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Abstract

This paper presents a stochastic model of fatigue crack propagation in ductile alloys that are
commonly encountered in mechanical structures and machine components of complex systems (e.g.
aircraft, spacecraft, ships and submarines, and power plants). The stochastic model is built upon a
deterministic state-space model of fatigue crack propagation under variable-amplitude loading. The
(non-stationary) statistic of the crack growth process for center-cracked specimens is obtained as a
closed form solution of the stochastic di�erential equations. Model predictions are in agreement with
experimental data for specimens fabricated from 2024-T3 and 7075-T6 aluminum alloys and Ti-6Al-4 V
alloy subjected to constant-amplitude and variable-amplitude loading, respectively. The stochastic model
of crack propagation can be executed in real time on an inexpensive platform such as a Pentium
processor. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fatigue crack analysis is an essential tool for life prediction and maintenance of machinery

components that are subjected to cyclic stresses over a prolonged period of time [9]. The

current state-of-the-art of fatigue crack analysis, especially for high-cycle fatigue, is based

largely on the assumption of constant-amplitude loading in a deterministic setting. An
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Nomenclature

a function coe�cients
A function coe�cients
c crack length
E Young's modulus
f function for stress intensity factor
F geometry factor in the crack growth equation
K cc

I mode I stress intensity factor (center-cracked)
K com

I mode I stress intensity factor (compact)
m exponent in the crack growth equation
Pmax maximum load in units of force
Pmin minimum load in units of force
S ¯ow ¯ow stress
Smax maximum stress within a cycle
Smin minimum stress within a cycle
S o crack opening stress
S oss steady-state crack opening stress
S ult ultimate tensile strength
S y yield stress
t time in number of cycles
w width or half-width of test specimens
z normal random process related to crack growth
a constraint (plane stress/strain) factor
b a constant model parameter larger than 1 (1 10)
d increment operator
DS e�ective stress range
W 2 constant variance of O(z, DS )(DS )m

Z random decay rate for S o

l pulse scaling factor for S o

mx expected value of a random variable X
r material inhomogeneity and measurement noise
s 2
x variance of a random variable X

y dimensionless parameter c/w
t specimen thickness
O random process for crack growth equation
x zero-mean unit variance normal random variable
c functional representation of crack length
z sample point (i.e. a test specimen)
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important issue in failure diagnostics and life prediction of operating machinery is uncertainties
of the fatigue damage process. Speci®cally, the standard deviation of predicted time to failure
bears an inverse relationship to the amplitude of stress excitation. That is, the predicted service
life under high-cycle fatigue su�ers from larger uncertainties than that under low-cycle fatigue.
This fact is established by experimental investigations including the tests of [4] on specimens of
7075-T6 aluminum alloys at di�erent levels of constant-amplitude loading. Furthermore, over
the entire service life, machinery components could be subjected to variable-amplitude loading
beyond what is expected under normal operating conditions of constant-amplitude loading. To
this e�ect, a factor of safety is usually taken into consideration to accommodate such incidents.
This design approach is often over-conservative because the e�ects of stress overload may not
always be harmful and, under certain conditions (e.g. crack retardation), turn out to be
bene®cial. On the other hand, the so-called safe design for in®nite life may be overly optimistic
from the point of view of machinery safety and reliability.
The objective here is to analyze the uncertain dynamics of fatigue crack propagation under

both constant-amplitude and variable-amplitude loading, as needed for failure diagnostics and
health monitoring of operating machinery [9]. This paper presents a stochastic model of fatigue
crack propagation in ductile alloys which are commonly encountered in mechanical structures
and machine components of complex systems (e.g. aircraft, spacecraft, ships and submarines,
and power plants). The stochastic model is built upon the framework of a deterministic
fracture-mechanics-based state-space model [11] by randomizing pertinent parameters as well as
by incorporating additional stochastic parameters [13]. The purpose of the state-space model is
to capture the the phenomena of crack retardation and sequence e�ects under variable-
amplitude loading where the state variables are the crack length and the crack opening stress.
The non-stationary statistic of the crack growth process in center-cracked specimens under
(tensile) variable-amplitude loading is obtained as a closed form solution of the stochastic
di�erential equations. Subsequently, this model is modi®ed for compact specimens. Model
predictions are in agreement with the fatigue test data for center-cracked specimens made of
2024-T3 and 7075-T6 aluminum alloys at di�erent constant-amplitude loading and for compact
specimens made of Ti-6Al-4 V alloy under both constant-amplitude and variable-amplitude
loading. The stochastic crack propagation model can be executed in real time on an
inexpensive platform such as a Pentium processor.

