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Abstract

This paper presents formulation and validation of an adaptive "lter for real-time calibration of redundant signals consisting of
sensor data and/or analytically derived measurements. The measurement noise covariance matrix is adjusted as a function of the
a posteriori probabilities of failure of the individual signals. An estimate of the measured variable is obtained as a weighted average of
the calibrated signals. The weighting matrix is recursively updated in real time instead of being "xed a priori. The calibration and
estimation "lter has been tested by injecting faults into the data set collected from an operating power plant. The "lter software is
presently hosted in a Pentium platform and is portable to other commercial platforms. The "lter can be used to enhance the
Instrumentation & Control System Software in tactical and transport aircraft, and nuclear and fossil power plants. ( 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Redundant sensors are often installed to generate spa-
tially averaged time-dependent estimates of critical vari-
ables for reliable monitoring and control of complex
dynamical processes such as aircraft (Daly, Gai & Har-
rison, 1979) and power plants (Deckert, Fisher, Laning
& Ray, 1983). Sensor redundancy is often augmented
with analytical measurements that are obtained from
physical characteristics and/or model of the plant dy-
namics in combination with other available sensor data
(Desai, Deckert & Deyst, 1979; Ray, Geiger, Desai
& Deyst, 1983; Ray & Desai, 1986). Both sensor and
analytical redundancies are referred to as redundant sig-
nals in the sequel.

Individual signals in a redundant set may often exhibit
deviations from each other after a length of time. These
di!erences could be caused by slowly time-varying sensor
parameters (e.g., ampli"er gain), plant parameters (e.g.,

structural sti!ness, and heat transfer coe$cient), trans-
port delays, etc. Consequently, some of the redundant
signals could be deleted by a fault detection and isolation
(FDI) algorithm if these signals are not periodically cali-
brated. On the other hand, failure to isolate a degraded
signal (for example, due to increased threshold bound
in the FDI algorithm) could cause an inaccurate estimate
of the measured variable. In this case, the plant perfor-
mance and stability may be adversely a!ected if the
inaccurate estimate is used as an input to the decision
and control system.

This paper presents a calibration and estimation "lter
for redundancy management of sensor data and analyti-
cal measurements. The salient features of the "lter are
delineated below.

f All signals are simultaneously calibrated on-line to
compensate for their relative errors.

f The weights of individual signals for computation of
a least-square estimate of the measured variable are
adaptively updated as functions of the respective
a posteriori probabilities of failure.

In the event of an abrupt disruption of a redundant
signal in excess of its allowable bound, the respective
signal is isolated by the FDI algorithm, and only the
remaining signals are calibrated to provide an unbiased
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estimate of the measured variable. For a gradual degra-
dation (e.g., a sensor drift), the faulty signal is not im-
mediately isolated but its in#uence on signal calibration
and estimation is diminished as a function of its deviation
from the remaining signals. This is achieved by decreas-
ing the relative weight of the degraded signal as a mono-
tonic function of the magnitude of its residual (i.e.,
deviation from the estimate) that is a measure of its
relative degradation. Thus, if the error bounds of the FDI
algorithm are appropriately increased to reduce the
probability of false alarms, an undetected fault would
have smaller bearing on the accuracy of signal calib-
ration and estimation as a result of the adaptively re-
duced weight. Therefore, the resulting delay in detecting
a gradual degradation could be tolerated because the
weighted estimate is practically una!ected. Furthermore,
since the weight of a gradually degrading signal is
smoothly reduced, the eventual isolation of the fault
would not cause any abrupt change in the estimate.

The calibration and estimation "lter is validated based
on redundant sensor data of throttle steam temperature
collected from an operating power plant. Development and
validation of the "lter algorithm are presented in the main
body of the paper along with concluding remarks. The
appendix presents the theory of multiple hypotheses based
on a posteriori probability of failure of a single signal.

2. Signal calibration and estimation

A redundant set of l sensors and/or analytical
measurements of a n-dimensional plant variable are
modeled at the kth sample as
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Remark 1. The noise covariance matrix R
k

of uncali-
brated signals plays an important role in the adaptive
"lter for both signal calibration and estimation. Later it
is shown how R

k
is recursively tuned based on the history

of calibrated signals.

