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Abstract

This paper presents a nonlinear dynamical model of fatigue crack growth in ductile alloys under variable-
amplitude loading. The model equations are formulated in the state-space setting based on the crack closure concept

and capture the e�ects of stress overload and reverse plastic ¯ow. The state variables of the model are crack length
and crack opening stress. The constitutive equation of crack-opening stress in the state-space model is governed by
a low-order nonlinear di�erence equation that does not require storage of a long load history. The state-space

model can be restructured as an autoregressive moving average (ARMA) model for real-time applications such as
health monitoring and life extending control. The model is validated with fatigue test data for di�erent types of
variable-amplitude and spectrum loading including single-cycle overloads, irregular sequences, and random loads in

7075-T6 and 2024-T3 alloys. Predictions of the state-space model are also compared with those of the FASTRAN-II
model. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Fatigue and fracture; State-space modeling; Sequence e�ects; Spectrum loading

1. Introduction

This paper presents a nonlinear dynamical model of fatigue crack growth under variable-amplitude
loading in ductile alloys following the state-space approach. The proposed model, hereafter referred to
as the state-space model, is formulated based on the crack closure concept where the state variables are
the crack length a and the crack-opening stress So: The crack growth equation in the state-space model
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is structurally similar to Paris equation [1] modi®ed for crack closure, which has been extensively used in

fatigue crack growth models such as FASTRAN-II [2] and AFGROW [3]. Under variable-amplitude

loading, these models usually rely on a memory-dependent physical variable (e.g., crack opening stress,

or reference stress) that requires storage of information on the load history. For example, the crack-

opening stress in the FASTRAN-II model [2] is assumed to depend on the load history over an interval

of about 300 cycles. Another example is the strain-life model in which the reference stress obtained by

the rain¯ow method relies on cycle counting that, in turn, depends on the load history [4,5]. In the

current state of the art of fatigue crack growth modeling, the ®nite interval over which the load history

is considered to be relevant may vary with the type of loading as well as with the rules employed for

Nomenclature

A j
k parameter in the empirical equation of Soss

k for j = 1, 2, 3, 4
a crack length
C parameter in the crack growth equation
E Young's modulus
F��,�� crack length dependent geometry factor
h��� crack growth function in crack growth equation
k current cycle of stress excitation
` crack growth retardation delay in cycles
m exponent parameter in the crack growth equation
m number of cycles of a particular stress level in the load block
n number of cycles of a particular stress level in the load block
R stress ratio of minimum stress to maximum stress
S ¯ow ¯ow stress
Smax maximum stress within a cycle
Smin minimum stress within a cycle
So crack opening stress
Soss crack opening stress under constant amplitude load given by empirical equation.
Sult ultimate tensile strength
Sy yield stress
t specimen thickness
U��� the Heaviside function
w half-width of center-cracked specimen or width of compact specimen
a constraint factor for plane stress/strain
amax maximum value of a
amin minimum value of a
Damax crack increment above which a � amin

Damin crack increment below which a � amax

Dak crack increment �� ak ÿ akÿ1)
DK eff e�ective stress intensity factor range
ethr positive lower bound for absolute value of maximum stress fSmax

k , kr0g:
Z decay rate for So

R the set of real numbers �ÿ1,1)
t time instant
I time interval of a cycle
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cycle counting. The model predictions, in general, become more accurate if the load history is
considered over a longer period although a short recent history of the applied load might be adequate
for crack growth modeling in some cases. An extreme example is constant-amplitude cyclic loading
where storage of the load history over the previous cycles may not be necessary. In essence, it is not
precisely known to what extent information storage is necessary for calculating the memory-dependent
variable in a fatigue crack growth model under a priori unknown variable-amplitude (e.g., single-cycle,
block, spectrum, or random) loading. Nevertheless, this memory-dependent variable can be modeled in a
®nite-dimensional state-space setting by an ordinary di�erence (or di�erential) equation. The state at the
current cycle is realized as a combination of the state and the input (i.e., cyclic stress) excitation at
®nitely many previous cycles. Equivalently, the state becomes a function of the fading memory of the
input excitation, which can be generalized to an autoregressive moving average (ARMA) model that is
equivalent to a state-space model [6]. Unlike the existing crack growth models (e.g., [7,8]), the state-
space model does not require a long history of stress excitation to calculate the crack-opening stress.
Therefore, savings in the computation time and memory requirement are signi®cant.

The state-space model adopts a novel approach to generate the (cycle-dependent) crack opening stress
So

k under variable-amplitude loading, while the structure of its crack growth equation is similar to that
of FASTRAN-II [2]. As such, the crack length computed by these two models could be di�erent under
a given variable amplitude loading, although the results are essentially identical under the same
constant-amplitude loading. The state-space model is formulated to satisfy the following requirements:

1. Capability to capture the e�ects of single-cycle overload and underload, load sequencing, and
spectrum loading;

2. Representation of physical phenomena of fracture mechanics within a semi-empirical structure;
3. Compatibility with dynamic models of operating plants for health monitoring and life extending

control;
4. Validation by comparison with fatigue test data and another well-known code of fatigue crack

growth;
5. Development of a computer code using standard languages for real-time execution on standard

platforms.