2. Fatigue crack propagation model for center-cracked specimens

The stochastic model of fatigue crack propagation, presented in this paper, is built upon the
deterministic state-space model [11] with two state variables, crack length and crack opening
stress. Ditlevsen [2] has shown that, under constant-amplitude loading, randomness of fatigue
crack propagation accrues primarily from parametric variations. The stochastic process of
crack growth rate is largely dependent on two random variables, namely, a multiplicative
parameter and an exponent parameter, which are constants for a given specimen (i.e. a given
sample point z ). Ditlevsen [2] has also suggested the possibility of one of the two random
variables being a constant for all specimens. Statistical analysis of the experimental data for
2024-T3 and 7075-T6 aluminum alloys [13] shows that the random exponent can be
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approximated as a constant for all specimens at di�erent levels of constant-amplitude loading
for a given material. Based on this observation and the structure of the deterministic state-
space model [11], we postulate the following governing equation for fatigue crack propagation
in a stochastic setting, partially similar to what was originally proposed by [10] for a
deterministic model:

dc�z,t� � O�z,DS�z,t���DS�z,t��mc�z,t�m=2�F�c�z,t���mr�z,t�dt; given c�z,t0� and trt0 �1�
where z indicates a given test specimen or a machinery component; c(z,t ) is the sum of the
measured crack length and the plastic zone radius of the test specimen z at the end of a cycle
at time t; dc(z,t )0c(z,t+dt )ÿc(z,t ) is the crack length increment of the test specimen z during
the cycle beginning at time t and ending at time t, dt; the random process O(z,DS ) represents
uncertainties of a given z at a speci®c stress range DS (i.e. O is a constant for a given specimen
under constant-amplitude stress); the exponent, m(z )=m w.p. 1, is a material parameter and
greater than 2 and less than 4 for ductile alloys ([15], p. 193); the noise process r(z,t )
represents the uncertainties in the material microstructure and crack length measurements that
vary with t as the crack propagates even for the same specimen z. The multiplicative
uncertainty r(z,t ) in the crack growth process in Eq. (1) is assumed to be a white (i.e. perfectly
uncorrelated) stationary process that is statistically independent of O(z, DS ). The rationale for
this assumption is that inhomogeneity of the material microstructure and measurement noise
associated with each test specimen, represented by r(z,t ), are statistically homogeneous and are
una�ected by the uncertainty, O(z,DS ), of a particular specimen caused by, for example,
machining operations. Without loss of generality, we set mr0E[r(z,t )]=1 via appropriate
scaling of the parameter O(z,DS ).
To realize the e�ects of overload and underload in the stochastic model, the crack opening

stress is modeled as a random process S o(z,t ) by converting the decay rate Z in the
deterministic model of [11] to a random parameter Z(z ). Speci®cally, the decay rate Z(z �) is
invariant under all load spectra for a given sample z�. This phenomenon has been
experimentally observed by several investigators including [12] and [5]. The governing
equations for the transient behavior of the stochastic process S o(zt ) are presented below (see
the Nomenclature):

So�z,t� �
�

1

1� Z�z�
�
So�z,tÿ dt� �

�
Z�z�

1� Z�z�
�
Soss�t� if Soss�t�RSo�z,tÿ dt�

So�z,t� �
�

1

1� Z�z�
�
So�z,tÿ dt� �

�
Z�z�

1� Z�z�
�
Soss�t�

�
�

l�t�
1� Z�z�

�ÿ
Soss�t� ÿ So�z,tÿ dt�� otherwise

�2�

where

l�t� � Smax�t� ÿ Smod�t�
Smax�t� ÿ Smin�tÿ dt�
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having

