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Abstract

This paper presents a -ltering algorithm for calibration and estimation of redundant signals for real-time condition monitoring
and control of continuous plants. The redundancy may consist of sensor signals and/or analytical measurements that are
derived from other sensor signals and physical characteristics of the plant. The redundant measurements are simultaneously
calibrated by additive corrections that are recursively estimated based on the principle of linear least-squares -ltering. A
weighted least-square estimate of the measured variable is generated in real time from the calibrated signals. The weighting
matrix is adaptively adjusted as a function of the a posteriori probability of failure of the calibrated measurements. The
e1ects of intra-sample failure and probability of false alarms are taken into account in the formulation of the recursive -lter
that has been tested for on-line calibration of four redundant sensors of the throttle steam temperature in a commercial-scale
fossil power plant. The calibration and estimation -lter is potentially applicable to the Instrumentation & Control System
Software in tactical and transport aircraft, and nuclear and fossil power plants.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Performance, reliability, and safety of complex dy-
namical processes such as aircraft and power plants
depend upon validity and accuracy of sensor signals
that measure plant conditions for information dis-
play, health monitoring, and control [4]. Redundant
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sensors are often installed to generate spatially aver-
aged time-dependent estimates of critical variables so
that reliable monitoring and control of the plant are
assured. Examples of redundant sensor installations in
complex engineering applications are:

• Inertial navigational sensors in both tactical and
transport aircraft for guidance and control [1,11].

• Neutron Cux detectors in the core of a nuclear re-
actor for fuel management, health monitoring, and
power control [14].

• Temperature, pressure, and Cow sensors in both
fossil and nuclear steam power plants for
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health monitoring and feedforward-feedback
control [2].

Sensor redundancy is often augmented with
analytical measurements that are obtained from
physical characteristics and/or model of the plant dy-
namics in combination with other available sensor data
[3,14]. The redundant sensors and analytical measure-
ments are referred to as redundant measurements in the
sequel.
Individual measurements in a redundant set may

often exhibit deviations from each other after a length
of time. These di1erences could be caused by slowly
time-varying sensor parameters (e.g., ampli-er gain),
plant parameters (e.g., structural sti1ness, and heat
transfer coe<cient), transport delays, etc. Conse-
quently, some of the redundant measurements could
be deleted by a fault detection and isolation (FDI)
algorithm [13] if they are not periodically calibrated.
On the other hand, failure to isolate a degraded mea-
surement could cause an inaccurate estimate of the
measured variable by, for example, increasing the
threshold bound in the FDI algorithm. In this case,
the plant performance may be adversely a1ected if
that estimate is used as an input to the decision and
control system. This problem can be resolved by
adaptively -ltering the set of redundant measurements
as follows:

• All measurements, which are consistent relative to
the threshold of the FDI algorithm, are simulta-
neously calibrated on-line to compensate for their
relative errors.

• Theweights of individual measurements for compu-
tation of the estimate are adaptively updated on-line
based on their respective a posteriori probabilities
of failure instead of being -xed a priori.

In the event of an abrupt disruption of a redundant
measurement in excess of its allowable bound, the re-
spective measurement is isolated by the FDI logic,
and only the remaining measurements are calibrated
to provide an unbiased estimate of the measured vari-
able. On the other hand, if a gradual degradation (e.g.,
a sensor drift) occurs, the faulty measurement is not
immediately isolated by the FDI logic. But its inCu-
ence on the estimate and calibration of the remain-
ing measurements is diminished as a function of the

magnitude of its residual (i.e., deviation from the es-
timate) that is an indicator of its degradation. This is
achieved by decreasing the relative weight of the de-
graded measurement as a monotonic function of its de-
viation from the remaining measurements. Thus, if the
error bounds of the FDI algorithm are appropriately
increased to reduce the probability of false alarms,
the resulting delay in detecting a gradual degrada-
tion could be tolerated. The rationale is that an un-
detected fault, as a result of the adaptively reduced
weight, would have smaller bearing on the accuracy
of measurement calibration and estimation. Further-
more, since the weight of a gradually degrading mea-
surement is smoothly reduced, the eventual isolation
of the fault would not cause any abrupt change in
the estimate. This feature, known as bumpless trans-
fer in the process control literature, is very desirable
for plant operation.
This paper presents a calibration and estimation -l-

ter for redundancy management of sensor data and
analytical measurements. The -lter is validated based
on redundant sensor data of throttle steam temperature
collected from an operating power plant. Development
and validation of the -lter algorithm are presented in
the main body of the paper along with concluding
remarks.