The requirements #1 and #2 are satis®ed as the state-space model is formulated based on fracture-
mechanistic principles of the crack closure concept. The requirement #3 is also satis®ed because the
plant dynamic models are usually formulated in the state-space setting or ARMA setting [6]. The
remaining two requirements, #4 and #5, are satis®ed by validating the state-space model with fatigue
test data for di�erent types of variable-amplitude and spectrum loading on 7075-T6 and 2024-T3 alloys
[9,10], respectively. The model predictions are also compared with those of FASTRAN-II, which is a
well-known code for fatigue crack growth prediction and is widely used in the aircraft industry. While
the results derived from the state-space and FASTRAN-II models are comparable, the state-space model
enjoys signi®cantly smaller computation time and memory requirements as needed for real-time
execution on standard platforms such as a Pentium PC. This is because the state-space model is
described by a low-order di�erence equation, and therefore, does not need for storage of a long load
history. This simple structure of the state-space model facilitates the task of code generation and
veri®cation using standard high-level programming languages.

This paper is organized in ®ve sections including the present section. Section 2 formulates the model
equations in the state-space setting based on fracture-mechanistic principles and delineates the features
of the state-space model including its response characteristics under overload and underload excitation.
Section 3 validates the state-space model by comparison with fatigue test data under di�erent types of
variable-amplitude loading including spectral loading for 7075-T6 and 2024-T3 aluminum alloys, as well
as with the predictions of the FASTRAN-II model under identical load excitation. Section 4 compares
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execution time and memory requirements of the state-space model with those of the FASTRAN-II
model for load pro®les. Section 5 summarizes and concludes the paper with recommendations for future
research.

2. Formulation of the crack growth model in state-space setting

The state-space model of crack growth is formulated based on mechanistic principles of the crack-
closure concept and is supported by fatigue test data for variable-amplitude cyclic loading (e.g., [9±11]).
The following de®nition of a fatigue cycle is adopted for model development in the sequel:

De®nition 2.1. The kth fatigue cycle is de®ned on the time interval:

Ik �
�
t 2 R: tkÿ1 < tRtk

	
with tkÿ1 < �tk < tk

where R � �ÿ1,1� is the set of real numbers; tk and �tk are the time instants of occurrence of the
minimum stress Smin

k and the maximum stress Smax
k , respectively. The kth fatigue cycle is denoted as the

ordered pair �Smax
k , Smin

k ).

Remark 2.1. A stress cycle is determined by the maximum stress Smax and the following minimum stress
Smin. The frequency and the shape of a stress cycle are not relevant for crack growth in ductile alloys at
room temperature [12]. The load dependence of crack growth is assumed to be completely characterized by
peak and valleys of applied stress at temperatures signi®cantly below one third of the melting point (e.g.
aluminum and ferrous alloys at room temperature). It follows from the above de®nition that Smax

k >
max�Smin

kÿ1, S
min
k �:

Before proceeding to develop the fatigue crack growth model, pertinent observations that are critical for
model formulation and validation are summarized below:

1. An overload may introduce signi®cant crack growth retardation. Up to certain limits, the tenure of
crack retardation e�ects is increased by:
* larger magnitudes of the overload excitation;
* periodic repetition of the overload during the crack propagation life; and
* application of short blocks of overload instead of isolated single-cycle overloads.

2. Crack retardation may not always immediately follow the application of an overload. There could be
a short delay before the crack growth rate starts decreasing. Under some circumstances, a small
initial acceleration in crack growth has been observed. The delayed retardation in crack growth due
to overload was clearly veri®ed by observation of striation spacing [13].

3. The instantaneous crack growth caused by an overload itself is larger than that expected from a
constant-amplitude load equal to the amplitude of the overload. This observation has been con®rmed
by fractography [10]. The rationale is that the crack opening stress S o picks up in magnitude a few
cycles after application of the overload whereas, for constant amplitude load, S o is already at its
steady-state value equal to S oss. Therefore, the crack growth rate while S o is increasing due to a large
Smax is higher than the rate when S o has the steady-state value S oss.

4. An underload has smaller e�ects on crack growth than an overload of the same magnitude [9].
However, an underload applied immediately after an overload may signi®cantly compensate for the
e�ects of crack growth retardation due to the overload [9,14,15]. If the underload precedes the
overload, the compensation is much smaller due to a sequence e�ect of the overload cycles.
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5. In step loading, a high-low sequence produces qualitatively similar results as overload cycles including
delayed retardation [13]. Interaction e�ects after a high-low sequence are barely detectable in the
macroscopic sense. However, more accurate measurements and striations do reveal existence of
locally accelerated crack growth according to McMillan and Pelloux [10].

