Virkler et al., 1979; Ghonem and Dore, 1987) show that kl is indeed the dominant eigenvalue as
seen in Table 1. The mean square error is in the range of 1.0±3.5% if M is chosen to be 1, i.e., if
only the principal eigenvector, /1�s�, associated with the dominant eigenvalue, k1, is used to mod-
el the process ws. A constitutive relationship is proposed for /1�s� as a continuous function of s:

/1�s� �
������������
Qc k1=

p� � esn ÿ 1

n

� �
: �10�

Setting M� 1, the covariance in Eq. (8) is modi®ed by Eq. (10) as

Kŵŵ s� h; s� � � Qc
en s�h� � ÿ 1

n

� �
esn ÿ 1

n

� �
�11�

and Kww�s; s� � Kŵŵ�s; s� � r2
w�s� is readily obtained from Eq. (11). Based on statistical fatigue

test data, the model parameters n and Qc are found to have the following physical characteristics:
· n is material-dependent but it is independent of the peak stress and stress ratio to which the

specimens were subjected.
· Qc is both stress-dependent and material-dependent.

Remark 1. Separation of the stochastic process ws ÿ E ws� �� � into (deterministic) s-dependent and
(random) x-dependent variables follows by choosing M� 1 in Eq. (7). If M > 1 is chosen, then
the additional terms to be included in the model of Eq. (11) will act as small perturbations.

Chi-square tests conducted on the fatigue test data at di�erent instants (i.e., cycles) reveal that
the crack length distribution can be approximated as (non-stationary) lognormal within a signif-
icance level of 5%. Based on this information, a lognormal random variable is de®ned as

g�x� �
������
Qc

k1

r� �
z1�x�; E g� � � 0 and Var g� � � Qc: �12�

Setting M� 1 in Eq. (8), and following Eqs. (3), (6), (10) and (12), the fatigue-induced crack
length is modeled as

ws�x� �
cs�x�
c0�x� � s� 1� esn ÿ 1

n

� �
g�x�

� �
) dws�x� �

dcs�x�
c0�x� � 1� esng�x�ÿ �

ds: �13�

Table 1

Dominant eigenvalue of the covariance matrix

Statistical data set of fatigue crack length k1

Pm
j�1 kj

.
for any m P 20

Virkler et al. �0.965

Ghonem and Dore #1 �0.990

Ghonem and Dore #2 �0.968

Ghonem and Dore #3 �0.988
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Remark 2. The dynamics of fatigue crack growth is represented in Eq. (13) in terms of the
dimensionless parameter s which is a monotonically increasing function of time (or cycles) as
de®ned in Eq. (3).

The physical phenomena, lc0
> 0; c0�x� > 0; dlc�s�P 0; and dcs�x�P 0 8x8s P 0, imply

that the model in Eq. (13) must satisfy the inequality constraint: �dws�x�=ds P 0 8x. Therefore,

inf
x

dws�x�
ds

� �
P 0) inf

x
g�x�P ÿ eÿns: �14�

It su�ces to satisfy the inequality in Eq. (14) for a given critical crack length, lcf
, at which the

service life of the stressed structure is considered to be completely expended. In general, lcf
de-

pends on several factors including the geometry and dimensions of the stressed structure, the al-
lowable factor of safety, and sensitivity and resolution of the inspection equipment. Following
Eq. (3), the dimensionless parameter sf is de®ned as

sf :� lcf

lc0

ÿ 1: �15�

ollowing Eq. (13), if dws�x�=ds � 0 for some x, then �dws�x�=ds�P 0 8s 2 0; sf

� �
for the same

x. Therefore, setting infx �dws�x�=ds�s�sf
� 0 guarantees non-negative crack growth rate for all

cracks less than the critical crack length lcf
.

Remark 3. In general, lcf
represents the critical crack length beyond which the crack growth rate

becomes very large rapidly leading to complete rupture (Ishikawa et al., 1986). Therefore, lcf
(and

hence sf ) depends on several factors including the geometry and dimensions of the stressed
structure, the allowable factor of safety, and sensitivity and resolution of the inspection
equipment.

The zero-mean lognormal variable g�x� in Eq. (12) is expressed in terms of a Gaussian vari-
able, y�x�, as

g�x� � ey�x� ÿ E ey�x�� �
; y � N�m;r2�: �16�

The following two coupled algebraic equations are derived from Eqs. (12), (14) and (16)

inf
x

g�x� � ÿ exp ÿ nsf

ÿ � ) m� r2

2
� ÿnsf ; �17�

exp 2 m� r2

2

� �� �
exp�r2� ÿ 1
ÿ � � Qc: �18�

Eqs. (17) and (18) are solved simultaneously to yield

r2 � ln 1� Qc exp 2nsf

ÿ �ÿ �
; m � ÿ nsf � r2

2

� �
: �19�

Given n, Qc and sf , the unknowns m and r2 in Eq. (19) can be evaluated to specify the probability
density function (pdf) of the Gaussian random variable y(x) in Eq. (16). This information, in
turn, prescribes the lognormal pdf of g�x� � ey�x� ÿ em��r2=2� as

fgjc0
hjlc0

� �
� e

1

ÿ2r2
ln h�em��r2=2�
ÿ �

ÿm
ÿ �2

�
h� em��r2=2�
� � ����������

2pr2
p

; h P ÿ em��r2=2�;

0 otherwise:

8<: �20�

Following Eqs. (4), (13) and (20), the pdf of ws�x� � cs�x�=c0�x� � 1� s� �ens ÿ 1�=n� �g�x�� � is
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fwjc0
h; sjlc0