2. Signal calibration and measurement estimation

A redundant set of ‘ sensors and/or analytical mea-
surements of a n-dimensional plant variable are mod-
eled at the kth sample as

mk = (H +HHk)xk + bk + ek ; (1)

where mk is the (‘ × 1) vector of (uncalibrated) re-
dundant measurements, H is the (‘ × n) a priori de-
termined matrix of scale factor having rank n, with
‘¿n¿ 1, HHk is the (‘ × n) matrix of scale factor
errors, xk is the (n×1) vector of true (unknown) value
of the measured variable, bk is the (‘ × 1) vector of
bias errors, and ek is the (‘ × 1) vector of measure-
ment noise, such that E[ek ] = 0 and E[ekeTl ] = Rk�kl.

The noise covariance matrix Rk of uncalibrated
measurements plays an important role in the adap-
tive -lter for both signal calibration and measure-
ment estimation. It is shown in the sequel how Rk is
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recursively tuned based on the history of calibrated
measurements.
Eq. (1) is rewritten in a more compact form as

mk = Hxk + ck + ek ; (2)

where the correction ck due to the combined e1ect of
bias and scale factor errors is de-ned as

ck ≡ HHkxk + bk : (3)

The objective is to obtain an unbiased predictor es-
timate ĉk of the correction ck so that the sensor out-
put mk can be calibrated at each sample. A recursive
relation of the correction ck is modeled similar to a
random walk process as

ck+1 = ck + vk ;

E[vk ] = 0; E[vkvj] = Q�kj

and E[vkej] = 0∀k; j; (4)

where the stationary noise vk represents modeling
uncertainties in Eq. (4).
We construct a -lter to calibrate each mea-

surement with respect to the remaining redundant
measurements. The -lter input is the parity vector pk
of the uncalibrated measurement vector mk , which is
de-ned [11,15] as

pk = Vmk; (5)

where the rows of the projection matrix V ∈R(‘−n)×‘

form an orthonormal basis of the left null space of the
measurement matrix H ∈R‘×n in Eq. (1)., i.e.,

VH = 0(‘−n)×n;

VV T = I(‘−n)×(‘−n) (6)

and the columns of V span the parity space that con-
tains the parity vector. A combination of Eqs. (2),
(4)–(6) yields

pk = Vck + �k ; (7)

where the noise �k ≡ Vek having E[�k ] = 0 and
E[�k�Tj ] ≡ VRkV T�kj. If the scale factor error matrix
HHk belongs to the column space of H , then the par-
ity vector pk is independent of the true value xk of the
measured variable. Therefore, for ‖VHHkxk‖�‖Vbk‖
that includes relatively small scale factor errors, the
calibration -lter operates approximately independent
of xk .

Now we proceed to construct a recursive algorithm
to predict the estimated correction ĉk based on the
principle of best linear least square estimation that has
the structure of an optimal minimum-variance -lter
[5,8] and uses Eqs. (4) and (7)

ĉk+1 = ĉk + Kk�k given ĉ0;

Pk+1 = (I − KkV )Pk + Q given P0

and Q;

Kk = PkV T(V [Rk + Pk ]V T)−1 given Rk;

�k = pk − V ĉk innovation:



:

(8)

Upon evaluation of the unbiased estimated correction
ĉk , the uncalibrated measurement mk is compensated
to yield the calibrated measurement yk as

yk = mk − ĉk : (9)

Using Eqs. (5) and (9), the innovation �k in Eq. (8)
can be expressed as the projection of the calibrated
measurement yk onto the parity space, i.e.,

�k = Vyk : (10)

By setting �k ≡ KkV , we obtain an alternative form
of the recursive relations in Eq. (8) as

ĉk+1 = ĉk + �kyk given ĉ0;

Pk+1 = (I − �k)Pk + Q given P0

and Q;

�k = PkV T(V [Rk + Pk ]V T)−1V given Rk:

(11)

Note that inverse of the matrix (V [Rk+Pk ]V T) in Eqs.
(8) and (11) exists because the rows of V are linearly
independent, Rk ¿ 0, and Pk¿ 0.