6. Duration of crack growth retardation depends upon ductility of the material. If ductility of an alloy
is modi®ed by heat treatment, a lower (higher) yield strength corresponds to a longer (shorter)
retardation period. Moreover, the specimen geometry also a�ects the retardation period. Schijve [11]
tested specimens of di�erent thickness under equivalent single-cycle overload conditions. A reduction
in retardation period was observed with increase in thickness.

7. Rest periods at zero stress following a tensile peak overload have no signi®cant in¯uence on
subsequent fatigue crack retardation for ductile alloys at room temperature [16].

8. The approximate non-minimum phase behavior of crack opening stress, observed by Yisheng and
Schijve [17] and Newman [18], is explained as follows: Upon application of an overload, S o decreases
sharply and then rapidly undergoes an overshoot followed by a slow decay. Similarly, an underload
would cause a sharp increase in S o before an undershoot is observed. Debayeh and Topper [19]
measured crack-opening stress on 2024-T351 aluminum alloy specimens using 900 power short focal
length optical microscope at 1, 5, 10, 50, 100 cycles, immediately after application of an overload.
The non-minimum phase behavior of S o was not observed in any one of those specimens. Therefore,
existence of the non-minimum phase behavior in the transient response of S o is debatable at this
moment. Since the transients having the non-minimum phase behavior, if they exist, are fast, their
contributions to overall crack growth are considered to be insigni®cant relative to the total fatigue
life.

Most fatigue crack growth models reported in technical literature are based on modi®cations of the
Paris equation [1] in which the inputs are Smax

k and Smin
k in the kth cycle and the output is the crack

length increment Dak: It is customary in the fracture mechanics community [12,20] to express the
dynamical behavior of fatigue crack growth as a derivative da=dN with respect to the number of cycles,
which is essentially Dak in the kth cycles as delineated below:

Dak � ak ÿ akÿ1 � h
ÿ
DK eff

k

�
with h�0� � 0

DK eff
k �

������������
pakÿ1
p

F�akÿ1, w�
ÿ
Smax

k ÿ So
kÿ1
�
U
ÿ
Smax

k ÿ Smax
kÿ1
� ) for kr1 and a0 > 0 �1�

where akÿ1 and So
kÿ1 are the crack-length and the crack-opening stress, respectively, during the kth cycle

and change to ak and So
k at the expiry of the kth cycle; F��,�� is a crack-length-dependent correction

factor compensating for ®nite geometry of the specimen with the width parameter w; the non-negative
monotonically increasing function h��� can be represented either by a closed form algebraic equation, for
example in the form C�DK eff

k �m, or by table lookup [2]; and

U�x� �
�
0 if x < 0
1 if xr0

is the Heaviside unit step function.
Eq. (1) is a ®rst-order nonlinear di�erence equation excited by Smax

k and So
kÿ1 in the kth cycle.

Apparently, the crack length ak can be treated as a state variable in Eq. (1). However, since S o is
dependent on the stress history (i.e., the ensemble of peaks Smax and valleys Smin in the preceding
cycles). Eq. (1) cannot be readily represented in the state-space setting in its current form. The task is
now to make a state-variable representation of the evolution of S o under variable-amplitude cyclic stress
excitation, and then augment the crack growth model in Eq. (1) with S o as an additional state variable.
It is postulated that a state-space model of crack growth is observable [21]. In other words, the state
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variables in any given cycle can be determined from the history of measured variables over a ®nite

number of cycles. The crack length ak is assumed to be measurable. The other state variable, the crack-

opening stress S o, although not necessarily a measurable quantity, can be determined from a ®nite

history of the input (i.e., peaks and valleys of stress excitation) and the output (i.e., crack length

measurements), starting from a particular cycle in the past onwards to the current cycle. This concept is

analogous to the methods used in the existing crack growth models where either the crack-opening stress

or the reference stress is obtained based on the history of cyclic stress excitation.

It is observed from experimental data that S o requires a short period of cycles to rise a peak value

after the application of a single-cycle overload. If a ®rst order di�erence equation is postulated to model

the transient behavior of S o, then S o can be depicted to have an instantaneous rise, which is a good

approximation for most ductile alloys. The application of an overload should generate a positive pulse

to excite an appropriate state-space equation. Moreover, once this overload pulse reaches its peak, decay

of S o should be very slow. Hence, upon application of a large positive overload, the peak of S o may be

signi®cantly larger than its steady-state value. Upon application of another small overload when S o is

still larger than its steady-state value, the smaller overload should not have any signi®cant e�ect. In

other words, a small overload following a large overload should not generate a pulse input to the state-

space equation. This implies nonlinearity of the forcing function that can be captured by a Heaviside

function. As the nonlinearity is dependent upon the current value of S o, a low-order nonlinear

di�erence equation can provide a viable model for describing the transient behavior of S o under

overload conditions.

