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A b s t r a c t - - T h e  motivation for the work reported in this paper accrues from the necessity of finding 
stabilizing control laws for systems with randomly varying bounded sensor delay. It reports the de- 
velopment of reduced-order linear unbiased estimators for discrete-time stochastic parameter systems 
and shows how to parametrize the estimator gains to achieve a certain estimation error covariance. 
Both finite-time and steady-state estimators are considered. The results are potentially applicable to 
state estimation for stabilizing output feedback control systems. (~) 1998 Elsevier Science Ltd. All 
rights reserved. 
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I N T R O D U C T I O N  

This paper presents a continuation of our previous work [1] which provided the framework for 

a partial solution to the problem of stabilizing randomly delayed control systems (in the mean 

square sense) via Grammian assignment by static output feedback to a stochastic-parameter 

model. The motivation for the work results from the necessity of finding stabilizing control laws 

for output  feedback control systems with randomly varying distributed delays. In the present 

work, reduced-order estimators are presented for potential application to state-estimate feedback 

control schemes. Random delays could be induced in the sensor data by an asynchronous time- 
division-multiplexed network which serves as a data communications link between the spatially 

dispersed components of the integrated decision and control system such as the vehicle manage- 
ment system of future generation aircraft [2]. In this context, the key issue is that  filters and 

controllers designed for non-networked systems may not satisfy the performance and stability re- 

quirements in the delayed environment of network-based systems. Therefore, a state-estimation 
methodology is needed for compensation of the randomly varying sensor delays. 

Since, in this work, the state estimation problem for a model involving randomly varying 

bounded sensor delays is reformulated as a stochastic parameter estimation, the analysis is based 

on the previous work in the latter area. Special cases of such models have been considered 

for minimum variance estimation by Nahi [3] in an uncertain measurement context where the 

The work reported in this paper was supported in part by the National Science Foundation under Grants ECS- 
9322798 and CMS-9531835. 
N, qt | ] - 4 - 8  

Typeset by ~4h/~TEX 

27 



28 E. YAZ AND A. RAY 

measurement may or may not contain the signal with certain a priori probabilities and later by 
several investigators [4-7] for more general types of random parameters. Yaz [7-10] considered 
such models for stable full-order stochastic observer designs. Robustness issues and guaranteed 
convergence rates were discussed in [11-13]. Reduced order observer design was presented in [14], 
and [15] was on the application to a nonlinear version of the model in [3]. In the following 
development, the sensor delay model is presented first. Then, all linear unbiased finite-time 
fixed-order estimators are characterized. It is shown how linear unbiased minimum variance 
estimators can be obtained. Sufficient conditions for a convergent estimator are also established 
under steady-state conditions. 

M O D E L  E Q U A T I O N S  

The control system under consideration consists of a continuous-time plant (where some of 
the states may not be directly measurable) and the data  acquisition system of a discrete-time 
controller which share a communications network with other subscribers [16]. Furthermore, 
the plant is subjected to random disturbances and the sensor data  is contaminated with noise. 
Typically, both the sensor and controller data  are subjected to randomly varying bounded delays 
induced by the network before they arrive at their respective destinations. In the present context, 
only the sensor delay in the state estimation problem is considered. The plant dynamics and 
delayed sensor outputs are modeled as reported in [17]: 

Plant Model: Zk+l = ¢bkXk + F~vk, (1) 

Delayed Sensor Model: Yk = Ckxk + F~(Vk, 

Yk = (1 - ~k)~Jk + ~k~lk-1, (2) 

where Xk E R n is the plant state vector to be estimated; Ck and F~ are varying deterministic 
matrices; vk is a zero mean white noise sequence at the plant input having covariance Vk with 
arbitrary probability distribution such that:  Trace Vk < co, V k >_ 0; the measurement t)k E R p 
is contaminated by zero mean white noise wk with covariance Wk having arbitrary probability 
distribution such that:  Trace Wk < c~, V k >_ 0; ~k is a binary white noise sequence having the 
expected values E{¢k} = ak and E { ~ }  = ak, where Prob {~k = 1} = ak'. This assumption of 
one-step sensor delay is based on the rationale that,  following the standard practice of communi- 
cation network design [16], the induced data latency from the sensor to the controller is restricted 
not to exceed the sampling period. The random processes Xo, Vk, (Vk, and Ck are assumed to be 
mutually independent. It is also assumed that  F~WkF 2T > 0, Vk > 0. Based on (1) and (2), a 
compact representation of the plant and measurement system is given as: 

