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Abstract

This short communication formulates a recursive algorithm of multi-level hypotheses testing for real-time detection and
identi�cation of potential faults from continuous sensor signals. The usage of the recursive algorithm is illustrated on a
data set of temperature sensors, collected from the Instrumentation & Control system of an operating power plant. ? 2002
Elsevier Science B.V. All rights reserved.

1. Introduction

Multi-level hypotheses testing provides a more
precise characterization of potential faults than the
bi-level fail=no-fail hypothesis testing, and is often
essential for early warning and timely detection and
identi�cation of soft failures in degrading devices
[1]. The contribution of this short communication is
analytical formulation of a recursive algorithm that is
built upon the statistical decision-theoretic principles
of multi-level hypotheses testing. The algorithm is
potentially applicable to real-time condition monitor-
ing, early warning, and fault identi�cation in complex
dynamical systems like undersea vehicles, advanced
aircraft, spacecraft, and power plants.
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2. Multi-level hypotheses testing

Let {�k ; k = 1; 2; 3; : : :} be statistically independent
observations of a continuous random process at con-
secutive sampling instants. For example, these obser-
vations could be (zero-mean) residuals obtained from
noisy sensor data and=or analytical measurements.
We assume M distinct possible modes of abnor-

mal operation (i.e., faults) in addition to the normal
(i.e., no-fault) condition that is denoted as the 0th
mode such that exactly one of the (M + 1) modes
is occupied at each instant. Occupancy of each of
these (M +1) modes is designated as an event. These
(M + 1) events constitute a set of mutually exclusive
and exhaustive Markov states. Correspondingly, the
following hypotheses are de�ned for i = 1; 2; : : : ; M :

H 0
k : normal a priori pdf f0(•) ≡ f(•|H 0);

H i
k : abnormal a priori pdf fi(•) ≡ f(•|Hi):

(1)

We assume a one-to-one correspondence between the
set of (M + 1) events and the set of hypotheses, Hj

k ;
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j=0; 1; 2; : : : ; M , of their occurrence at the kth sample.
The terms, event, mode, and hypothesis are, therefore,
synonymously used in the sequel.
We de�ne the a posteriori probability �j

k of the jth
event at the kth sample as

�j
k ≡ P[Hj

k |Zk ]; j = 0; 1; 2; : : : ; M (2)

based on the cumulative observations Zk ≡
{z1; z2; : : : ; zk} over k consecutive samples where
the observations zi ≡ {�i ∈Bi}; i = 1; 2; : : : ; are
mutually statistically independent and Bi is the re-
gion of interest at the ith sample. The sampling
instants are not necessarily uniformly spaced in
time.
The problem is to derive a recursive algorithm for

a posteriori probabilities, �j
k : j = 1; 2; : : : ; M , at the

kth sample in real time. This information also leads
to evaluation of the total a posteriori probability �k

of occurrence of any one of the M abnormal events at
the kth sample

�k ≡ P


 M⋃

j=1

Hj
k |Zk




=
M∑
j=1

P[Hj
k |Zk ] ⇒ �k =

M∑
j=1

�j
k : (3)

Eq. (3) holds because of the exhaustive and mutu-
ally exclusive properties of the Markov states, Hj

k ;
j = 1; 2; : : : ; M . To construct a recursive relation for
�k , we de�ne the following:

Joint probability : �j
k ≡ P[Hj

k ; Zk ]; (4)

A priori probability : �j
k ≡ P[zk |Hj

k ]; (5)

Transition probability : ai; j
k ≡ P[Hj

k |Hi
k−1]: (6)

Then, because of independence of the events zk and
Zk−1, Eq. (4) takes the following form:

�j
k = P[Hj

k ; zk ; Zk−1]

= P[zk |Hj
k ]P[H

j
k ; Zk−1]: (7)

Furthermore, the exhaustive and mutually exclusive
properties of the Markov states Hj

k ; j=0; 1; 2; : : : ; M ,

and independence of Zk−1 and Hj
k lead to

P[Hj
k ; Zk−1] =

M∑
i=0

P[Hj
k ; H

i
k−1; Zk−1]

=
M∑
i=0

P[Zk−1|Hi
k−1]P[H

j
k |Hi

k−1]P[H
i
k−1]

=
M∑
i=0

P[Hj
k |Hi

k−1]P[H
i
k−1; Zk−1]: (8)