The plastic zone size is largest during a load cycle when Smax is applied. As the applied stress is

decreased from Smax, there is a reverse plastic ¯ow at the crack tip [22]. The reverse plastic ¯ow is at its

maximum when the minimum stress Smin, even if positive in value; is applied. This reverse plastic ¯ow

depletes the large plastic zone caused by Smax. If the crack growth leads into a large overload-plastic

zone and if an underload is applied next, then depletion of the plastic zone is higher than the one that

would be caused by a regular (i.e., higher) Smin. This e�ect reduces the protection against crack growth,

which can be stated in other terms as a decrease in S o. Lardner [22] modeled an elastoplastic shear

crack in which the crack was replaced by a linear array of freely slipping dislocations and the plastic

zones by coplanar arrays moving against a frictional resistance.

Rain¯ow cycle counting [5] has been used in variable-amplitude fatigue models to generate the

reference stress, which is analogous to the crack-opening stress to some extent. The rain¯ow technique

remembers the stress history back to the occurrence of least minimum stress. If the new minimum stress

is lower than the previous minimum stress, then cycles are counted according to a rule between these

two minimum stresses and the stored stress pro®le is updated starting from the new minimum stress.

This is analogous to encountering a new Smin that is lower than its past values. This new Smin causes a

large reverse plastic displacement leading to severe depletion of the plastic zone, wherefrom it has to be

built up again by continued application of the stress pro®le. When the plastic zone is severely depleted,

the memory of the previous plastic zone is destroyed and a new memory is built up as the load is

applied further on. The accurately predict the crack growth, the state-space model must be able to

account for the entire reverse plastic ¯ow.

We now proceed to determine the structure of the di�erence equation that is excited by the cyclic

stress input to generate the crack opening stress. To this end, we ®rst consider the steady-state solution

of the di�erence equation under constant amplitude load. This issue has been addressed by several

investigators including Newman [23] and Ibrahim et al. [24]. The steady-state crack-opening stress S oss

under a constant amplitude cyclic load is a function of the minimum stress Smin, the maximum stress

Smax, the constraint factor a (which is 1 for plane stress and 3 for plane strain), the specimen geometry,

and the ¯ow stress S ¯ow (which is the average of the yield strength S y and the ultimate strength S ult).
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These relationships are shown to be good for most ductile alloys by Newman [23]. One such empirical
relation has been used in the FASTRAN-II model [2].

The objective is to construct the di�erence equation for (cycle-dependent and non-negative) crack
opening stress So

k such that, under di�erent levels of constant-amplitude load, the forcing function Soss
k

at the kth cycle matches the crack-opening stress derived from the following empirical relation [23] that
is valid for tensile peak stress (i.e., Smax

k > 0):

Soss
k � Soss

�
Smax

k , Smin
k , ak, F�akÿ1, w�

�

�
8<:
�

max
n�

A0
k � A1

kRk � A2
k�Rk �2�A3

k�Rk �3
�
, Rk

o�
Smax

k for Rkr0ÿ
A0

k � A1
kRk

�
Smax

k otherwise

�2�

where

Rk � Smin
k

Smax
k

U
ÿ
Smax
k

�
for all kr0; �3�

A0
k �

�
0:825±0:34ak � 0:05�ak �2

��
cos

�
p
2

Smax
k

S flow
F�akÿ1, w�

��1=ak
�4�

A1
k � �0:415±0:071ak �

�
Smax

k

S flow
F�akÿ1, w�

�
�5�

A2
k �

ÿ
1ÿ A0

k ÿ A1
k ÿ A3

k

�
U�Rk � �6�

A3
k �

ÿ
2A0

k � A1
k ÿ 1

�
U�Rk � �7�

The constraint factor ak used in Eqs. (4) and (5) is obtained as a function of the crack length increment
Dak in Eq. (1) and a procedure for evaluation of ak is presented in the FASTRAN-II manual [2]. Since
ak does not signi®cantly change over cycles, it can be approximated as piecewise constant for limited
ranges of crack length.

Remark 2.2. It is possible to modify Eq. (2) for non-tensile peak stresses (i.e., Smax
k R0). The state-space

model is not validated for Smax
k R0 due to unavailability of appropriate test data.

Remark 2.3. The inequality in the Heaviside function U�Smax
k � of Eq. (3) should be realized by setting

Smax
k rethr > 0 to avoid the singular region around Smax

k � 0: The parameter ethr is selected during code
development. This modi®cation is not necessary for applications where the peak stress is su�ciently tensile.