Eq. (1) is rewritten in a more compact form as
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where the correction c
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due to the combined e!ect of bias

and scale factor errors is de"ned as
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A recursive relation of the correction c
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is modeled sim-
ilar to a random walk process as
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where the stationary noise v
k

represents modeling uncer-
tainties. The objective is to obtain an unbiased predictor
estimate c(

k
of the correction c

k
so that the signal m

k
can

be calibrated at each sample.
Let us construct a "lter that calibrates each signal with

respect to the remaining redundant signals. The "lter
input is the parity vector p

k
of the uncalibrated signal m

k
,

which is de"ned (Potter & Suman, 1977; Ray & Desai,
1986; Ray & Luck, 1991) as

p
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where the rows of the projection matrix <3R(l~n)Cl

form an orthonormal basis of the left null space of the
scale factor matrix H3RlCn in Eq. (1)., i.e.,
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and the columns of < span the parity space that contains
the parity vector. A combination of Eqs. (2), (5) and (6)
yields
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Remark 2. If the scale factor error matrix *H
k
belongs to

the column space of H, then the parity vector p
k

is
independent of the true value x

k
of the measured vari-

able. Therefore, for DD<*H
k
x
k
DD;DD<b

k
DD that includes

small scale factor errors, the calibration "lter operates
approximately independent of x

k
.

Now we proceed to construct a recursive algorithm to
predict the estimated correction c(

k
based on the principle

of a linear least-squares estimator that has the structure
of an optimal minimum-variance "lter (Jazwinski, 1970;
Gelb, 1974) and uses Eqs. (4) and (7)
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calibrated signal y
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as
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Using Eqs. (5) and (9), the innovation c
k

in Eq. (8) can be
expressed as the projection of the calibrated signal
y
k

onto the parity space, i.e.,
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By setting !
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<, we obtain an alternative form of

the recursive relations in Eq. (8) as
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Remark 3. The matrix (<[R
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Next, we obtain an unbiased weighted least-squares
estimate x(

k
of the measured variable x

k
based on the

calibrated signal y
k

as
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Remark 4. The inverse R~1
k

of the measurement
covariance matrix R

k
serves as the weighting matrix for

generating the estimate x(
k

and is used as a "lter matrix.

Remark 5. Compensation of a (slowly varying) undetec-
ted error in the jth signal out of l redundant signals
causes the magnitude D

j
c(
k
D in the correction vector c(

k
to

be the largest. Therefore, a limit check on each element of
c(
k

allows detection and isolation of the degraded sig-
nal(s). The bounds of limit check, which could be di!erent
for individual elements of c(

k
, are selected by trade-o!

between the probability of false alarms and the allowable
error in the estimate x(

k
of the measured variable.

2.1. Degradation monitoring

Following Eq. (12), we de"ne the residual g
k

of the
calibrated signal y

k
as

g
k
"y

k
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k
. (13)

The residuals represent a measure of relative degradation
of individual signals. For example, under normal condi-
tions, all calibrated signals are clustered together, i.e.,
DDg

k
DD+0, although this may not be true for the residuals

(m
k
!Hx(

k
) of uncalibrated signals.

While large abrupt changes in excess of the error
threshold are easily detected and isolated by a standard
diagnostics procedure (e.g., Ray & Desai, 1986), small
errors (e.g., slow drift) can be identi"ed from the a poste-
riori probability of failure of the calibrated signals. The
a posteriori probability of failure is recursively computed
from the history of residuals based on the following

ternary hypotheses:

H0: Normal behavior with a priori conditional density
function

j
f 0(v),

j
f (vDH0),

H1: High (positive) failure with a priori conditional den-
sity function

j
f 1(v),

j
f (vDH1),

H2: Low (negative) failure with a priori conditional den-
sity function

j
f 2(v),

j
f (vDH2), (14)

where the left subscript refers to the jth signal for
j"1,2,2,l, and the right superscript indicates the nor-
mal or failure mode. The density function for each resid-
ual is determined a priori from experimental data and/or
instrument manufacturers' speci"cations. Only one test is
needed here to accommodate both positive and negative
failures in contrast to the binary hypotheses that require
two tests.