� �
�

exp ln �hÿsÿ1�n
ensÿ1

� �
� em��r2=2�

� �
ÿ m

� �2
,
�ÿ2r2�

 !
�hÿ sÿ 1�n

en ÿ 1

� �
� em��r2=2�

� �
ens ÿ 1

n

� � ����������
2pr2
p

for h P s� 1ÿ em��r2=2� ens ÿ 1� �
n

;

0 otherwise:

8>>>>>>>>>><>>>>>>>>>>:
�21�

3. Model veri®cation

The stochastic damage model is veri®ed using the statistical data of fatigue crack propagation
for 2024-T3 aluminum alloy (Virkler et al., 1979) and for 7075-T6 aluminum alloy (Ghonem
and Dore, 1987), in which the tests were conducted under di�erent constant load amplitudes at am-
bient temperature. The Virkler data set was generated at a single load level with peak nominal stress
of 60.33 MPa (8.75 ksi) and stress ratio R� 0.2. Ghonem and Dore data sets were generated at
three di�erent load levels: (i) Set 1 with peak nominal stress of 70.65 MPa (10.25 ksi) and
R� 0.6; (ii) Set 2 with peak nominal stress of 69.00 MPa (10.00 ksi) and R� 0.5; and (iii) Set 3 with
peak nominal stress of 47.09 MPa (6.83 ksi) and R� 0.4. The four plates in Fig. 1 display compar-
isons of model-predicted variance of the crack length process with the experimental data as a func-
tion of load cycles for 2024-T3 and 7075-T6 aluminum alloys. The model predictions are in very
close agreement with the respective experimental results derived from each of the four data sets.

The material-dependent parameter n, introduced in Eq. (10), is independent of the peak stress
and stress amplitude to which the specimens were subjected. Note that n� 0.25 for 2024-T3 for
the single data set and n� 0.75 for 7075-T6 for all three data sets. Apparently, the stochastic mod-
el parameter Qc is dependent on the material and both peak stress and R as seen in each of the
four plates in Fig. 1. It should be noted that each of the above data sets was generated with an
initial crack length of �9 mm (i.e., lc0

� 9 mm and r2
c0
� 0) at ambient temperature in the labo-

ratory environment. It is likely that Qc is strongly dependent on the environmental condition and
also is a function of lc0

. The results, obtained from the lognormal-distributed crack length
(LDCL) model, are comparable or superior in accuracy to those generated by the lognormal-dis-
tributed crack growth rate (LDCGR) model of Spencer et al. (1989) that requires numerical so-
lution of the Kolmogorov di�usion equations.

It is well known (Kloeden and Platen, 1995) that real-time solution of the partial di�erential
equations encountered in the Kolmogorov equations is not computationally feasible even on
mainframe computers. In contrast to the LDCGR model, the LDCL model requires the solution
of only a few algebraic identities which can be conveniently executed in real time on a microcom-
puter. However, it should be noted that the Kolmogorov equations yield the conditional density
as a function of time while the LDCL model, in the present form, generates the two-parameter
lognormal distribution function from the ®rst two moments of crack length.

4. Summary and conclusions

This paper presents a stochastic model of fatigue crack length process in metallic materials for
damage estimation and life prediction of stressed structures. The model equations are based on
the underlying principle of the Karhunen±Lo�eve expansion of the crack length covariance. The
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(non-stationary) statistics of the crack growth process are obtained without solving the extended
Kalman ®lter equation in the Wiener integral setting or the Kolmogorov forward equation in the
Itô integral setting. The model, presented in this paper, also guarantees non-negativity of the
crack growth rate. The mean of the time-dependent crack length can be obtained from one of
the several models that are reported in the literature. The stochastic model calculates the variance
of crack length as a solution of algebraic identities that is computationally much faster than nu-
merically solving the stochastic di�erential equations.

The stochastic model of fatigue crack length, presented in this paper, is formulated under the
postulation that the crack length has the lognormal distribution instead of the more common as-
sumption that the crack growth rate is lognormally distributed. Based on this postulation, prob-
ability distribution function of the (non-stationary) crack length process can be generated from
the ®rst two moments. This information su�ces to determine, at a given level of con®dence,
the (time-dependent) remaining life of mechanical structures subjected to a speci®ed anticipated
load pro®le (Ray and Tangirala, 1996). The increased speed of the proposed crack length model
makes it ideally suited to real-time damage monitoring and failure prognostic applications.

The proposed lognormal-distributed crack length (LDCL) model has been veri®ed with exper-
imental fatigue crack growth data of 2024-T3 and 7075-T6 aluminum alloys at di�erent levels of
constant amplitude load excitation. Extension of this model to load excitation of varying ampli-
tude is a subject of current research. While the stochastic modeling approach, presented in this

Fig. 1. Crack length variance for 2024-T3 and 7075-T6 aluminum alloys.
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paper, focuses on the inherent material uncertainties, there are two other major sources of uncer-
tainties, namely, random loading and unknown initial conditions which have not been considered
here. A uni®ed model that accounts for all three primary sources of uncertainties in crack growth
needs to be developed before practical applications become viable.

Potential applications of the fatigue crack model include: (i) equipment readiness assessment
and failure diagnosis and prognosis of operating machinery based on current condition and pro-
jected; (ii) generation of alerts and warnings for operational support and safety enhancement; and
(iii) formulation of real-time decision policies for information-based maintenance.
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