The following constitutive relation in the form of a nonlinear ®rst order di�erence equation is
proposed for recursive computation of the crack-opening stress So

k upon the completion of the kth cycle
[25]:
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So
k �

�
1

1� Z

�
So

kÿ1 �
�

Z
1� Z

�
Soss

k �
�

1

1� Z

�ÿ
Soss

k ÿ So
kÿ1
�
U
ÿ
Soss

k ÿ So
kÿ1
�� � 1

1� Z

��
Soss

k

ÿ Soss old
k

�
U
ÿ
Smin

kÿ1 ÿ Smin
k

��
1ÿU

ÿ
Soss

k ÿ So
kÿ1
�� �8�

Z � tS y

2wE
�9�

where the forcing function Soss
k in Eq. (8) is calculated from Eq. (2) as if a constant amplitude stress

cycles �Smax
k , Smin

k � is applied; similarly, Soss old
k is given by Eq. (2) as if a constant amplitude stress cycle

�Smax
k , Smin

kÿ1� is applied. For constant-amplitude loading, S oss is the steady-state solution of S o. In
general, the inputs Soss

k and Soss old
k to Eq. (8) are di�erent from the instantaneous crack-opening stress

So
k under variable-amplitude loading. The Heaviside function U�Soss

k ÿ So
kÿ1� in the third term on the

right-hand side of Eq. (8) allows fast rise and slow decay of S o. The last term on the right-hand side of
Eq. (8) accounts for the e�ects of reverse plastic ¯ow. Depletion of the normal plastic zone occurs when
the minimum stress Smin

k decreases below its value Smin
kÿ1 in the previous cycle, which is incorporated via

the Heaviside function U�Smin
kÿ1 ÿ Smin

k �: Note that the overload excitation and reverse plastic ¯ow are
mutually exclusive.

The dimensionless parameter Z in Eq. (9) depends on the specimen thickness t, half-width w, yield
strength Sy, and Young's modulus E. Following an overload cycle, the duration of crack retardation is
controlled by the transient of So

k in the state-space model, and hence determined by the stress-
independent parameter Z in Eqs. (8) and (9). Physically, this duration depends on the ductility of the
material that is dependent on many factors including the heat treatment of specimens [11]. Smaller yield
strength produces a smaller value of Z, resulting in longer duration of the overload e�ect. Smaller
specimen thickness has a similar e�ect [11]. Although a precise relationship for Z is not known at this
time due to the lack of adequate test data for di�erent materials, Z may be estimated from a single
overload data for another identical specimen made of the same material. In the absence of such data,
the relationship in Eq. (9) could be used to generate an estimate of Z:

Next, we address the issue of (possibly) additional delays associated with the transient response of
crack opening stress So

k, which might be prevalent in some materials. In order to include the e�ects of
delay ` (in cycles) in the response of Soss

k , the right-hand side of Eq. (1) can be modi®ed by altering
DK eff

k as:

Dak � ak ÿ akÿ1 � h
ÿÿ
Smax

k ÿ So
kÿ`ÿ1

� ������������
pakÿ1
p

F�akÿ1 �
�

with So
kÿ`ÿ1 � Smin

k for `r0 �10�

Since the experimental data may not exactly show the transients of S o during and immediately after a
variation of Smax or Smin, the model may not accurately depict S o in this range. Nevertheless, this
(possible) modeling inaccuracy has hardly any e�ect on overall crack growth. Starting with a higher
order di�erence equation, the order (i.e., the number of state variables) of the present model is reduced
to 2 by singular perturbation [26] based on the experimental data of 7075-T6 [9] and 2024-T3 [10]
aluminum alloys. The possibility of a higher order model to represent non-minimum phase behavior or
delayed response of So

k is not precluded for other materials.

Remark 2.4. Eq. (10) is identical to Eq. (1) for ` � 0: In that case, the transient response of crack growth
is subjected to a built-in delay of two cycles after the application of an overload pulse as seen by
examination of Eqs. (1) and (8). For ` > 0, the corresponding delay is �`� 2� cycles.
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2.1. Features of the state-space model

The most important feature of the state-space model is recursive computation of the crack opening
stress without the need for information storage of stress excitation except for the minimum stress in the
previous cycle. This is evident from the governing Eqs. (1) and (8) for ak and So

k, respectively, that the
two-dimensional state-space model of fatigue crack growth has the structure of an ARMA model [6]. In
other words, the crack growth equations can be represented by a second order nonlinear di�erence
equation that recursively updates the state variables, ak and So

k, with Smax
k , Smin

k and Smin
kÿ1 as inputs and

the immediate past information on akÿ1 and So
kÿ1; storage of no other information is required. This

implies that the crack length and crack-opening stress in the present cycle are obtained as simple
algebraic functions of the maximum and minimum stress in the present cycle as well as the minimum
stress, crack length, and crack-opening stress in the immediately preceding cycle.