A combination of Eqs. (4)–(8) yields the following
relation:

�j
k = �j

k

M∑
i=0

ai; j
k �i

k−1: (9)

We introduce a new term  j
k ≡ �j

k=�
0
k that reduces to

the following form by use of Eq. (9):

 j
k =

(
�j
k

�0k

)(
a0; jk +

∑M
i=1 ai; j

k  i
k−1

a0;0k +
∑M

i=1 a
i;0
k  i

k−1

)
(10)

and we obtain the a posteriori probability �j
k in

Eq. (2) in terms of �j
k and  j

k as

�j
k =

P[Hj
k ; Zk ]

P[Zk ]
=

P[Hj
k ; Zk ]∑M

i=0 P[Hi
k ; Zk ]

=
�j
k

�0k +
∑M

i=1 �i
k

=
 j
k

1 +
∑M

i=1  i
k

: (11)

A combination of Eqs. (3) and (11), leads to the total
a posteriori probability �k as

�k =
�k

1 +�k
with �k ≡

M∑
j=1

 j
k : (12)

Two examples show how the above expressions can
be realized by simple recursive relations under the
following assumptions:

Assumption 1 (For Examples a and b). At the start-
ing point (i.e.; k = 0); the device operates in the nor-
mal mode; i.e.; P[H 0

0 ] = 1 and P[Hj
0 ] = 0 for j =

1; 2; : : : ; M . Therefore; in Eq. (4); �00 = 1 and �j
0 = 0

for j = 1; 2; : : : ; M .
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Assumption 2 (For Examples a and b). No transi-
tion takes place from an abnormal mode to the normal
mode; i.e.; ai;0

k = 0 for i = 1; 2; : : : ; M ; and all k. The
implication is zero probability of an abnormally oper-
ating device returning to the normal operation (unless
replaced or repaired).

Assumption 3 (For Examples a and b). The transi-
tion from the normal mode to any abnormal mode
is equally likely. That is; if p is the a priori prob-
ability of failure during one sampling interval; then
a0;0k = 1− p and a0; ik = p=M .

Assumption 4(a) (For Example a): The transition
from an abnormal mode to any abnormal mode in-
cluding itself is equally likely, i.e., ai; j

k = 1=M ∀k
and i; j = 1; 2; : : : ; M . The implication is a high
noise-to-signal ratio or erratic behavior of instrumen-
tation components.

Assumption 4(b) (For Example b): No transition is
allowed from an abnormal mode, i.e., ai; j

k =�ij ∀k and
i; j = 1; 2; : : : ; M . The implication is that a device re-
mains at any one of the abnormal modes for a long
period (e.g., slow drift or bias error of a sensor).

Now a recursive relation for �k can be generated
based on Assumptions 1–4(a), and using Eq. (10) for
j = 1; 2; : : : ; M to yield

 j
k =

p+
∑M

i=1  
i
k−1

(1− p)M

(
�j
k

�0k

)
given  j

0 = 0

(13a)

which is simpli�ed via the relation �k ≡
∑M

i=1  i
k in

Eq. (12)

�k =
(
p+�k−1

(1− p)M

) M∑
j=1

�j
k

�0k
given �0 = 0:

(14a)

Similarly, another recursive relation for �k can be
generated based on Assumptions 1–4(b), and using
Eq. (10) for j = 1; 2; : : : ; M to yield

 j
k =

p=M +  j
k−1

1− p

(
�j
k

�0k

)
given  j

0 = 0; (13b)

which is simpli�ed via the relation �k ≡
∑M

i=1  i
k in

Eq. (12)

�k =
(

1
1− p

) M∑
j=1

( p
M

+  j
k−1

)(
�j
k

�0k

)

given �0 = 0: (14b)

If the probability measure in each abnormal mode
is absolutely continuous relative to that in the normal
mode, then the ratio �j

k=�
0
k of a priori probabilities con-

verges to a Radon–Nikodym derivative as the region
Bk in the expression zk ≡ {�k ∈Bk} approaches zero
measure [7]. This Radon–Nikodym derivative is sim-
ply the likelihood ratio fj(�k)=f0(�k); j=1; 2; : : : ; M;
where fj(•) is the a priori density function condi-
tioned on the hypothesis Hj; j = 0; 1; 2; : : : ; M: Ac-
cordingly, given�0=0, the recursive relations in Eqs.
(14a) and (14b) combined with Eq. (12) become