Smod�t� � aSmin�t� � Smin�tÿ dt�
a� 1

and a is the constraint factor (1 for plane stress and 3 for plane strain). The forcing function
S oss(t ) at the tth cycle matches the crack opening stress derived from the following semi-
empirical relation in SI units for metallic materials [8]:

Soss�t�
Smax�t� � A0 � A1R�t� � A2R�t�2 � A3R�t�3

R�t� � Smod�t�
Smax�t�

Smod�t� � aSmin�t� � Smin�tÿ dt�
a� 1

l�t� � Smax�t� ÿ Smod�t�
Smax�t� ÿ Smin�tÿ dt�

A0 �
ÿ
0:825ÿ 0:34a� 0:005a2

��
cos

�
p
2

Smax�t�
S flow

��1=a

A1 � �0:415ÿ 0:071a�
�
Smax�t�
S flow

�

A2 � 1ÿ A0 ÿ A1 ÿ A3 if R�t� > 0

A2 � 0 if R�t�R0

A3 � 2A0 � A1 ÿ 1 if R�t� > 0

A3 � 0 if R�t�R0 �3�
The randomized decay rate parameter Z(z ) in the stochastic model is made independent of
both O(z,DS ) and r(z,t ) based on the experimental observations [5]. The probability
distribution function of the random variable Z(z ) is identi®ed from test data. For compatibility
with the deterministic model [11], Z(z ) must be dependent on the thickness, t, and half-width
(or width), w, of the test specimen, the yield strength, S y, ultimate tensile strength, S ult, and
Young's modulus, E, of the specimen material.
The di�erence Eqs. (1) and (2), supported by the algebraic Eq. (3), govern the dynamics of
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crack propagation. Since the numerical solution of these nonlinear stochastic di�erence Eq. (1)
is computationally intensive [7], the objective here is to obtain a closed form solution that can
be obtained in real time. Since the time (cycle)-scale of crack length dynamics in Eq. (1) is slow
relative to that of crack opening stress dynamics in Eq. (2), the fatigue crack propagation can
be treated as a two-time-scale problem. The e�ective stress range DS(z,t )0max(0,
(Smax(t )ÿS o(z,t ))), generated from Eq. (2), becomes an instantaneous (i.e. a cycle-dependent)
input to Eq. (1). Statistics of random parameters for crack growth are now developed based on
fatigue test data for center-cracked specimens.

3. Parameter identi®cation and model veri®cation for center-cracked specimens

Given the geometry factor

F �
�����������������������������
sec

�
p
2

c�z,t�
w

�s

for center-cracked specimens, the crack growth rate in Eq. (1) can be separated into terms
involving c(z,t ) and DS(z,t ). Approximation of the ®rst two terms in the Taylor series
expansion of the secant term in Fyields the following stochastic di�erential equation: 

�c�z,t��ÿm=2ÿm
�

p
4w

�2

�c�z,t��2ÿm=2
!
dc�z,t� � O�z,DS�z,t���DS�z,t��mr�z,t�dt �4�

Note that the error due to truncation of the Taylor series expansion in Eq. (4) monotonically
increases with c(z,t ). Nevertheless, for crack length region of interest in engineering
applications, this error is insigni®cant.
Since the number of cycles to failure is usually very large in the crack propagation processes