[xk] • ~k  : =  
X k - 1  

0 2 := [(1 - C k ) F  2 

°0] Ak := In C'k : =  [ ( 1  - ~k)C'k  

io ]. Wk :-~ ,l~k_ l , 

(3) 

and the augmented plant model becomes 

Plant Model: xk+l = Akxk + D~vk, 

Sensor Model: Yk = CkYck + D2wk, 

(4) 
(5) 

where the nonwhite noise wk is of zero mean and it has the covariance: 

[? 01 Wk-1 (6) 
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R E D U C E D - O R D E R  E S T I M A T I O N  

Consider the compact form of system and measurement equations (4) and (5) with the necessary 
definitions (3) and (6). We would like to estimate only a part of the composite state vector 

= := T . (7) 
Xk-1 Xk-1 

The objective is to estimate xh by using a linear estimator of the following form: 

:~h+l = Ki:~h -[- K~yh+I, (8) 

which is an n-dimensional (reduced order) estimator for a 2n-dimensional model. Although the 
form of the observer may suggest that  the measurement has to be processed immediately because 
of the use of Yh+I in generating the estimate xh+l, equation (8) can be rewritten by introducing 
the auxiliary variable 

vh = :~h - K~-lYh (9) 

in the following way: 
oh+, = g l  (oh + KLlyh) (lO) 

Equation (10) uses Yk to find the one-step-ahead prediction 75h+1 so that  it can be used in actual 
implementation, and the necessary estimate 2h+l can be calculated from (9). However, we will 
use (8) in our development due to better mathematical tractability. We use eh to denote the 
resulting estimation error: 

e k + l  ----- X k + l  - -  ~ : k + l  

= T (AhSzh + Dtvh ) - Kli:k - K 2 [Ch+, (Ak~k + Divh) + Dk2+iwk+l] 

= g~eh + (TAb - K i T  - K~Ch+IAh) xh + ( T -  g~Ch+l) Divh _ KhDh+lwh+12 2 . 
(II) 

To have an unbiased estimator, we have to let 

E{xo} =/ :0  and TAk - K I T -  K~Ch+IAh = 0. (12) 

The above equation, upon substitution from (3) and (7), reduces to 

(1) h - -  K 1 - K 2 (O:h+lC h + (1 - -  O~k+l)Ok+le~}k) : O, 

and letting 

g l  = ~k - g 2 (ak+lCk + (1 - ak+l)Ck+l~k)  , (13) 

equation (11) yields 

ek+l = [~k - K2 ( +(1 _c~k+l~k ÷ 

+ ( T -  K~Ck+I) Divk. 

Denoting the estimation error covariance matrix as Pk := E{eke-[}, the recursive relation 
follows: 

o +1o  1, 1 -r 

+ E {  [ (T -K 2 C k +I )  D~VkD~T] ~ + K~E [ [ C~+IAh"~kA'~C~+'T 
( T -  K~Ch+I) T ] ) 2 ~ 2 T , x " [ I . +Dh+ l~ ' . , h+ lDh+  1 ]} K~'r 

(15) 
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where we define )~k - E{£'k~T}. Substituting (3) and completing the square, we obtain the 
following equation for the filter gain matrix: 

P~+I ¢kPkff~-~ ~I,, ~1 T _ _ z~ k V k . t "  k 

+(1 - o~k+l)dk+lF~VkF~ T ] 
~T 1 T "T ] 

J 1 1T ~T +(1 - oLk+I)F~VkF~ Ck+ 1 

(C~k+lOk +(1--O~k+l)Ok+lCk)Pk(c~k+lCk +(1--O~k+l)Ck+lCk) T ] 

+E C~+IAk2kATC~+I T + (1 -- olk+l)Ck+lF1VkrlTOTk+ 1 K~ T 

+ak+lF 2k WkF~2T + (1 -ak+l)F~+lWk+lF~+ 2 T J 
T /  2 a Ar r /2  T := - K 2 N  T _ NkK 2T + .'~k,vlknk 

= - - K )T _ 

(16) 
where we define 

K S := NkM~ 1. (17) 

Equation (16) is obtained by using definitions in (3) and the existence of the inverse in (17) is 
E'~2 T,T.r B-~2 T guaranteed because r k vvkr k > 0, Vk > 0. Substituting (17) into (16) and rearranging yield: 