Next, we compare the state-space model (which is ARMA) with the autoregressive (AR) model
proposed by Holm et al. [27]. While both models are piecewise linear and treat the crack-opening stress
S o as a state variable, there are several di�erences in the structures of their governing equations.
Speci®cally, the state-space model uses mechanistic principles and takes advantage of fatigue test data,
while the AR model is largely empirical. The phenomenon of crack growth retardation requires only
one constant parameter Z in the state-space model. The AR model uses di�erent constant parameters
over the two halves of a cycle to represent the increase and decrease of So

k: A major drawback of having
two di�erent constants is that when frequent overloads (or underloads) are applied, So

k rises with each
successive application and becomes unbounded. Consequently, the AR model is not capable of
capturing the e�ects of a single overload, irregular load sequences, and random loads with the same set
of constants. This problem does not arise in the state-space model as the excitation Soss

k applied due to
an overload is automatically adjusted by subtracting the current value of So

k as seen in the third term on
the right hand side of Eq. (8). The e�ects of an abrupt reduction in Smin during the crack retardation
period are realized in the fourth term.

3. Model validation with fatigue test data

This section validates the state-space model with the fatigue test data of: (i) 7075-T6 aluminum alloy
specimens under di�erent types of variable amplitude cyclic loading [9]; and (ii) 2024-T3 aluminum alloy
specimens under spectrum loading [10]. Predictions of the state-space model and the FASTRAN-II
model [2] are compared with the test data. The state-space model predictions are also comparable with
those of other (crack-tip plastic-zone-based) models (e.g., Wheeler, Willenborg, and Chang) that are
available in the AFGROW software package [3]. These results are not presented in this paper as they do
not convey any signi®cant new information.

3.1. Validation of the state-space model with Porter data

Porter [9] collected fatigue test data on center-notched 7075-T6 aluminum alloy specimens made of
305 mm wide, 915 mm long, and 4.1 mm thick panels, for which E = 69,600 MPa, sy � 520 MPa, and
sult � 575 MPa. The initial crack size (2a ) was 12.7 mm and the experiments were conducted in
laboratory air. Table 1 provides the lookup table data for h(�) in Section 2, which is used instead of the
closed form expression C�DK eff

k �m, to generate predictions of both the state-space and FASTRAN-II
models. Table 2 lists the parameters, amax, amin, Damax and Damin for updating the constraint factor ak by
interpolation (FASRAN-II manual, [2, p. 62]). Note that ak varies between 1.1 and 1.8 for ductile
alloys, depending on the instantaneous crack increment Dak: Fig. 1 shows the pro®le of block loading
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for data generation where the positive integers, n and m, indicate that a block of n constant-amplitude
cycles is followed by a larger amplitude block of m cycles. Using the relationship Z � tSy=2wE in
Section 2, the parameter Z is evaluated to be 010ÿ4 for the Porter specimen. Since Z is stress-
independent, this speci®c value is used for model validation under di�erent loading conditions of Porter
data.

Fig. 2 shows a comparison of the state-space model predictions with Porter data and the predictions
of FASTRAN-II model that calculates the crack opening stress S o in a di�erent way. The curves in the
top left corner plate in Fig. 2 are generated at n = 0 and m = 50 implying that the load is of constant-
amplitude load with peak s2 � 103:5 MPa (15 ksi). The state-space and FASTRAN-II models produce
essentially identical results under constant-amplitude cyclic stresses, because the procedure for
calculating S oss is similar in both models. The curves in each of the remaining plates in Fig. 2 are
generated with the parameter n = 50 and the peak stress of overload s2 � 103:5 MPa (15 ksi) at
di�erent values of m in the load spectrum of Fig. 1. The analyses on both FASTRAN-II and the state-
space models have been conducted with identical initial crack length with the assumption of no loading
history. Therefore, the initial value of S o is not assigned. For variable-amplitude cyclic stresses, the
state-space model predictions are quite close to both the experimental data and predictions of the
FASTRAN-II model, as seen in Fig. 2.

Predictions of both models are compared with Porter data in Fig. 3 for di�erent amplitudes of single-
cycle overload with m = 1 and n = 29 for di�erent overload stress ratios s2=s1, while s1 is held ®xed
at 69 MPa (10 ksi). Similar comparisons are made in Fig. 4 for single-cycle overload (i.e., m = 1) with
di�erent values of overload spacing n and ®xed values of s2 � 103:5 MPa (15 ksi) and s1 � 69 MPa (10
ksi). The plots in Figs. 3 and 4 indicate that the accuracy of the state-space model relative to the
experimental data is comparable to that of the FASTRAN-II model. As seen in Figs. 5 and 6, the state-
space model demonstrates the di�erence between the e�ects of overload-underload and underload-

Table 1

Crack growth lookup table for 7075-T6

DK eff (MPa Zm) Crack growth rate (m/cycle)

0.90 1.0� 10ÿ11

1.35 1.2� 10ÿ9

3.40 1.0� 10ÿ8

5.20 1.0� 10ÿ7

11.9 1.0� 10ÿ6

18.8 1.0� 10ÿ5

29.0 1.0� 10ÿ4

Table 2

Model parameters for fatigue crack growth in aluminum alloys

Alloy amax amin Damax Damin C m

7075-T6 1.8 1.1 5� 10ÿ6 5� 10ÿ5 (See Table 1)

2024-T3 1.73 1.1 9� 10ÿ8 7.5� 10ÿ7 5� 10ÿ11 4.07
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overload on crack growth in agreement with the test data. In contrast, the FASTRAN II model does
not show any appreciable di�erence when corresponding results are compared. The predictions of the
state-space model are apparently superior to those of FASTRAN II for sequence e�ects.