(even for low-cycle fatigue), a common practice in the fracture mechanics literature is to
approximate the di�erence equation of crack propagation by a di�erential equation. In essence,
the Riemann sum resulting from the solution of the di�erence Eq. (4) is replaced by an
integral. Therefore, Eq. (4) is approximated as a stochastic di�erential equation with input
excitation DS(z,t ) which is integrated pointwise (i.e. for the individual zs) to obtain:

c�z,t,t0� �
�t
t0

dtO
ÿ
z,DS�z,t��DS�z,t��m�r�z,t� �5�

where

c�z,t,t0� �
0@c�z,t�1ÿm=2 ÿ c�z,t0�1ÿm=2

1ÿ m

2

1Aÿm

�
p
4w

�2
0@c�z,t�3ÿm=2 ÿ c�z,t0�3ÿm=2

3ÿ m

2

1A �6�

Note that, for ductile alloys, the constant parameter m is greater than 2 and less than 4. Hence
it is guaranteed that Eq. (6) is valid.
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The model parameters and their statistics are identi®ed from experimental data of random
fatigue crack propagation for center-cracked specimens of 2024-T3 aluminum alloy [16] and
7075-T6 aluminum alloy [4]. The Virkler specimens were of half-width w=76.2 mm, thickness
t=2.54 mm and half-notch length=1.27 mm and the Ghonem specimens were of half-width
w=50.8 mm, thickness t=3.175 mm and notch half-length=7.144 mm, in which the tests
were conducted under di�erent constant load amplitudes at ambient temperature. The Virkler
data set was generated from 68 specimens at a single constant-amplitude load with peak
nominal stress of 60.33 MPa (8.75 ksi) and stress ratio R0Smin/Smax=0.2 for 200,000 cycles.
The Ghonem data sets were generated from 60 specimens each at three di�erent levels of
constant-amplitude loading as: (i) set 1 with the peak nominal stress of 70.65 MPa (10.25 ksi)
and R=0.6 for 54,000 cycles; (ii) set 2 with the peak nominal stress of 69.00 MPa (10.00 ksi)
and R=0.5 for 42,350 cycles; and (iii) set 3 with the peak nominal stress of 47.09 MPa (6.83
ksi) and R=0.4 for 73,500 cycles.
The exponent parameter m is ®rst identi®ed as the ensemble average estimate from the slope

of the logarithm of crack growth rate based on the data sets of constant-amplitude loading.
The estimated values of m are 3.4 and 3.6 for 2024-T3 and 7075-T6 aluminum alloys,
respectively. In the above four cases of constant-amplitude loading, the steady-state values of
DS(z,t ) are reduced to four di�erent constants as listed in Table 1. Note that the random
decay rate Z(z ) in Eq. (2) does not in¯uence the steady-state value of the crack opening stress
S oss.
The generalized parametric relations of the fatigue crack propagation model are proposed by

[13] based on Karhunen±LoeÁ ve expansion [3] of the stochastic process c(z,t,t0) in Eq. (6) where
the model parameters for 2024-T3 and 7075-T6 aluminum alloys are evaluated from Virkler
and Ghonem data sets at di�erent levels of constant-amplitude loading using the crack growth
model of [6]. Similar results are generated in this paper based on the state-space model derived
in Section 2. The model parameters are listed in Table 1 for 2024-T3 and 7075-T6 aluminum
alloys and the pertinent conclusions are summarized below:

mO�DS� � E
�
O�z,DS�� is independent of DS, i:e: mO is a constant and

E
��DS�mO�z,DS�� � �DS�mmO �7a�

s2O�DS� � Var
�
O�z,DS�� is proportional to �DS�ÿ2m, i:e: Var

��DS�mO�z,DS�� � W2

is a constant
�7b�

Var

"
�DS�m

�t
t0

dt�r�z,t� ÿ 1�
#

is small compared to Var
��DS�mO�z��tÿ t0�

�
for large

�tÿ t0�
�7c�

Based on experimental observations under constant-amplitude loading and the short time-scale
of DS relative to that of crack propagation, we conjecture that the properties (7a)±(7c) also
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Table 1

Model parameters for 2024-T3 and 7075-T6 alloys based on Virkler and Ghonem data sets

Data set and material type E�ective stress range
DS0SmaxÿS o (MPa)

m (dimensionless) mO (SI units) (DS )msO/mO
(SI units)

mr (dimensionless) (DS )msr/mr
(SI units)

Virkler data 2024-T3 31.91 3.4 1.6�10ÿ7 0.875� 104 1.0 5.0990
Ghonem data. no. 1, 7075-T6 23.81 3.6 1.6�10ÿ7 2.8125�104 1.0 4.6904