L~I_,-: = P~+~ - CkPk¢-: - F~,~f~ T +  N~M;~N- [ 
(18) 

---- (K~: - NkMk 1) Mk (K~ - NkME z) T 

with Lk 6 R nxp because the right-hand side in (18) is positive semi-definite and of rank not 
exceeding p. The optimal gain in the minimum variance sense is obviously given by (17) from 
the above discussion and its use in (16) gives rise to the expression (18) for minimal estimation 
error covariance with Lk = 0, V k > 0. Alternatively, 

Pk+l = ~kPk~[ + F~VkF 1T - N k M k l N  T. (19) 

The covariance matrix in (19) is iteratively found by starting with Po = E{eoe[}. The optimal 
value of g~ ,  i.e., KS, is computed based on Po, and then g 1 is computed from g 2 by using (13). 
For a suboptimal gain, in general, (18) yields 

LkL T = (g~ - g k M i  1) Mk (Z~ - NkMk 1) T (20) 

This equation can be decomposed as in [15] into: 

LkUk = (Kk -- KS) ~ (21) 

for a nonsingular square root of ~k and some orthogonal matrix sequence Uk. Solving for sub- 
optimal gains yields: 

K~ = ikUkv/--~k -1 + N k i k  1. (22) 

REMARK. There is a dimensional reduction not only in the estimator in (8) and error covariance 
matrix Pk in (18) but also in the second moment )fk of the state that  is not necessary to iterate 
in full because the term in Mk containing ~Tk reduces to: 

f C  e A )~ A T ' e  T = 

- 1 T "T " 1 ~T {Ck+l¢kXkOkCk+l _ Ck+1,kXkCk- 1-T _ CkXk,k~ 1 T'Tc£+I + Ck+'XkC;+1 h] , (23) × 
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where  X 1 = E{xkx '~} e R nxn is eva lua ted  by  using (1) from the  following recurs ive  re la t ion:  

1 1 T X1+1 = ~)kX~q~ + F~VkF~ (24) 

T h e  resul t s  a re  now s u m m a r i z e d  as follows. 

THEOREM 1. Given the  models (3)-(6) and the linear unbiased reduced order  estimator (8)-(10), 
all assignable estimation covariances are  given by (18) where Nk and  Mk are  defined in (16). The 
ga ins  that g u a r a n t e e  an  assignable covariance matrix are  given by (22) where the term dependent 

on the  second m o m e n t  o f  the s t a t e  vec tor  is given by (23) and  (24). The m i n i m u m  possible er ror  

covariance is given by (19) and  the corresponding optimal estimator gain is found from (17). 

INFINITE-TIME (STEADY-STATE) ESTIMATION 

Let  us a s sume  t h a t  all  de t e rmin i s t i ca l ly  t ime-va ry ing  quant i t i es  are cons t an t  and  all r a n d o m l y  

va ry ing  d i s t u rbances  are  weak ly  s t a t i o n a r y  (wi th  cons tan t  first two moments ) .  Unde r  these  

a s sumpt ions ,  i t  is poss ib le  to  ob t a in  s t e a d y - s t a t e  resul ts  for a s y m p t o t i c a l l y  s t ab le  sys tems  because  

Pk and  Kk  can converge to  respec t ive  cons tan t  ma t r i ces  only  if the  X~ sequence converges.  Th i s  

can  be  achieved if t he  spec t r a l  rad ius  p((I)) < 1 so t h a t  there  exis ts  a unique X 1 = X 1-r >_ 0 t h a t  

solves: 
c~ 

X 1 -- (I)Xl(I)T -b F 1 V F  1T = E (~kF1VF1T~:"  (25) 

k=0 

T h e  p roof  of convergence of the  p roposed  s t e a d y - s t a t e  e s t ima to r  is a sub jec t  of  fu ture  research.  

New a lgo r i t hms  are  be ing  t e s ted  for real is t ic  app l i ca t ions  [2] and  the  resul ts  will  be  p resen ted  in a 

fo r thcoming  publ ica t ion .  Ex tens ion  of th is  de lay  c ompe nsa t i on  approach  is under  cons ide ra t ion  

for solving the  comple te  p rob lem of d i s t r i b u t e d  r a n d o m  delays  in bo th  sensors and  a c t u a t o r s  [18]. 
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