Let us apply the recursive relations for multi-level
hypotheses testing of single variables, derived in the Ap-
pendix, to each signal residual. Then, for the jth signal at
the kth sampling instant, a posteriori probability of fail-
ure
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where
j
p is the a priori probability of failure of the

jth sensor during one sampling period, and the initial
condition of each state,

j
(

0
, j"1, 2,2,l, needs to be

speci"ed.
Based on the a posteriori probability of failure, we now

proceed to formulate a recursive relation for the
measurement noise covariance matrix R

k
that in#uences

both calibration and estimation as seen in Eqs. (8)}(12).
Its initial value R

0
, which is determined from experi-

mental data and/or instrument manufacturers' speci"ca-
tions, provides the a priori information on individual
signal channels and conforms to the normal operating
mode when all calibrated signals are clustered together,
i.e., DDg

k
DD+0. In the absence of any signal degradation,

R
k

remains close to its initial value R
0
. Signi"cant

changes in R
k

may take place if one or more signals
start degrading. The following model captures this
phenomenon:

R
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where Rrel
k

is a positive-de"nite diagonal matrix repres-
enting only a posteriori relative information of the indi-
vidual signal channels and is independent of the speci"c
structure of the sensor system; Rrel

k
is recursively gener-

ated as follows:
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where
j
rrel
k

and
j
%

k
are, respectively, the relative vari-

ance and a posteriori probability of failure of the jth
signal at the kth instant; and h : [0,1)P[1,R) is a con-
tinuous monotonically increasing function with bound-
ary conditions h(0)"1 and h(u)PR as uP1.

Remark 6. The implication of Eq. (17) is that credibility
of a signal monotonically decreases with increase in its
variance that tends to in"nity as its a posteriori probabil-
ity of failure approaches 1. The magnitude of the relative
variance

j
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is set to the minimum value of 1 for zero
a posteriori probability of failure. In other words, the jth
diagonal element
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of the weighting matrix
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Similarly, the relative weight
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is set to the maxi-
mum value of 1 for
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"0. Consequently, a grad-

ually degrading sensor carries monotonically decreas-
ing weight in the computation of the estimate x(
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in

Eq. (12).

Next, we set the bounds on the states
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of the

recursive relation in Eq. (15). The lower limit of
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(which is an algebraic function of
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p of intra-sample failure. On the other ex-

treme, if
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approaches 1, the weight
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(that ap-
proaches zero) may prevent fast restoration of a degraded
sensor following its recovery. Therefore, the upper limit
of

j
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is set to (1!

j
a) where

j
a is the allowable prob-

ability of false alarms of the jth signal. Consequently, the
function h(f) in Eq. (17) is restricted to the domain
[
j
p, (1!

j
a)] to account for probabilities of intra-samp-

ling failures and false alarms. Following Eq. (15), the
lower and upper limits of the states

j
(

k
thus become
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p) and (1!

j
a)/

j
a, respectively. Consequently,

the initial state in Eq. (15) is set as
j
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"
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p) for

j"1, 2,2,l.

3. Sensor calibration in a commercial-scale fossil power
plant

The calibration "lter, derived above, has been tested in
a 320 MWe coal-"red supercritical power plant for on-
line sensor calibration and estimation at the throttle
steam condition of &10403F (5603C) and &3625 psia
(25.0 MPa). The set of redundant signals is generated by
four temperature sensors installed at di!erent spatial
locations of the main steam header that carries super-
heated steam from the steam generator into the high-
pressure turbine via the throttle valves and governor
valves (Stultz & Kitto, 1992). Since these sensors are not
spatially collocated, they can be asynchronous under
transient conditions due to the time-varying transport
lag. The "lter simultaneously calibrates the sensors to
generate a time-dependent estimate of the throttle steam
temperature that is spatially averaged over the main

steam header. This information on the estimated average
temperature is used for health monitoring and damage
prediction in the main steam header as well as for coor-
dinated feedforward}feedback control of the power plant
under both steady-state and transient operations
(Kallappa, Holmes & Ray, 1997; Kallappa & Ray, 2000).
The "lter software is hosted in a Pentium platform and
can be transported to other platforms.