Ghonem data, no. 2, 7075-T6 27.58 3.6 1.6�10ÿ7 2.8125�104 1.0 4.6904
Ghonem data, no. 3, 7075-T6 21.30 3.6 1.6�10ÿ7 2.8125�104 1.0 4.6904
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hold under variable-amplitude loading for a given ensemble of specimens. Following Eq. (5)
and assuming negligible s 2

r, the (cycle-dependent) mean and variance of the process O(z,DS )
are obtained for any given tf>>t0 as:

mO �
 �tf

t0

dt�DS�z,t��m
!ÿ1

mc�tf,t0� and W21�tf ÿ t0�ÿ2s2c�tf,t0� �8�

where mc(tf , t0) and s 2
c (tf ,t0) are the mean and variance of c(z,tf ,t0), respectively, in Eqs. (5)

and (6). For variable-amplitude loading on the same ensemble of specimens, the parameter s 2
O

is conjectured to remain proportional to (DS )ÿ2m, i.e. VarbO (z,DS )(DS )mc=W 2 is an invariant.
Several investigators have assumed that the crack growth rate in metallic materials is two-

parameter log±normal distributed [14] under constant-amplitude loading. We hypothesize that
the random process O(z,DS ) is two-parameter (r=2) log±normal distributed, and its goodness
of ®t is tested by both w 2 and Kolmogorov±Smirnov tests. Each of the four data sets is
partitioned into L=12 segments to assure that each segment contains at least ®ve samples.
With (Lÿrÿ1)=9 degrees of freedom, the w 2-test shows that, for each of the four data sets,
the hypothesis of two-parameter log±normal distribution of O(z,DS ), at di�erent values of DS,
passed the 10% signi®cance level which su�ces the conventional standard of 5% signi®cance
level. For each of the four data sets [4, 16], the hypothesis of two-parameter log±normal
distribution of O(z,DS ) also passed the 20% signi®cance level of the Kolmogorov±Smirnov
test.
Now we present the crack length predictions via Monte Carlo simulation of the stochastic

crack propagation model along with experimental data subjected to constant-amplitude loading
for di�erent values of R0Smin/Smax. Fig. 1 shows a comparison of the Virkler and Ghonem
data sets in the four plates on the right side with the model predictions in the corresponding
four plates on the left side. The log±normal distributions of both O(z,DS ) and r(z,t ) are
simulated by taking exponential of the standard normal random number generator. The scatter
of the crack growth pro®le of individual test specimens in the model prediction is primarily due
to the random parameter O(z,DS ). It should be noted that the randomization of O(z,DS ) alone
does not account for the complete variability of realization of the crack growth. The random
noise process r(z,t ), which represents material inhomogeneity and measurement noise, causes
the individual sample paths to cross each other. Ideally, the sample paths should not cross and
be isolated from each other for specimens made of a perfectly homogeneous material and
having noiseless measurements.

4. Parameter identi®cation and model veri®cation for compact specimens

The geometry factor F for compact specimens is di�erent from that of center-cracked
specimens; the instantaneous stress intensity factor [1] for compact specimens is obtained as:

Kcom
I � f

�
c�z,t�
w

� ����
w
p

S�t� �9�
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Fig. 1. Model veri®cation with experimental data for center-cracked specimens of 2024-T3 and 7075-T6 alloys.
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f�y� � 2� y����������������
�1ÿ y�3

q  X4
k�0

aky
k

!
for 0Ry<1 �10�

where c(z,t ) is the crack length process as de®ned earlier, t and w are thickness and width of
the compact specimen, S(t )0P(t )/tw is the nominal stress under the applied load P(t ), and the
coe�cient vector [a0 a1 a2 a3 a4]= [0.886 4.64 ÿ13.32 14.72 ÿ5.60] in SI units.
Let us equate the stress intensity factor of a compact specimen with that of a center-cracked

specimen for which:

Kcc
I �

�������������������������������������������
pc�z,t� sec

�
p
2

c�z,t�
w

�s
Seq�t� �11�

where

Seq�t� � Peq�t�
tw

is the nominal stress under the applied load Peq(t ) for an equivalent center-cracked specimen.
In order that K cc

I in Eq. (11) becomes equal to K com
I in Eq. (9), the stress cycle

(Smax
eq (t ),Smin

eq (t )) for an equivalent center-cracked specimen is obtained corresponding to a
load cycle (Pmax, Pmin) on a compact specimen as:

Smax
eq �t� � g

�
c�z,t�
w

�
Pmax�t�
tw

and Smin
eq �t� � g

�
c�z,t�
w

�
Pmin�t�
tw

�12�

g�y� � f�y�
py sec

�
p
2
y
� for 0Ry<1 �13�

It follows from Eqs. (10), (12) and (13) that Smax
eq (t ) and Smin

eq (t ) are functions of crack length.
Although the stress ratio Smin

eq (t )/Smax
eq (t ) is independent of c(z,t ), the forcing function S oss

eq (t )/
Smax

eq (t ) in the governing Eq. (2) for the crack opening stress is not independent of c(z,t ) as
seen in Eq. (3). Therefore, unlike Eq. (1) for center-cracked specimens, the crack growth
equation for compact specimens may not be separable into a function of the crack length c(z,t )
and another function of the instantaneous e�ective stress range DS(z,t )0Smax(t )ÿS o(z,t ). Also,
unlike Eq. (4) for center-cracked specimens, the stochastic parameter O(z,DS(z,t )) cannot be
obtained as an explicit function of c(z,t ).
For compact specimens, we have used the overload data of random fatigue crack

propagation for Ti±6Al±4 V alloy specimens of width w=76.2 mm, thickness t=7.2 mm and
notch length=15 mm [5]. Data from 35 out of 60 specimens were found to be suitable for
parameter estimation as other specimens are not subjected to the same load excitation. Each
data set starts with a crack length of 20 mm and having two overload regions roughly starting
at 25 and 29 mm. The crack length at which the overloads are applied to di�erent specimen
di�er slightly but no overload region interacts with the other. Basic load conditions are:
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Pmin=4 kN and Pmax=9 kN. Single cycle overload of P o`=18 kN was applied at 25 and
29 mm crack length and the base constant-amplitude load was continued after application of
the single-cycle overload. Each specimen in the [5] data set responded to the application of
overload by instantaneous crack tip extension via ductile rupture on a plane inclined to the
normal to the load plane. This crack de¯ection phenomenon is limited to the surface layer
where plane stress conditions exist with a thickness of layer 1500 mm. The de¯ected crack
growth during the overload application is caused by ductile rupture and not by fatigue. The
phenomenon of ductile rupture causes a massive crack arrest that is not entirely captured by
the state-space model of fatigue crack growth model. The state-space model is now modi®ed by
redi®ning the pulse scaling factor l(t ) in Eq. (2) as:

l�t� � 2

 
Smax�t� ÿ Smod�t�

Smax�t� ÿ Smin�tÿ dt�

!
�14�

to represent this crack arrest phenomenon that is not caused by fatigue alone. The factor of 2
in Eq. (14) is identi®ed as aparameter to ®t all 35 specimens under consideration. Note that the
original state-space model is capable of representing crack arrest caused by fatigue loading
without any correction factor. This has been checked for center-cracked specimens of [12]
subjected to single overload excitation by [11].
The exponent parameter, m, is ®rst identi®ed as the ensemble average estimate from the

initial part of the data set where a constant-amplitude load was applied while the crack grew
from 20 to 25 mm. During this crack growth process, DS remained almost constant for the
compact specimens. The exponent m=2.93 was identi®ed for Ti±6Al±4 V alloy. Knowing the
exponent parameter m, the database for the random process O(z,DS ) is generated for the
(almost) constant DS (which is dependent on the crack length) of the experimental data. A
procedure for identi®cation of the parameters mO and W 2 in compact specimens is outlined
below.
Let us de®ne a process z(z,DS )1normal(mz(DS ), s 2

z (DS )) as:

z�z,DS� � `n
�
O�z,DS�

mO

�
Since O(z, DS ) is log±normal,

s2O�DS� �
ÿ
exp

ÿ
s2z�DS�

�ÿ 1
�
m2O and mO � exp

�
mz�DS� �

s2z�DS�
2

�
�15�

Based on the observations on constant-amplitude loading, we conjecture that, for variable-
amplitude loading on the same ensemble of specimens, the parameter s 2