3.2. Predictions for complex spectrum loads

McMillan and Pelloux [10] collected fatigue data under complex spectrum loads for center-notched
2024-T3 aluminum alloy specimens made of 229 mm wide, 610 mm long and 4.1 mm thick panels.
Fatigue testing was accomplished in a vertical 125 kip electro-hydraulic fracture jig of Boeing design.
The testing system was capable of applying loads with an absolute error within 21% of the maximum
programmed load. The initial crack size (2a ) was 12.7 mm and the experiments were conducted in
laboratory air. Thirteen load spectrum programs, P1±P13 were run on di�erent specimen until failure.
The composition of the 2024-T3 alloy used for spectra P1±P7 and P11±P13 was slightly di�erent from
that of the 2024-T3 alloy used for spectra P8±P10. The average properties of both materials based on
three observations are listed in Table 3. The Young's modulus of 2024-T3 alloy is 71,750 MPa. Fatigue
crack growth for spectra P1±P13 is calculated based on the parameters of 2024-T3 alloy in Table 2 and
the closed form C�DK eff

k �m of the function h(�) in Section 2. Using the relationship Z � tSy=2wE in
Section 2, the parameter Z is evaluated to be 00.78� 10ÿ4 for spectra P8±P10 and 00.82� 10ÿ4 for the
remaining spectra based on the material parameters in Table 3.

Predictions of the specimen life for the state-space and FASTRAN-II models are compared with test
data of McMillan and Pelloux [10] for each load spectrum as shown as shown in Table 4. In view of the
fact that the number of samples (e.g., in the order of three or four) over which the test data are
averaged is small, modest disagreements (in the range of 010%) between the state-space model
predictions and the test data in Table 4 are reasonable. Although both state-space and FASTRAN-II

Fig. 1. Cyclic stress excitation for Porter data.

Table 3

Average properties of 2024-T3 used under load spectraa

Spectrum program Ultimate strength sult (MPa) Yield strength sy (MPa)

P1±P7, P11±P13 473.3 327.9

P8±P10 492.1 315.1

a Young's Modulus E = 71,750 MPa for spectrum programs P1±P13.
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Fig. 2. Model validation with Porter data under block loading.
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Fig. 3. Model validation with Porter data under di�erent overload amplitude.

Table 4

Comparison of predicted and actual life under spectrum loads

Program spectrum Specimen life in number of spectra

Test data State-space model prediction FASTRAN-II model prediction

P1 4950 4542 3018

P2 5330 4583 3135

P3 3630 3375 2693

P4 1875 1667 1282

P5 3605 3125 2470

P6 10775 9091 8550

P7 11900 9636 8463

P8 3860 3438 2211

P9 3700 2813 2206

P10 2553 1677 1691

P11 7900 6990 5138

P12 5060 4625 2560

P13 2680 2450 1653
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Fig. 4. Model validation with Porter data under di�erent overload spacings.

Table 5

Execution time on 200 MHz Intel Pentium PC platform

Load description State-space model (time in seconds) FASTRAN-II Model (time in seconds)

Program P1 2.13 12.53

Program P2 2.1 13.99

Program P3 1.55 17.45

Program P4 1.53 12.49

Program P5 1.75 16.89

Program P6 4.04 18.04

Program P7 4.08 18.22

Program P8 3.14 19.79

Program P9 2.54 22.13

Program P10 1.83 19.75

Program P11 3.41 16.35

Program P12 2.09 19.47

Program P13 2.07 15.95
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models yield acceptable results, predictions of the state-space model are closer to the experimental data
in almost all thirteen cases of spectrum loads P1±P13 as seen in the plates of Figs. 7±10. The agreement
of state-space model predictions with experimental data strongly supports the fundamental hypothesis
that the crack opening stress can be treated as a state variable.

Fig. 5. Model validation with Porter data (overload-underload).
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4. Comparison of computation time

Table 5 lists typical computation time required for calculation of crack growth under programmed
loads P1±P13 on a 200 MHz Intel Pentium PC platform. A similar comparison for Porter data has been
reported earlier by Patankar et al. [28] on an SGI Indy platform. In most of the thirteen cases reported
in Table 5, the state-space model predicts a longer life than FASTRAN II by a few thousand cycles. In

Fig. 6. Model validation with Porter data (underload-overload).
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Fig. 7. Model validation with spectral data (programs P1±P4).
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Fig. 8. Model validation with spectral data (programs P5±P8).