The readings of all the four temperature sensors have
been collected over a period of 100 h at the sampling
frequency of once every one minute. The collected data,
after bad data suppression (e.g., elimination of obvious
outliers following built-in tests such as limit check and
rate check), shows that each sensor exhibits temperature
#uctuations resulting from the inherent thermal-hydrau-
lic noise and process transients as well as the instrumen-
tation noise. For this speci"c application, the parameters,
functions, and matrices of the calibration "lter are
selected as described below.

3.1. Filter parameters and functions

We start with the "lter parameters and func-
tions that are necessary for degradation monitoring.
In this application, each element of the residual vector
g
k

of the calibrated signal vector y
k

is assumed to
be Gaussian distributed that assures existence of the
likelihood ratios in Eq. (15). The structures of the
a priori conditional density functions are chosen as
follows:
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where
j
p is the standard deviation, and

j
h and !

j
h are

the thresholds for positive and negative failures, respec-
tively, of the jth residual.

Since it is more convenient to work in the natural-log
scale for Gaussian distribution than for the linear scale,
an alternative to Eq. (17) is to construct a monotonically
decreasing continuous function g : (!R, 0)P(0,1] in
lieu of the monotonically increasing continuous function
h : [0,1)P[1,R) so that

=rel
k`1

,(Rrel
k`1

)~1"diag[ g(ln
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)], i.e., the weight
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The structure of the continuous function g(v) is chosen to
be piecewise linear as given below:

g(u)"G
w.!9

for u4u.*/,
(u.!9!u)w.!9#(u!u.*/)w.*/

u.!9!u.*/
(0,

for !R4u.*/4u4u.!9

w.*/

for u5u.!9.

(20)

The function g(v) maps the space of
j
%

k
in the natural

log scale into the space of the relative weight
j
wrel

k`1
of

individual sensor data. The domain of g(v) is restricted
to [ln(

j
p), ln(1!

j
a)] to account for probability

j
p of

intra-sampling failure and probability
j
a of false alarms

for each of the four sensors. The range of g(v) is selected to
be [

j
w.*/,1] where a positive minimum weight

(i.e.,
j
w.*/'0) allows the "lter to restore a degraded

sensor following its recovery. Numerical values of the
"lter parameters,

j
p,

j
h,

j
p,

j
a, and

j
w.*/ are presented

below:

f Standard deviations of the a priori Gaussian density
functions of the four temperature sensors are

1
p"4.13F (2.283C);

2
p"3.03F (1.673C);

3
p"2.43F (1.333C);

4
p"2.83F (1.563C).

The initial condition for the measurement noise
covariance matrix is set as: R

0
"diag[

j
p].

The failure threshold parameters are selected as:

j
h"

j
p/2 for j"1, 2, 3, 4.

f The probability of intra-sampling failure is assumed to
be identical for all four sensors as they are similar in
construction and operate under identical environment.
Operation experience at the power plant shows that
the mean life of a resistance thermometer sensor, in-
stalled on the mean steam header, is about 700 days of
continuous operation. For a sampling interval of one
minute, this information leads to

j
p+10~6 for j"1, 2, 3, 4.

f The probability of false alarms is selected in consulta-
tion with the plant operating personnel. On the aver-
age, each sensor is allowed to generate a false alarm
after approximately 700 days of continuous operation.
For a sampling interval of one minute, this informa-
tion leads to

j
a+10~6 for j"1, 2, 3, 4.

f To allow restoration of a degraded sensor following its
recovery, the minimum weight is set as

j
w

.*/
+10~3 for j"1, 2, 3, 4.

3.2. Filter matrices

After conversion of the sensor data into engineering
units, the scale factor matrix in Eq. (1) becomes

H"[1 1 1 1]T.