Next we obtain an unbiased weighted least-squares
estimate x̂k of the measured variable xk based on the
calibrated measurement yk as

x̂k = (HTR−1
k H)−1HTR−1

k yk : (12)

The inverse of the (symmetric positive-de-nite) mea-
surement covariance matrix Rk serves as the weight-
ing matrix for generating the estimate x̂k , and is used
as a -lter matrix. Compensation of a (slowly vary-
ing) undetected error in the jth measurement out of ‘
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redundant measurements causes the largest jth ele-
ment |jĉk | in the correction vector ĉk . Therefore, a
limit check on the magnitude of each element of ĉk
will allow detection and isolation of the degraded mea-
surement. The bounds of limit check, which could be
di1erent for the individual elements of ĉk , are selected
by trade-o1 between the probability of false alarms
and the allowable error in the estimate x̂k of the mea-
sured variable [12].

2.1. Degradation monitoring

Following Eq. (12), we de-ne the residual �k of the
calibrated measurement yk as

�k = yk − Hx̂k : (13)

The residuals represent a measure of relative degrada-
tion of individual measurements. For example, under
the normal condition, all calibrated measurements are
clustered together, i.e., ‖�k‖ ≈ 0, although this may
not be true for the residual (mk−Hx̂k) of uncalibrated
measurements.
While large abrupt changes in excess of the error

threshold are easily detected and isolated by a stan-
dard diagnostics procedure (e.g., [13]), small errors
(e.g., slow drift) can be identi-ed from the a posteri-
ori probability of failure that is recursively computed
from the history of residuals based on the following
trinary hypotheses:

H0 : Normal behavior with a priori conditional

density function jf0(•) ≡ jf(•|H0);

H1 : High (positive) failure with a priori

conditional density function jf1(•) ≡ jf(•|H1);

H2 : Low (negative) failure with a priori

conditional density function jf2(•) ≡ jf(•|H2);

(14)

where the left subscript refers to of the jth mea-
surement for j = 1; 2; L; ‘, and the right superscript
indicates the normal behavior or failure mode. The
density function for each residual is determined a pri-
ori from experimental data and/or instrument manu-
facturers’ speci-cations. Only one test is needed here

to accommodate both positive and negative failures in
contrast to the binary hypotheses that require two tests.
We now apply the recursive relations for multi-level
hypotheses testing of single variables to each resid-
ual of the redundant measurements. Then, for the jth
measurement at the kth sampling instant, a posteri-
ori probability of failure j�k is obtained following
Eq. (15a) of [16] as

j k =
(
jp+ j k−1

2(1− jp)

)

×
(
jf1(j�k) + jf2(j�k)

jf0(j�k)

)
;

j�k =
j k

1 + j k
;




(15)

where jp is the a priori probability of failure of the
jth sensor during one sampling period, and the initial
condition of each state, j 0; j=1; 2; L; ‘, needs to be
speci-ed.
Based on the a posteriori probability of failure, we

now proceed to formulate a recursive relation for the
measurement noise covariance matrix Rk that inCu-
ences both calibration and estimation as seen in Eqs.
(8)–(12). Its initial value R0, which is determined a
priori from experimental data and/or instrument man-
ufacturers’ speci-cations, provides the a priori infor-
mation on individual measurement channels and con-
forms to the normal operating conditions when all
measurements are clustered together, i.e., ‖�k‖ ≈ 0.
In the absence of any measurement degradation, Rk re-
mains close to its initial value R0. Signi-cant changes
in Rk may take place if one or more sensors start de-
grading. This phenomenon is captured by the follow-
ing model:

Rk =
√
Rrelk R0

√
Rrelk with Rrel0 = I; (16)

where Rrelk is a positive-de-nite diagonal matrix rep-
resenting relative performance of the individual cali-
brated measurements and is recursively generated as
follows:

Rrelk+1 = diag[h(j�k)]; i:e:; jrrelk+1 = h(j�k); (17)

where jrrelk and j�k are, respectively, the relative vari-
ance and a posteriori probability of failure of the jth
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measurement at the kth instant; and h : [0; 1) →
[1;∞) is a continuous monotonically increasing
function with boundary conditions h(0) = 1 and
h(’) → ∞ as ’→ 1.
The implication of Eq. (17) is that credibility of

a sensor monotonically decreases with increase in its
variance that tends to in-nity as its a posteriori prob-
ability of failure approaches 1. The magnitude of the
relative variance jrrelk is set to the minimum value of
1 for zero a posteriori probability of failure. In other
words, the jth diagonal element jwrel

k ≡ 1=jrrelk of the
weighting matrixW rel

k ≡ (Rrelk )−1 tends to zero as j�k
approaches 1. Similarly, the relative weight jwrel

k is
set to the maximum value of 1 for j�k = 0. Conse-
quently, a gradually degrading sensor carries mono-
tonically decreasing weight in the computation of the
estimate x̂k in Eq. (12).
Next we set the bounds on the states j k of the re-

cursive relation in Eq. (15). The lower limit of j�k
(which is an algebraic function of j k) is set to the
probability jp of intra-sample failure. On the other
extreme, if j�k approaches 1, the weight jwrel

k (that
approaches zero) may prevent fast restoration of a de-
graded sensor following its recovery. Therefore, the
upper limit of j�k is set to (1 − j') where j' is the
allowable probability of false alarms of the jth mea-
surement. Consequently, the function h(•) in Eq. (17)
is restricted to the domain [jp; (1 − j')] to account
for probabilities of intra-sampling failures and false
alarms. Following Eq. (15), the lower and upper lim-
its of the states j k are thus become jp=(1− jp) and
(1−j')=j', respectively. Consequently, the initial state
in Eq. (15) is set as: j 0=jp=(1−jp) for j=1; 2; L; ‘.

2.2. Possible modi4cations of the calibration 4lter

The calibration -lter is designed to operate in con-
junction with a FDI system that is capable of detecting
and isolating abrupt disruptions (in excess of speci-
-ed bounds) in one or more of the redundant measure-
ments [13]. The consistent measurements, identi-ed
by the FDI system, are simultaneously calibrated at
each sample. Therefore, if a continuous degradation,
such as a gradual monotonic drift of a sensor ampli-
-er, occurs su<ciently slowly relative to the -lter dy-
namics, then the remaining (healthy) measurements
might be a1ected, albeit by a small amount, due to
simultaneous calibration of all measurements includ-

ing the degraded measurement. Thus, the fault may
be disguised in the sense that a very gradual degra-
dation over a long period may potentially cause the
estimate x̂k to drift. This problem could be resolved
by modifying the calibration -lter with one or both of
the following procedures:

• Adjustments via limit check on the correction
vector ĉk : Compensation of a (slowly varying)
undetected error in the jth measurement out of ‘
redundant measurements will cause the largest jth
element |jĉk | in the correction vector ĉk . Therefore,
a limit check on the magnitude of each element of
ĉk will allow detection and isolation of the degraded
measurement. The bounds of limit check, which
could be di1erent for the individual elements of ĉk ,
are selected by trade-o1 between the probability of
false alarms and the allowable error in the estimate
x̂k of the measured variable [12].

• Usage of additional analytical measurements: If
the estimate x̂k is used to generate an analytic mea-
surement of another plant variable that is directly
measured by its own sensor(s), then a possible drift
of the calibration -lter can be detected whenever
this analytical measurement disagrees with the sen-
sor data in excess of a speci-ed bound. The impli-
cation is that either the analytical measurement or
the sensor is faulty. Upon detecting such a fault,
the actual cause needs to be identi-ed based on ad-
ditional information including reasonability check.
This procedure not only checks the calibration -l-
ter but also guards against simultaneous and iden-
tical failure of several sensors in the redundant set
possibly due to a common cause, known as the
common-mode fault.