�k =
(
p+�k−1

(1− p)M

) M∑
j=1

fj(�k)
f0(�k)

;

�k =
�k

1 +�k
;

(15a)

 j
k =

(
1

1− p

)( p
M

+  j
k−1

)(
fj(�k)
f0(�k)

)
;

�k =

M∑
j=1

 j
k

1 +
M∑
j=1

 j
k

:

(15b)

Eqs. (15a) and (15b) recursively compute the total
a posteriori probability �k based on the observations
{�k ; k = 1; 2; 3; : : :} for di�erent operating conditions
as delineated under Assumptions 4(a) and 4(b), re-
spectively.

3. An application example

The recursive algorithm of the multi-level hypothe-
ses test algorithm, derived above, has been validated
on a data set of temperature sensors in a 320 MWe
coal-�red supercritical power plant. The set of re-
dundant measurements of throttle steam temperature
at ∼1040◦F (560◦C) is generated by four tempera-
ture sensors installed at di�erent spatial locations of
the main steam header that carries superheated steam
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from the steam generator into the high-pressure tur-
bine via the throttle valves and governor valves. Since
these sensors are not spatially collocated, they become
asynchronous under severe transients due to the trans-
port lag. The information on the estimated average
temperature, derived from these sensors, is used for
health monitoring and damage prediction in the main
steam header as well as for coordinated feedforward–
feedback control of the power plant under steady-state
and transient operations [3].
The readings of all four temperature sensors were

collected over a period of 10 h at the sampling fre-
quency of once every 15 sec. The collected data, after
bad data suppression (e.g., elimination of obvious out-
liers following built-in tests such as limit check and
rate check), show that each sensor exhibits temper-
ature �uctuations due to inherent thermal-hydraulic
disturbances and process transients in addition to the
instrumentation noise. For this speci�c application,
the �lter parameters of the hypotheses test algorithm
are selected as described below.

4. Filter parameters

In this section, we evaluate the parameters and func-
tions that are necessary for the hypotheses testing al-
gorithm. In this application, the noise associated with
each sensor output is assumed to be additive Gaussian
that assures existence of the likelihood ratios in Eqs.
(13a) and (13b).
The set of four temperature sensing instrumentation

that are appropriately calibrated for zero bias error is
modeled at the kth sample as

yk = Hxk + �k ; (16)

where yk is the (4 × 1) sensor data vector; H is the
(4×1) a priori determined matrix of scale factor hav-
ing rank 1. After conversion of the sensor data into
engineering units, the scale factor matrix becomes:
H = [1 1 1 1]T; xk is the (1 × 1) vector of true (un-
known) value of the measured temperature; �k is the
(4 × 1) vector of additive noise, such that E[�k ] = 0
and E(�k�T‘ ) = Rk�k‘ with Rk ¿ 0.

The noise associated with each of the four simi-
lar sensors was found to be stationary Gaussian and
independent and identically distributed so that
Rk = R= 	2I4×4.

We now construct the (3×1) parity residual vector
�k from the sensor vector yk , which is de�ned [4,2,6]
as

�k = Vyk (17)

where the rows of the parity matrix V ∈R3×4 form
an orthonormal basis of the left null space of the scale
factor matrix H ∈R4×1 in Eq. (1), i.e.,

VH = 03×1; VV T = I3×3 (18)

and

V =




√
3
4 −

√
1
12 −

√
1
12 −

√
1
12

0
√

2
3 −

√
1
6 −

√
1
6

0 0
√

1
2 −

√
1
2


 : (19)

Note that the columns of V , often called failure direc-
tions, span the parity space. Under the normal condi-
tion when all sensor readings are clustered together,
the magnitude of the parity residual vector �k is small.
Under an abnormal condition, if the jth sensor under-
goes a positive (negative) fault, then the component
of �k along the jth failure direction (i.e., jth column of
the V matrix in Eq. (19)) grows in the positive (neg-
ative) sense and thus identi�es the faulty sensor and
its failure mode [6]. Following (16)–(18), the mean
and covariance of parity residual vector are given as

E(�k) = 03×1 and E(�k�Tk ) = VRV T = 	2I3×3:
(20)