Consequently, following Potter and Suman (1977) and
Ray and Luck (1991), the parity space projection matrix
in Eq. (6) becomes

<"C
J3

4
!J 1

12
!J 1

12
!J 1

12
0 J2

3
!J1

6
!J1

6
0 0 J1

2
!J1

2
D.

Remark 7. In the event of a sensor being isolated as
faulty, sensor redundancy reduces to 3, for which

H"C
1

1

1D and <"C
J2

3
!J1

6
!J1

6
0 J1

2
!J1

2
D.

The ratio, R~1@2
k

QR~1@2
k

, of covariance matrices Q and
R

k
in Eqs. (4) and (1), respectively, largely determines the

characteristics of the minimum variance "lter in Eq. (8) or
Eq. (11). The "lter gain !

k
increases with a larger ratio

R~1@2
k

QR~1@2
k

and vice versa. Since the initial steady-state
value R

0
is speci"ed and Rrel

k
is recursively generated

thereon to calculate R
k
via Eq. (16), the choice is left only

for selection of Q. As a priori information on Q may not
be available, its choice relative to R

0
is a design feature.

In this application, we have set Q"R
0
.

3.3. Filter performance based on experimental data

The "lter was tested on-line in the power plant over
a continuous period of six months except for two short
breaks during plant shutdown. The test results showed
that the "lter was able to calibrate each sensor under
both pseudo-steady-state and transient conditions under
closed-loop control of throttle steam temperature. The
calibrated estimate of the throttle steam temperature was
used for plant monitoring and control under steady state,
load following, start-up, and scheduled shutdown. No
natural failure of the sensors occurred during the test
period and there was no evidence of any drift of the
estimated temperature.

In addition to testing under on-line plant operation,
simulated faults have been injected into the plant data to
evaluate e$cacy of the calibration "lter under sensor
failure conditions. Based on the data of four temperature
sensors collected at 1 min over a period of 0}100 h, the
following case of simulated sensor degradation is pre-
sented below:

A. Ray, S. Phoha / Automatica 36 (2000) 1525}1534 1529



Fig. 1. Filter Performance for Drift Error in a Sensor.

3.3.1. Drift error and recovery in a single sensor
Starting at 12.5 h, a drift error was injected into the

data stream of Sensord1 in the form of an additive ramp
at the rate of 1.1673F (0.6483C)/h. The injected fault was
brought to zero at 75 h signifying that the faulty ampli"er
in the sensor hardware was corrected and reset.

Simulation results in the six plates of Fig. 1 exhibit
how the calibration "lter responds to a gradual drift in
one of the four sensors while the remaining three are
normally functioning. Plate (a) in Fig. 1 shows the re-

sponse of the four uncalibrated sensors as well as the
estimate generated by simple averaging (i.e., "xed identi-
cal weights) of these four sensor readings at each sample.
The sensor data pro"le includes transients lasting from
&63 to &68 h. From time 0 to 12.5 h when no fault is
injected, all sensor readings are clustered together. There-
fore, the uncalibrated estimate, shown by a thick solid
line, is in close agreement with all four sensors during the
period 0 to 12.5 h. Sensord1, shown by the dotted line,
starts drifting at 12.5 h while the remaining three sensors,

1530 A. Ray, S. Phoha / Automatica 36 (2000) 1525}1534



shown by thin solid lines, stay healthy. Consequently, the
uncalibrated estimate starts drifting at one quarter of the
drift rate of Sensord1 because of equal weighting of all
sensors in the absence of the calibration "lter. Upon
termination of the drift fault at 75 h, when Sensord1 is
brought back to the normal state, the uncalibrated esti-
mate resumes its normal state close to all four sensors for
the remaining period from 75 to 100 h.