R. Patankar, A. Ray / Engineering Fracture Mechanics 66 (2000) 129±151146



Fig. 9. Model validation with spectral data (programs P9±P11).
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the case of spectrum P10, both models run for approximately the same number of cycles, which
provides a fair comparison of their computation time. The state-space model is more than 10 times
faster than the FASTRAN II model for the spectrum P10. The execution time per spectrum block for
both the models indicates that the state-space model is about 10 times faster than the FASTRAN II
model for each of the thirteen spectrums. The rationale for signi®cantly enhanced computational
performance of the state-space model is given below.

The state-space model recursively computes So
k with Smax

k , Smin
k and Smin

kÿ1 as inputs, as seen in Section
2. This implies that the crack opening stress in the present cycle, is obtained as a simple algebraic
function of the maximum and minimum stress excitation in the present cycle, as well as the minimum
stress and the crack opening stress in the immediately preceding cycle. In contrast, the FASTRAN-II
model computes the crack opening stress as a function of contact stresses and crack opening
displacements based on the stress history.

Since the state-space model does not need storage of load history except the minimum stress in the
previous cycle, its memory requirements are much lower than those of FASTRAN II that does require
storage of a relatively long load history. Consequently, both computer execution time and memory
requirement of the state-space model are signi®cantly smaller than those of the FASTRAN-II model.
Speci®cally, the state-space enjoys the following advantage over other crack growth models:

. smaller execution time and computer memory requirements as needed for real-time heath monitoring
and life extending control [29]; and

Fig. 10. Model validation with spectral data (programs P12 and P13).
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. Compatibility with other state-space models of plant dynamics (e.g., aircraft ¯ight dynamic systems
and rocket engine systems) and structural dynamics of critical components as needed for synthesis of
life-extending control systems [8].

5. Summary and conclusions

This paper presents formulation and validation of a state-space model for fatigue crack growth
prediction under variable-amplitude loading. The state-space model is built upon fracture-mechanistic
principles of the crack-closure concept and experimental observations of fatigue test data. The model
state variables are crack length and crack opening stress, and the model inputs are maximum stress and
minimum stress in the current cycle and the minimum stress in the previous cycle. As such the crack
growth model can be represented in the ARMA setting by a second order nonlinear di�erence equation
that recursively computes the state variables without the need for storage of stress history except the
minimum and maximum stresses in the present cycle and the minimum stress in the immediate past
cycle. The two-state model can be augmented with additional states to capture the delayed e�ects of
crack retardation if necessary. Simplistic state-space models, meant for constant-amplitude loads
[8,29,30], have been used earlier for monitoring and control applications because of unavailability of a
reliable model for crack growth prediction under variable-amplitude load. With the availability of the
state-space model, reliable strategies can now be formulated for real-time decision and control of
damage-mitigation and life-extension.

Although the structure of the state-space model for crack growth prediction is similar to that of the
FASTRAN-II model [2], the major di�erence is in the formulation of transient behavior of the crack
opening stress. Since the crack opening stress in FASTRAN-II is calculated asynchronously based on a
relatively long history of stress excitation over the past (0300) cycles, it does not follow a state-space
structure. The state-space model of fatigue crack growth adequately captures the e�ects of stress
overload and reverse plastic ¯ow, and is applicable to various types of loading including single-cycle
overloads, irregular sequences and random loads. The state-space model has been validated with fatigue
test data of Porter [9] and McMillan and Pelloux [10] for 7075-T6 and 2024-T3, respectively. The model
predictions are also compared with those of FASTRAN-II for identical input stress excitation. While
the results derived from these two models are comparable, the state-space model enjoys signi®cantly
smaller computation time and memory requirements.

The state-space model uses the structure of constant-amplitude crack opening stress [23] as a forcing
function into the constitutive equation of crack opening stress. Construction of a state-space model
based on other forcing functions needs to be explored.

Although the constitutive equation for crack opening stress in the state-space model is built upon
physical principles, the model formulation still relies on semi-empirical relationships derived from
experimental data. More emphasis on the physics of fatigue fracture will enhance the credibility of the
state-space model; and also expose its potential shortcomings, if any. Therefore, it is desirable to
formulate the transient behavior of the crack opening stress in the microstructural setting based on the
dislocation theory.

Currently, the transients of crack opening stress are estimated from the available fatigue test data of
crack growth. The information on relatively fast dynamics of crack opening stress is likely to be
contaminated during the estimation process. Transient test data on crack opening stress under load
variations are necessary for identi®cation of more accurate and reliable state-space models. Controlled
experiments, equipped with high-bandwidth instrumentation, need to be carried out to determine the
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exact nature of nonlinearities that are represented by the Heaviside functions in the state-space model.
Availability of additional crack growth data, under di�erent types of cyclic loads and for di�erent
materials and specimen geometry, will enhance validation of the state-space model.
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