O(DS ) remains
proportional to (DS )ÿ2 m, i.e. var[(DS )mO(z,DS )]=W 2 which is a constant. Therefore,

z�z,DS�1normal

0@ÿ `n
0@ �������������������������������

1� W2�DS�ÿ2m
m2O

s 1A, `n 1� W2�DS�ÿ2m
m2O

!1A �16�

For a sample path (i.e. an individual specimen) z� under a given cycle-dependent DS, the
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parameter O(z�,DS ) can be simulated by selecting z� from a random number generator normal
(0. 1) as:

O�z�,DS� � mO exp
ÿ
z�z�,DS�� �17�

where

z�z�,DS� � ÿ`n
0@ �������������������������������

1� W2�DS�ÿ2m
m2O

s 1A� x�z��
�������������������������������������������
`n

 
1� W2�DS�ÿ2m

m2O

!vuut �18�

and the parameters mO and W 2 of the given ensemble of specimens are evaluated under a
constant-amplitude load.
Using Eq. (15), the realization O(z�, DS ) in Eq. (17) is obtained as a deterministic function

of DS by having x(z� ) known individually for each of the 35 specimens. The duration of
overload e�ect is di�erent in each specimen and is directly controlled by Z(z� ), which is
identi®ed by ®tting the crack growth pro®le for the duration of overload e�ect in each sample
path.
Goodness of the hypothesis that the random variable O(z,DS ) for a ®xed DS, is two-

parameter (r=2) log±normal distributed is tested by both w 2 and Kolmogorov±Smirnov tests.
The data set is partitioned into L=6 segments. With (Lÿrÿ1)=3 degrees of freedom, the w 2

test shows that the hypothesis of two-parameter log±normal distribution of O passes the 30%
signi®cance level. The hypothesis of two-parameter log±normal distribution of O also passes
the 20% signi®cance level of the Kolmogorov±Smirnov test. The analytically derived log±
normal distributed pdf of O(z,DS ) closely agrees with the corresponding histograms generated
from experimental data based on the ®xed DS=42.2 MPa which is the e�ective stress range for
an equivalent center-cracked Ti±6Al±4 V alloy specimen under constant-amplitude load. The
e�ects of second-order statistics of the (relatively small) noise r(z,t ) are neglected similar to
those for 2024-T3 and 7075-T6 alloys reported earlier under constant-amplitude load.
The random parameter Z(z ) in Eq. (3) which controls the overload e�ect duration must be

positive (with probability 1) to assure stability of the crack opening stress S o in Eq. (2).
Accordingly, we hypothesize several distributions for Z(z ), including uniform distribution
(r=2) and log±normal distribution (r=2). With a six segment histogram of Z(z ), the w 2-test
and the Kolmogorov±Smirnov test hypotheses pass the 5% signi®cance level. Although neither
of these two pdfs matches very closely with the histograms of the experimental data, the
uniform distribution is apparently a more viable option. The conclusion is that the pdf of the
random parameter Z(z ) is not yet ®rmly established due to the small sample size (35 in this
case) of the test data.
The log±normal distributions of O(z,DS ) and Z(z ) are simulated by taking exponential of the

normal random number generator and the uniform distribution of Z(z ) by the uniform random
number generator. Upon identi®cation of the statistics of O(z,DS ) and Z(z ), the whole data set
is regenerated by Monte Carlo simulation of the proposed stochastic model; the pertinent
model parameters are listed in Table 2. Fig. 2 shows a comparison of the random fatigue test
data of Ti±6Al±4 V alloy under overload in the top plate with the corresponding model
prediction in the bottom plate. The log±normal distribution of O(z,DS ) is simulated by taking
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Table 2
Model parameters for Ti±6Al±4 V alloy based on Ghonem and Zeng data set