3. Sensor calibration in a commercial-scale fossil
power plant

The calibration -lter, derived above, has been val-
idated in a 320 MWe coal--red supercritical power
plant for on-line sensor calibration and measure-
ment estimation at the throttle steam condition of
∼ 1040◦F(560◦C) and ∼ 3625 psia (25:0 MPa). The
set of redundant measurements is generated by four
temperature sensors installed at di1erent spatial loca-
tions of the main steam header that carries superheated
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steam from the steam generator into the high-pressure
turbine via the throttle valves and governor valves
[17]. Since these sensors are not spatially collocated,
they can be asynchronous under transient conditions
due to the transport lag. The -lter simultaneously
calibrates the sensors to generate a time-dependent
estimate of the throttle steam temperature that is
spatially averaged over the main steam header. This
information on the estimated average temperature is
used for health monitoring and damage prediction
in the main steam header as well as for coordinated
feedforward-feedback control of the power plant un-
der both steady-state and transient operations [9,10].
The -lter software is hosted in a Pentium platform.
The readings of all four temperature sensors have

been collected over a period of 100 h at the sam-
pling frequency of once every 1 min. The collected
data, after bad data suppression (e.g., elimination of
obvious outliers following built-in tests such as limit
check and rate check), shows that each sensor exhibits
temperature Cuctuations resulting from the inherent
thermal-hydraulic noise and process transients as well
as the instrumentation noise. For this speci-c appli-
cation, the parameters, functions, and matrices of the
calibration -lter are selected as described below.

3.1. Filter parameters and functions

We start with the -lter parameters and functions
that are necessary for degradation monitoring. In this
application, each element of the residual vector �k of
the calibrated measurement vector yk is assumed to
be Gaussian distributed that assures existence of the
likelihood ratios in Eq. (15). The structures of the
a priori conditional density functions are chosen as
follows:

jf0(’) =
1√
2(j)

exp

(
−1
2

(
’

j)

)2)
;

jf1(’) =
1√
2(j)

exp

(
−1
2

(
’− j*

j)

)2)
;

jf2(’) =
1√
2(j)

exp

(
−1
2

(
’+ j*

j)

)2)
; (18)

where j) is the standard deviation, and j* and −j*
are the thresholds for positive and negative failures,
respectively, of the jth residual.
Since it is more convenient to work in the

natural-log scale for Gaussian distribution than for
the linear scale, an alternative to Eq. (17) is to con-
struct a monotonically decreasing continuous function
g : (−∞; 0) → (0; 1] in lieu of the monotonically
increasing continuous function h : [0; 1) → [1;∞) so
that

W rel
k+1 ≡ (Rrelk+1)

−1 = diag[g(‘nj�k); i:e:; the weight

jwrel
k+1 ≡ (jrrelk+1)

−1 = g(‘nj�k): (19)

The structure of the continuous function g(•) is chosen
to be piecewise linear as given below

g(’) =




wmax for ’6’min ;

(’max−’)wmax+(’−’min)wmin

’max−’min for −∞6’min

6’6’max¡0;

wmin for ’¿’max:

(20)

The function g(•) maps the space of j�k in the log
scale into the space of the relative weight jwrel

k+1 of in-
dividual sensor data. The domain of g(•) is restricted
to [‘n(jp); ‘n(1− j')] to account for probability jp
of intra-sampling failure and probability j' of false
alarms for each of the four sensors. The range of g(•)
is selected to be [jwmin ; 1] where a positive minimum
weight (i.e., jwmin¿ 0) allows the -lter to restore a
degraded sensor following its recovery. Numerical
values of the -lter parameters, j), j*, jp, j', and
jwmin are presented below

• The standard deviations of the a priori Gaussian
density functions of the four temperature sensors
are:

1) = 4:1◦F(2:28◦C); 2) = 3:0◦F (1:67◦C);

3) = 2:4◦F (1:33◦C); 4) = 2:8◦F (1:56◦C):

The initial condition for the measurement noise
covariance matrix is set as: R0 = diag[j)].
The failure threshold parameters are selected as:
j*= j)

2 for j = 1; 2; 3; 4.
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• The probability of intra-sampling failure is assumed
to be identical for all four sensors as they are sim-
ilar in construction and operate under identical en-
vironment. Operation experience at the power plant
shows that the mean life of a resistance thermome-
ter sensor, installed on the main steam header, is
about 700 days (i.e., about 2 years) of continuous
operation. For a sampling interval of 1 min, this
information leads to

jp ≈ 10−6 for j = 1; 2; 3; 4:

• The probability of false alarms is selected in con-
sultation with the plant operating personnel. On the
average, each sensor is expected to generate a false
alarm after approximately 700 days of continuous
operation (i.e., once in 2 years). For a sampling in-
terval of 1 min, this information leads to

j' ≈ 10−6 for j = 1; 2; 3; 4:

• To allow restoration of a degraded sensor following
its recovery, the minimum weight is set as

jwmin ≈ 10−3 for j = 1; 2; 3; 4:

3.2. Filter matrices

After conversion of the four temperature sensor
data into engineering units, the scale factor matrix in
Eq. (1) becomes: H =[1 1 1 1]T. Consequently, fol-
lowing Potter and Suman [11] and Ray and Luck [15],
the parity space projection matrix in Eq. (6) becomes

V =




√
3
4 −

√
1
12 −

√
1
2 −

√
1
12

0
√

2
3 −

√
1
6 −

√
1
6

0 0
√

1
2 −

√
1
12


 :

In the event of a sensor being isolated as faulty, sensor
redundancy reduces to 3, for which

H = [ 1 1 1 ]T

and V =



√

2
3 −

√
1
6 −

√
1
6

0
√

1
2 −

√
1
2


 :

The ratio, R−1=2
k QR−1=2

k , of covariance matrices
Q and Rk in Eqs. (4) and (1) largely determines
the characteristics of the minimum variance -lter in
Eq. (8) or Eq. (11). The -lter gain �k increases
with a larger ratio R−1=2

k QR−1=2
k and vice versa. Since

the initial steady-state value R0 is speci-ed and Rrelk
is recursively generated thereon to calculate Rk via
Eq. (16), the choice is left only for selection of Q.
As a priori information on Q may not be available,
its choice relative to R0 is a design feature. In this
application, we have set Q = R0.

3.3. Filter performance based on experimental data

The -lter was tested on-line in the power plant over
a continuous period of 9 months except for two short
breaks during plant shutdown. The test results showed
that the -lter was able to calibrate each sensor un-
der both pseudo-steady state and transient conditions
under closed-loop control of throttle steam tempera-
ture. The calibrated estimate of the throttle steam tem-
perature was used for plant control under steady state,
load following, start-up, and scheduled shutdown con-
ditions. No natural failure of the sensors occurred dur-
ing the test period and there was no evidence of any
drift of the estimated temperature. As such the modi-
-cations (e.g., adjustments via limit check on ĉk , and
additional analytical measurements) of the calibration
-lter, described earlier in this paper, were not imple-
mented. In addition to testing under on-line plant op-
eration, simulated faults have been injected into the
plant data to evaluate e<cacy of the calibration -l-
ter under sensor failure conditions. Based on the data
of four temperature sensors that were collected at an
interval of 1 min over a period of 0–100 h, the fol-
lowing three cases of simulated sensor degradation are
presented below:
Case 1 (Drift error and recovery in a single sensor):

Starting at 12:5 h, a drift error was injected into the
data stream of Sensor#1 in the form of an additive
ramp at the rate of 1:167◦F (0:648◦C)=h. The injected
fault was brought to zero at 75 h signifying that the
faulty ampli-er in the sensor hardware was corrected
and reset.
Simulation results in the six plates of Fig. 1 ex-

hibit how the calibration -lter responds to a gradual
drift in one of the four sensors while the remaining
three are normally functioning. Plate (a) in Fig. 1
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Fig. 1. Performance of the calibration -lter for drift error in a sensor.