Plate (b) in Fig. 1 shows the response of the four
calibrated sensors as well as the estimate generated by
weighted averaging (i.e., varying non-identical weights) of
these four sensor readings at each sample. The calibrated
estimate in Plate (b) stays with the remaining three
healthy sensors even though Sensord1 is gradually
drifting. Plate (f ) shows that, after the fault injection,
Sensord1 is weighted less than the remaining sensors.
This is due to the fact that the residual g1

k
(see Eq. (13)) of

Sensord1 in Plate (c) increases in magnitude with the
drift error. The pro"le of

1
wrel in Plate (f ) is governed by

its nonlinear relationship with g1
k

given by Eqs. (15), (19)
and (20). As seen in Plate (f ),

1
wrel initially changes very

slowly to ensure that it is not sensitive to small #uctu-
ations in sensor data due to spurious noise such as those
resulting from thermal-hydraulic turbulence. The signi"-
cant reduction in

1
wrel takes place after about 32 h and

eventually reaches the minimum value of 10~3 when g1
k

is
su$ciently large. Therefore, the calibrated estimate x(

k
is

practically una!ected by the drifting sensor and stays close
to the remaining three healthy sensors. In essence, x(

k
is the

average of the three healthy sensors. Upon restoration of
Sensord1 to the normal state, the calibrated signal

1
y
k

temporarily goes down because of the large value of
correction

1
c(
k
at that instant as seen in Plate (e). However,

the adaptive "lter quickly brings back
1
c(
k
to a small value

and thereby the residual
1
g
k

is reduced and the original
weight (i.e.,&1) is regained. Calibrated and uncalibrated
estimates are compared in Plate (d) that shows a di!erence
of about 103F (4.53C) over a prolonged period.

In addition to the accuracy of the calibrated estimate,
the "lter provides fast and smooth recovery from abnor-
mal conditions under both steady-state and transient
operations of the power plant. For example, during the
transient disturbance after about 65 h, the steam temper-
ature undergoes a relatively large swing. Since the sen-
sors are not spatially collocated, their readings are
di!erent during plant transients as a result of (time-vary-
ing) transport lag in the steam header. Plate (f ) shows
that the weights of two sensors out of the three healthy
sensors are temporarily reduced while the remaining
healthy sensor enjoys the full weight and the drifting
Sensord1 has practically no weight. As the transients are
over, three healthy sensors resume the full weight. The
cause of weight reduction is the relatively large residuals
of these two sensors as seen in Plate (c). During this
period, the two a!ected sensors undergo modest correc-
tions: one is positive and the other negative as seen in

Plate (e) so that the calibrated values of the three healthy
sensors are clustured together. The health monitoring
system and the plant control system rely on calibrated
estimates of signals such as spatially averaged throttle
steam temperature (Kallappa et al., 1997; Kallappa
& Ray, 2000; Holmes & Ray, 1998, 2000).

An important feature of the calibration "lter is that it
reduces the deviation of the drifting Sensord1 from the
remaining sensors as seen from a comparison of its re-
sponses in Plates (a) and (b). This is very important from
the perspectives of fault detection and isolation for the
following reason. In an uncalibrated system, Sensord1
might have been isolated as faulty due to accumulation of
the drift error. In contrast, the calibrated system makes
Sensord1 temporarily ine!ective without eliminating it
as faulty. A warning signal can be easily generated when
the weight of Sensord1 diminishes to a small value. This
action will draw the attention of maintenance personnel
for possible repair or adjustment. Since the estimate x(

k
is

not contaminated by the degraded sensor, a larger detec-
tion delay can be tolerated. Consequently, the allowable
threshold for fault detection can be safely increased to
reduce the probability of false alarms.

4. Summary and conclusions

This paper develops and validates an adaptive "lter for
on-line calibration of redundant signals and estimation
of the measured plant variable. The redundancy may
consist of both sensor signals and/or analytical measure-
ments that are derived from other sensor signals and
physical characteristics or a model of the plant. All
redundant signals are simultaneously calibrated by
additive corrections that are recursively estimated.
A weighted least-squares estimate of the measured vari-
able is generated in real time where the weighting matrix
is adaptively adjusted as a function of the a posteriori
probability of failure of the calibrated signals. The e!ects
of intra-sample failure and probability of false alarms are
taken into account in the recursive "lter that has been
tested for on-line calibration of four redundant sensors of
the throttle steam temperature in a commercial-scale
fossil power plant. In addition, simulated scenarios of
sensor failure have been investigated by injecting faults
into a set of data collected from an operating fossil power
plant. The "lter exhibits speed and accuracy during both
steady state and transient operations of the power plant.
It also shows fast recovery when the fault is corrected or
naturally mitigated. The software is presently hosted in
a Pentium platform and is portable to other commercial
platforms. The important features of this real-time adap-
tive "lter are summarized below:

f A model of the physical process is not necessary for
calibration and estimation if su$cient redundancy
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of sensor data and/or analytical measurements is
available.