Data set and material type E�ective stress
range DS0SmaxÿS o (MPa)

m (dimensionless) mO (SI units) (DS )msO/mO
(SI units)

mr (dimensionless) (DS )msr/mr
(SI units)

Ghonem and Zeng Ti±6Al±4 V 41.8 2.93 4.636�10ÿ10 8.496�103 1.0 0
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exponential of the standard normal random number generator and the uniform distribution of
Z(z ) by the uniform random number generator. The model also matches the ensemble of
experimental data for all individual specimens. As an example of how the model ®ts individual

Fig. 2. Model veri®cation with experimental data for compact specimens of Ti±6Al±4 V alloy.

Fig. 3. Model veri®cation with experimental data of individual specimens of Ti±6Al±4 V alloy.
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samples, Fig. 3 compares the model predictions with experimental data for four typical
individual samples of Ti±6Al±4 V compact specimens [5].

5. Summary and conclusions

This paper presents a stochastic model of fatigue crack propagation for risk analysis and life
prediction of mechanical structures and machine components in complex systems (e.g. aircraft,
spacecraft, ships and submarines, and power plants). The stochastic model is built upon a
fracture-mechanics-based state-space model of fatigue crack growth where the crack length and
crack opening stress are the state variables. The deterministic state-space model of fatigue
crack growth captures the essential physical phenomena (e.g. crack retardation and sequence
e�ects) that occur under variable-amplitude loading. The details of model development and
validation by comparison with experimental data are reported by [11]. The stochastic model is
primarily applicable to fatigue crack growth in the Paris regime where the stress intensity
factor range DKcan be separated as the product of functions of and the e�ective stress range
and crack length, c(z,t ). For near-threshold and high-DKregimes, the exponent parameter, m,
used in the stochastic model may need to be modi®ed.
For constant-amplitude loading, the uncertainties of crack propagation accrue primarily

from a single log±normal distributed random parameter O(z,DS ) associated with individual
specimens and DS and, to a much lesser extent, from the (cycle-dependent) random noise r(z,t )
due to material inhomogeneity. For life prediction and risk analysis, the random process r(z,t )
can be set to unity (i.e. its expected value) with no signi®cant loss of accuracy. For variable-
amplitude loading, the uncertainties in crack propagation are a�ected by one additional
random parameter Z(z ) that controls the duration of the overload e�ect. This random
parameter is identi®ed as a constant at di�erent crack lengths and di�erent load spectra for a
given specimen. Based on the available fatigue test data of 2024-T3, 7075-T6, and Ti±6Al±4 V,
the following three conjectures (that need to be veri®ed with additional experimental data) are
proposed for center-cracked (or equivalent) specimens under both constant-amplitude and
variable-amplitude loading:

. For a given material, mO is a (stress-independent) constant and s 2
O is proportional to

(DS )ÿ2 m;
. The random process O(Di S) for a ®xed DS can be approximated as two-parameter log±

normal distributed.
. The random variable Z(z ) can be approximated as uniformly distributed.

Each individual sample path under variable-amplitude loading can be statistically reproduced
for a given DS from the two random parameters, O(z,DS ) and Z(z ), as discussed above. Using
this procedure, the proposed stochastic model for fatigue crack propagation has been veri®ed
with experimental data for: (i) 2024-T3 and 7075-T6 aluminum alloys at di�erent levels of
constant-amplitude loading; and (ii) Ti±6Al±4 V alloy under variable-amplitude loading
comprising constant-amplitude loading coupled with overloads at di�erent cycles.
Potential applications of the stochastic crack propagation model include: (i) remaining life
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prediction of machinery components; (ii) generation of alerts and warnings for operational
support and safety enhancement; (iii) equipment readiness assessment and failure prognosis
based on current condition and projected usage; and (iv) formulation of decision policies for
maintenance scheduling in real time based on the up-to-date information of machinery
operation history and anticipated usage.
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