The structures of the a priori conditional density func-
tions for a three-level (M = 2) hypotheses test based
on the time series of the parity residuals, are chosen
as follows:

f0(’) =
1√
2�	

exp
(
−1
2

(’
	

)2)

normal operation;

f1(’) =
1√
2�	

exp

(
−1
2

(
’− 


	

)2
)

high failures; (21)

f2(’) =
1√
2�	

exp

(
−1
2

(
’+ 


	

)2
)

low failures;
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where 	 is the standard deviation, and 
 and −

are the thresholds for high and low failures, respec-
tively, for each component of the parity residual
vector under the density functions f1(•) and f2(•),
respectively.
The a posteriori probabilities �j

k could ideally
achieve the lower and upper bounds of 0 and 1, re-
spectively. However, the lower bound of each �j

k is
set to p to accommodate the (non-zero) probability p
of intra-sampling failure. This modi�cation assists in
achieving �nite response time for fault detection from
the normal operating condition. The upper bound of
each �j

k is set to (1− �) to account for the allowable

0 20 40 60 80 100 120 140 160 180 200
-4

-3

-2

-1

0

1

2

3

4

S
ig

n
ed

 N
o

rm
 o

f 
S

en
so

r 
P

ar
it

y
 R

es
d

u
al

(D
eg

re
e 

F
ar

en
h

ei
t)

Time  (One Unit = 15 Seconds)

Sensor #4

Sensor #1 Sensor #2

Sensor #3

Time  (One Unit = 15 Seconds)

0 20 40 60 80 100 120 140 160 180 200
1024

1026

1028

1030

1032

1034

1036

1038

1040
T

em
p

er
at

u
re

 S
en

so
r 

D
at

a 

(D
eg

re
e 

F
ar

en
h

e i
t)

Sensor #4

Sensor #3

Sensor #1

Sensor #2

0 20 40 60 80 100 120 140 160 180 200
1024

1026

1028

1030

1032

1034

1036

1038

1040

T
em

p
er

at
u

re
 S

en
so

r 
D

at
a 

(D
eg

re
e 

F
ar

en
h

e i
t)

Sensor #3

Sensor #2
Sensor #1

Sensor #4

Time  (One Unit = 15 Seconds)

Bias Fault in Sensor #4

(+4.5oF from Time 50 to 150)
Normal Operation

Time  (One Unit = 15 Seconds)

0 20 40 60 80 100 120 140 160 180 200
-4

-3

-2

-1

0

1

2

3

4

Sensor #4

Sensor #3

Sensor #1

Sensor #2

S
ig

n
ed

 N
o

rm
 o

f 
S

en
so

r 
P

ar
it

y
 R

es
d

u
al

(D
eg

re
e 

F
ar

en
h

ei
t)

Fig. 1. Sensor data and parity residuals.

probability � of false alarms for each of the four
sensors [5]. Numerical values of the parameters,
	; 
; p, and � that have been generated from the
archived data of power plant operation are presented
below:

• The standard deviation of the a priori Gaussian den-
sity functions of each sensor (measurement noise
only) is: 	 = 2◦F (1:11◦C).

• The failure threshold parameter is: 
=3◦F (1:67◦C).
• Operating experience at the power plant shows that
the mean life of a resistance thermometer sensor,
installed on the mean steam header, is about 1 year



858 A. Ray, Shashi Phoha / Signal Processing 82 (2002) 853–859

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
x 10-3

A
 P

o
st

er
io

ri
 P

ro
b

ab
il

it
y
 o

f 
L

o
w

 F
ai

lu
re

 

Time  (One Unit = 15 Seconds)

Sensors #3,4

Sensor #2

Sensor #1

Time  (One Uni  = 15 Seconds)

0 20 40 60 80 100 120 140 160 180 2000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
 P

o
st

er
io

ri
 P

ro
b

ab
il

it
y
 o

f 
H

ig
h

 F
ai

lu
re

Sensor #4

Sensors #1,2,3

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
o

ta
l 

A
 P

o
st

er
io

ri
 P

ro
b

ab
il

it
y
 o

f 
F

ai
lu

re

Sensor #4

Sensors #1,2,3

Time  (One Unit = 15 Seconds)

0 20 40 60 80 100 120 140 160 180 200
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

-6

Sensor #3

Sensor #2

Sensor #1,4

T
o

ta
l 

A
 P

o
st

er
io

ri
 P

ro
b

ab
il

it
y
 o

f 
F

a
il

u
re

Time  (One Unit = 15 Seconds)