shows the response of the four uncalibrated sensors
as well as the estimate generated by simple averaging
(i.e., -xed identical weights) of these four sensor read-
ings at each sample. The sensor data pro-le includes
transients lasting from ∼63 to ∼68 h. From time 0
to 12:5 h when no fault is injected, all sensor read-
ings are clustered together. Therefore, the uncalibrated

estimate, shown by a thick solid line, is in close agree-
ment with all four sensors during the period 0–12:5 h.
Sensor #1, shown by the dotted line, starts drifting at
12:5 h while the remaining sensors stay healthy. Con-
sequently, the uncalibrated estimate starts drifting at
one quarter of the drift rate of Sensor #1 because of
equal weighting of all sensors in the absence of the
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calibration -lter. Upon termination of the drift fault
at 75 h, when Sensor#1 is brought back to the nor-
mal state, the uncalibrated estimate resumes its nor-
mal state close to all four sensors for the remaining
period from 75 to 100 h.
Plate (b) in Fig. 1 shows the response of the four

calibrated sensors as well as the estimate generated
by weighted averaging (i.e., varying non-identical
weights) of these four sensor readings at each sam-
ple. The calibrated estimate in Plate (b) stays with
the remaining three healthy sensors even though Sen-
sor#1 is gradually drifting. Plate (f) shows that, after
the fault injection, Sensor#1 is weighted less than
the remaining sensors. This is due to the fact that
the residual �1k (see Eq. (13)) of Sensor#1 in Plate
(c) increases in magnitude with the drift error. The
pro-le of 1wrel in Plate (f) is governed by its non-
linear relationship with �1k given by Eqs. (15), (19)
and (20). As seen in Plate (f), 1wrel initially changes
very slowly to ensure that it is not sensitive to small
Cuctuations in sensor data due to spurious noise such
as those resulting from thermal-hydraulic turbulence.
The signi-cant reduction in 1wrel takes place after
about 32 h and eventually reaches the minimum value
of 10−3 when �1k is su<ciently large. Therefore, the
calibrated estimate x̂k is practically una1ected by the
drifting sensor and stays close to the remaining three
healthy sensors. In essence, x̂k is the average of the
three healthy sensors. Upon restoration of Sensor#1 to
the normal state, the calibrated signal 1yk temporarily
goes down because of the large value of correction
1ĉk at that instant as seen in Plate (e). However,
the adaptive -lter quickly brings back 1ĉk to a small
value and thereby the residual 1�k is reduced and the
original weight (i.e., ∼ 1) is regained. Calibrated and
uncalibrated estimates are compared in Plate (d) that
shows a peak di1erence of about 12◦F(6:67◦C) over
a prolonged period.
In addition to the accuracy of the calibrated es-

timate, the -lter provides fast and smooth recovery
from abnormal conditions under both steady state and
transient operations of the power plant. For example,
during the transient disturbance after about 65 h, the
steam temperature undergoes a relatively large swing.
Since the sensors are not spatially collocated, their
readings are di1erent during plant transients as a result
of transport lag in the steam header. Plate (f) shows
that the weights of two sensors out of the three healthy

sensors are temporarily reduced while the remaining
healthy sensor enjoys the full weight and the drifting
Sensor #1 has practically no weight. As the transients
are over, three healthy sensors resume the full weight.
The cause of weight reduction is the relatively large
residuals of these two sensors as seen in Plate (c).
During this period, the two a1ected sensors undergo
modest corrections: one is positive and the other neg-
ative as seen in Plate (e) so that the calibrated values
of the three healthy sensors are clustered together. The
health monitoring system and the plant control system
rely on the spatially averaged throttle steam tempera-
ture [6,7,9,10].
Another important feature of the calibration -lter is

that it reduces the deviation of the drifting Sensor#1
from the remaining sensors as seen from a compari-
son of its responses in Plates (a) and (b). This is very
important from the perspectives of fault detection and
isolation for the following reason. In an uncalibrated
system, Sensor#1 might have been isolated as faulty
due to accumulation of the drift error. In contrast, the
calibrated systemmakes Sensor#1 temporarily ine1ec-
tive without eliminating it as faulty. A warning signal
can be easily generated when the weight of Sensor#1
diminishes to a small value. This action will draw the
attention of maintenance personnel for possible repair
or adjustment. Since the estimate x̂k is not poisoned
by the degraded sensor, a larger detection delay can
be tolerated.
Consequently, the allowable threshold for fault de-

tection can be safely increased to reduce the probabil-
ity of false alarms.
Case 2 (Zero-mean Cuctuating error and recovery