f All signals are simultaneously calibrated on-line to
compensate for their relative errors.

f The weights of individual signals for computation of
a least-square estimate are adaptively updated as func-
tions of the respective a posteriori probabilities of
failure.

The proposed calibration and estimation "lter can
enhance the Instrumentation & Control System Software
in tactical and transport aircraft, and nuclear and fossil
power plants. However, a limitation of this "lter is its
inability to handle common mode faults (i.e., similar
faults, possibly due to a common source, in all or a ma-
jority) of redundant sensors because the "lter algorithm
relies on the relative error among the individual signals.
Additional information (e.g., analytic redundancy) is
needed to deal with common-mode faults.
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Appendix: Multiple hypotheses testing based on
independent observations of a single variable

Let Mg
k
, k"1, 2, 3,2N be independent observations

of a single variable (e.g., residual of a signal) at conse-
cutive sampling instants. We assume M distinct possible
modes of failure in addition to the normal mode of
operation that is designated as the mode 0. Thus, at
each sampling instant, there are (M#1) mutually ex-
clusive and exhaustive modes. Each of these (M#1)
modes is treated as a Markov state. The hypotheses of
failure of (M#1) modes at the kth sample are de"ned as
follows:

H0
k
: Normal behavior with a priori density function

f 0(v),f (vDH0),

Hi
k
: Abnormal behavior with a priori density function

f i(v),f (vDHi ), i"1, 2,2,M. (A.1)

We assume a one}one correspondence between the set of
(M#1) modes and the set of their failure hypotheses
Hj

k
, j"0, 1, 2,2, M. In the sequel, the terms, mode and

hypothesis, are synonymously used.

We de"ne the a posteriori probability nj
k

of the jth
mode at the kth sample as

nj
k
,P[Hj

k
DZ

k
], j"0,1,2,2, M, (A.2)

based on the cumulative information Z
k
,5k

i/1
z
i
over

k samples where the events z
i
,Mg

i
3B

i
N are mutually

independent and B
i

is the region of interest at the ith
sample. The problem is to derive a recursive relation for
a posteriori probability %

k
of any one of the M failure

modes at the kth sample

%
k
,PC

M
Z
j/1

Hj
k
DZ

kD"
M
+
j/1

P[Hj
k
D Z

k
]N%

k
"

M
+
j/1

nj
k
.

(A.3)

Eq. (A.3) holds because of the exhaustive and mutually
exclusive properties of the Markov states, Hj

k
,

j"1, 2,2, M. To construct a recursive relation for %
k
,

we introduce the following de"nitions:
Joint probability:

mj
k
,P[Hj

k
,Z

k
], (A.4)

a priori probability:

jj
k
,P[z

k
D Hj

k
], (A.5)

transition probability:

ai,j
k
,P[Hj

k
DHi

k~1
]. (A.6)

Then, because of independence of the events z
k
and Z

k~1
,

Eq. (A.4) takes the following form:

mj
k
"P[Hj

k
, z

k
,Z

k~1
]

"P[z
k
DHj

k
]P[Hj

k
,Z

k~1
]. (A.7)

Furthermore, the exhaustive and mutually exclusive
properties of the Markov states Hj

k
, j"0, 1, 2,2,M, and

independence of Z
k~1

and Hj
k

lead to

P[Hj
k
, Z

k~1
]"

M
+
i/0

P[Hj
k
, Hi

k~1
,Z

k~1
]

"

M
+
i/0

P[Z
k~1

DHi
k~1

]P[Hj
k
DHi

k~1
]P[Hi

k~1
]

"