0 20 40 60 80 100 120 140 160 180 200
4

5

6

7

8

9

10

11

Sensor #2

Sensors #1,3,4

Time  (One Unit = 15 Seconds)

A
 P

o
st

er
io

ri
 P

ro
b

ab
il

it
y
 o

f 
L

o
w

 F
ai

lu
re

 

x 10
-7

0 20 40 60 80 100 120 140 160 180 200
4

5

6

7

8

9

10

11

12

13

Time  (One Unit = 15 Seconds)

A
 P

o
st

er
io

ri
 P

ro
b

ab
il

it
y
 o

f 
H

ig
h

 F
ai

lu
re

Sensor #3

Sensors #1,2,4

x 10
-7

Normal Operation
Bias Fault in Sensor #4

(+4.5oF from Time 50 to 150)
Fig. 2. A posteriori probabilities of failure.



A. Ray, Shashi Phoha / Signal Processing 82 (2002) 853–859 859

of continuous operation. For a sampling interval of
15 sec, this information leads to: p ≈ 0:5× 10−6.

• The probability of false alarms is selected in con-
sultation with the plant operating personnel. On the
average, each sensor is allowed to generate a false
alarm after approximately 1 year of continuous op-
eration. For a sampling interval of 15 sec, this in-
formation leads to: � ≈ 0:5× 10−6.

5. Filter performance based on experimental data

Based on the sensor data collected from the power
plant, we investigate e�cacy of the proposed algo-
rithm for early warning in the event of intermittent
sensor degradation. The temperature sensors are more
likely to be subjected to slow drift and bias errors than
erratic behavior exhibiting a high noise-to-signal ratio.
Therefore, Assumption 4(b) is more valid than As-
sumption 4(a) in this application and the algorithms
in Eqs. (13b), (14b) and (15b) have been used.
The plates on the left-hand side in Figs. 1 and 2

exhibit the data and derived results under normal
operation that include small deviations among the
four sensor data as they are subjected to measure-
ment noise and e�ects of thermo-�uid transients. The
corresponding plates on the right-hand side in Figs.
1 and 2 represent an abnormal scenario in which a
bias fault of +4:5◦F (2:5◦C) is injected in one of the
sensors, Sensor #4, over the period of 50–150 units
of time. This is seen by comparison of the two plates
in the top row of Fig. 1. Consequently, the (signed)
norm of the component of �k along the failure di-
rection of Sensor #4, having the same sign as that
of �k , undergoes a change as seen in the right-hand
bottom-row plate of Fig. 1. The norm of each of the
remaining three components of �k remains small.

The top row and middle row in Fig. 2 show the
probabilities of high failure and low failure of the four
sensors, respectively. The high failure, injected in Sen-
sor #4, induces positive growth of the parity residual
norm along the respective failure direction (i.e., the
fourth column of the fourth column of the matrix V ).
Consequently, the right-hand plate in Fig. 2 exhibits
a signi�cant growth in a posteriori probability �1

k of
high failure for Sensor #4. Therefore, the right-hand
plate in the bottom row of Fig. 2 shows a signi�cant
increase in the total a posteriori probability �k of fail-

ure in Sensor #4 within the time interval when the
fault is prevalent. The probability of failure in the re-
maining sensors is signi�cantly small.

6. Summary and conclusions

A recursive algorithm is formulated and a �lter
software is coded for multi-level hypotheses testing
of potential faults in real time. This algorithm is ca-
pable of small change detection, identi�cation of in-
cipient faults, and generation of early warnings for
potentially pervasive failures. The usage of the
recursive algorithm is illustrated on a data set of tem-
perature sensors, collected from a power plant. The al-
gorithm detects and identi�es the faulty sensor and its
failure mode. As such the algorithm could enhance the
Instrumentation & Control System Software in tacti-
cal and transport aircraft, and nuclear and fossil power
plants.
The algorithm is potentially applicable to real-time

condition monitoring, early warning, and fault iden-
ti�cation in complex dynamical systems like under-
sea vehicles, advanced aircraft, spacecraft, and power
plants. The algorithm is also suitable for identi�ca-
tion of discrete events from continuous sensor sig-
nals and analytical measurements in hybrid control
systems.
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