in a single sensor): We examine the -lter performance
by injecting a zero-mean Cuctuating error to Sensor#3
starting at 12:5 h and ending at 75 h. The injected er-
ror is an additive sine wave of period ∼ 36 h and am-
plitude 25◦F (13:9◦C). Simulation results in the six
plates of Fig. 2 exhibit how the calibration -lter re-
sponds to the Cuctuating error in Sensor#3 while the
remaining three sensors (i.e., Sensor#1, Sensor#2 and
Sensor#4) are normally functioning. To some extent,
the -lter response is similar to that of the drift er-
ror in Case 1. The major di1erence is the oscillatory
nature of the weights and corrections of Sensor#3 as
seen in Plates (f) and (e) in Fig. 2, respectively. Note
that this simulated fault makes the -lter autonomously
switch to the normal state from either one of the two
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Fig. 2. Performance of the calibration -lter for Cuctuation error in a sensor.

abnormal states as the sensor error Cuctuates between
positive and negative limits. Since this is a violation
of the Assumption 2 in [16], the recursive relation
in Eq. (15a) therein represents an approximation of
the actual situation. The results in Plates (b) to (f)
in Fig. 2 show that the -lter is su<ciently robust

to be able to execute the tasks of sensor calibration
and measurement estimation in spite of this approxi-
mation. The -lter not only exhibits fast response but
also its recovery is rapid regardless of whether the
fault is naturally mitigated or corrected by an external
agent.
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Fig. 3. Performance of the calibration -lter for drift error and Cuctuation error in two sensors.

Case 3 (Drift error in one sensor and zero-mean
Cuctuating error in another sensor): This case in-
vestigates the -lter performance in the presence of
simultaneous faults in two out of four sensors. Note
that if the two a1ected sensors have similar types of
faults (e.g., common mode faults), the -lter will re-

quire additional redundancy to augment the informa-
tion base generated by the remaining healthy sensors.
Therefore, we simulate simultaneous dissimilar faults
by injecting a drift error in Sensor#1 and a Cuctuating
error in Sensor#3 exactly identical to those in Cases
1 and 2, respectively. A comparison of the simulation
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results in the six plates of Fig. 3 with those in Figs. 1
and 2 reveals that the estimate x̂k is essentially similar
in all three cases except for small di1erences during
the transients at ∼ 65 h. It should be noted that, dur-
ing the fault injection period from 12.5 to 75 h, x̂k is
strongly dependent on: Sensors #2–#4 in Case 1; Sen-
sors #1, #2 and #4 in Case 2; and Sensors #2 and #4 in
Case 3. Therefore, the estimate x̂k cannot be exactly
identical for these three cases. The important obser-
vation in this case study is that the -lter can handle si-
multaneous faults in two out of four sensors provided
that these faults are not strongly correlated; otherwise,
additional redundancy or equivalent information
would be necessary.

4. Summary and conclusions

This paper presents formulation and validation of
an adaptive -lter for real-time calibration of redun-
dant signals consisting of sensor data and/or analyt-
ically derived measurements. Individual signals are
calibrated on-line by an additive correction that is
generated by a recursive -lter. The covariance matrix
of the measurement noise is adjusted as a function
of the a posteriori probabilities of failure of the in-
dividual measurements. An estimate of the measured
variable is also obtained in real time as a weighted av-
erage of the calibrated measurements. These weights
are recursively updated in real time instead of be-
ing -xed a priori. The e1ects of intra-sample fail-
ure and probability of false alarms are taken into
account in the recursive -lter. The important fea-
tures of this real-time adaptive -lter are summarized
below:

• Amodel of the physical process is not necessary for
calibration and estimation if su<cient redundancy
of sensor data and/or analytical measurements is
available.

• The calibration algorithm can be executed in
conjunction with a fault detection and isolation
system.

• The -lter smoothly calibrates each measurement as
a function of its a posteriori probability of failure
that is recursively generated based on the current
and past observations.

The calibration and estimation -lter has been tested
by injecting faults in the data set collected from an
operating power plant. The -lter exhibits speed and
accuracy during steady state and transient operations
of the power plant. It also shows fast recovery when
the fault is corrected or naturally mitigated. The -l-
ter software is portable to any commercial platform
and can be potentially used to enhance the Instru-
mentation & Control System Software in tactical
and transport aircraft, and nuclear and fossil power
plants.
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