M
+
i/0

P[Hj
k
DHi

k~1
]P[Hi

k~1
, Z

k~1
]. (A.8)

The following recursive relation is obtained from a com-
bination of Eqs. (A.4)}(A.8) as

mj
k
"jj

k

M
+
i/0

ai,j
k

mi
k~1

. (A.9)

We introduce a new term

tj
k
,

mj
k

m0
k

(A.10)
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that reduces to the following form by use of Eq. (A.9)

tj
k
"A

jj
k

j0
k
BA

a0,j
k

#+M
i/1

ai,j
k

ti
k~1

a0,0
k

#+M
i/1

ai,0
k

ti
k~1
B, (A.11)

to obtain the a posteriori probability nj
k

in Eq. (A.2) in
terms of mj

k
and tj

k
as

nj
k
"

P[Hj
k
, Z

k
]

P[Z
k
]

"

P[Hj
k
,Z

k
]

+M
i/0

P[Hi
k
, Z

k
]
,

"

mj
k

m0
k
#+M

i/1
mi
k

"

tj
k

1#+M
i/1

ti
k

. (A.12)

A combination of Eqs. (A.3) and (A.12), leads to the
a posteriori probability %

k
of failure as

%
k
"

(
k

1#(
k

with (
k
,

M
+
j/1

tj
k
. (A.13)

The above expressions can be realized by a
simple recurrence relation under the following four
assumptions:

f Assumption A.1: At the starting point (i.e., k"0), all
signals operate in the normal mode, i.e., P[H0

0
]"1

and P[Hj
0
]"0 for j"1, 2,2,M. Therefore, m0

0
"1

and mj
0
"0 for j"1, 2,2,M.

f Assumption A.2: Transition from the normal mode to
any abnormal mode is equally likely. That is, if p is the
a priori probability of failure during one sampling
interval, then a0,0

k
"1!p and a0,i

k
"p/M for

i"1, 2,2, M, and all k.
f Assumption A.3: No transition takes place from an

abnormal mode to the normal mode implying that
ai,0
k
"0 for i"1, 2,2, M, and all k. The implication is

that a failed sensor does not return to the normal
mode (unless replaced or repaired).

f Assumption A.4: Transition from an abnormal mode
to any abnormal mode including itself is equally likely.
That is, ai,j

k
"1/M for i, j"1, 2,2,M, and all k.

A recursive relation for (
k

is generated based on the
above assumptions and using the expression in Eq. (A.11)
as

tj
k
"

p#+M
i/1

ti
k~1

(1!p)M A
jj
k

j0
k
B given tj

0
"0

for j"1, 2,2,M, (A.14)

which is simpli"ed by the use of the relation
(

k
,+M

i/1
ti
k

in Eq. (A.13) as

(
k
"A

p#(
k~1

(1!p)M B
M
+
j/1

jj
k

j0
k

given (
0
"0. (A.15)

If the probability measure associated with each abnormal
mode is absolutely continuous relative to that associated
with the normal mode, then the ratio jj

k
/j0

k
of a priori

probabilities converges to a Radon}Nikodym derivative
as the region B

k
in the expression z

k
,Mg

k
3B

k
N ap-

proaches zero measure (Wong & Hajek, 1985). This Ra-
don}Nikodym derivative is simply the likelihood ratio
f j(g

k
)/f 0(g

k
), j"1, 2,2,M, where f j(v) is the a priori

density function conditioned on the hypothesis
Hj, j"0, 1, 2,2, M. Accordingly, Eq. (A.15) becomes

(
k
"A

p#(
k~1

(1!p)M B
M
+
j/1

f j(g
k
)

f 0(g
k
)

given (
0
"0. (A.16)

For the speci"c case of two abnormal hypotheses (i.e.,
M"2) representing positive and negative failures, the
recursive relations for (

k
and %

k
in Eqs. (A.16) and

(A.13) become

(
k
"A

p#(
k~1

2(1!p) BA
f 1(g

k
)#f 2(g

k
)

f 0(g
k
) B

%
k
"

(
k

1#(
k

H given (
0
"0.

(A.17)
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