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This paper presents the concept and formulation of a signed real measure of regular languages for analysis of discrete-
event supervisory control systems. The measure is constructed based upon the principles of language theory and real
analysis for quantitative evaluation and comparison of the controlled behaviour for discrete-event automata. The
marked (i.e. accepted) states of finite-state automata are classified in different categories such that the event strings
terminating at good and bad marked states have positive and negative measures, respectively. In this setting, a controlled
language attempts to disable as many bad strings as possible and as few good strings as possible. Different supervisors
may achieve this goal in different ways and generate a partially ordered set of controlled languages. The language
measure creates a total ordering on the performance of the controlled languages, which provides a precise quantitative
comparison of the controlled plant behaviour under different supervisors. Total variation of the language measure serves
as a metric for the space of sublanguages of the regular language.

1. Introduction

An important paradigm for discrete event super-

visory (DES) control was originally proposed by

Ramadge and Wonham (1987) and subsequently

extended by other researchers (for example, see the

October 2000 issue of Part B of IEEE Transactions on

Systems, Man, and Cybernetics). The Supervisory

Control Theory (SCT) partitions the discrete-event

behaviour of a physical plant into legal and illegal cate-

gories. The legal behaviour of the plant is modelled by

a deterministic finite-state automaton, abbreviated as

DFSA in the sequel. The DFSA model is equivalent to

a regular language. Then, SCT synthesizes a DES con-

troller as another language that guarantees restricted

legal behaviour of the controlled plant based on the

desired specifications. Instead of continuous numerical

data, DES controllers process event strings to disable

certain controllable events in the physical plant. The

algorithms for DES control synthesis have evolved

based on the automata theory and formal languages in

the discipline of Computer Science.

The controlled behaviour of a given DFSA, also

referred to as the plant, under different supervisors

could vary, as they are designed based on different

control specifications. As such the respective controlled

sublanguages of the automaton form a partially ordered

set that is not necessarily totally ordered. Since

the literature on DES control does not apparently

provide a language measure, it may not be possible to

quantitatively evaluate the performance of a DES con-
troller. Therefore, it is necessary to formulate a math-
ematically rigorous concept of language measure(s) to
quantify performance of individual supervisors such
that the measures of controlled plant behaviour,
described by a partially ordered set of controlled sub-
languages, can be structured to form a totally ordered
set. From this perspective, the goal of the paper is to
construct a signed real measure that can be assigned to
any sublanguage of the uncontrolled regular language of
the plant to achieve the following objective (Ray and
Phoha 2002, Wang and Ray 2002):

Given that the relation � induces a partial ordering
on a set of controlled sublanguages {Lk} of a regular
plant language L, the signed real measure � induces
a total ordering � on {�(Lk)}. That is, the range of
the set function � is totally ordered while its domain
could be only partially ordered.

2. Concept of the language measure

Let Gi � hQ,S, �, qi,Qmi be a trim (i.e. accessible and
co-accessible) DFSA that represents the discrete-event
dynamics of a physical plant (Ramadge and Wonham
1987), where Q¼ {q1, q2, . . . , qn} is the set of states
with qi being the initial state; S¼ {�1, �2, . . . , �m}
is the alphabet of events; Qm � Q is the (non-empty)
set of marked (i.e. accepted) states; �: Q� S! Q is
the (possibly partial) function of state transitions and
�*: Q� S*! Q is an extension of �. The (countable)
set S* is the Kleene closure of S, i.e. the set of all
(finite-length) strings made of the events belonging to
S including the empty string " that is viewed as the
identity element of the monoid S* under the operation
of string concatenation, i.e. "s¼ s¼ s" 8s 2 S*.

Since � is allowed to be a partial function, the
regular language L(Gi) generated by the DFSA Gi is
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given as: LðGiÞ � S*, and L(Gi)¼S* iff �: Q�S!Q
is a total function. Therefore, if � is a partial function,
the set of states can be augmented with an additional
non-marked dead-lock state qnþ1, called the dump state,
such that the partial function � can be extended to a
total function �ext: ðQ [ fqnþ1gÞ � S!ðQ [ fqnþ1gÞ.

Definition 1: A �-algebraM of a language L � S* is a
collection of subsets of L which satisfies the following
three conditions:

(i) L 2 M;

(ii) If L 2 M, then ðL � LÞ 2 M;

(iii)
S1

k¼1 Lk 2 M if Lk 2 M 8k.

Definition 2: LetM be a �-algebra. An at most count-
able collection {Lk} of members of M is a partition of
a member L 2 M if L ¼

S
k Lk and Li \ Lj ¼ ; 8i ¼ j.

Definition 3: Given a �-algebra M of a language L,
the set function �:M!< � ð�1,1Þ, is called a
signed real measure if the following two conditions are
satisfied:

(i) �ð;Þ ¼ 0;

(ii) �
S1

k¼1 Lk

� �
¼
P1

k¼1 �ðLkÞ for every partition
{Lk} of any member L 2 M.

Note that, unlike a positive measure (e.g. the
Lebesgue measure), � is finite (but not necessarily
bounded) such that the series in part (ii) of Definition 3
converges absolutely in <. The result is independent
of any permutation of the terms under union.

Definition 4: Total variation measure j�j on a
�-algebra M is defined as j�jðLÞ ¼ sup

P
k j�ðLkÞj

8L �M where the supremum is taken over all parti-
tions {Lk} of L.

Definition 5: Relative to the signed real measure �, a
sublanguage L 2 M is defined to be:

(i) null, denoted as L¼ 0, if �ðL \ JÞ ¼ 0 8J 2 M;

(ii) positive, denoted as L>0, if �ðL \ JÞ > 0

8J 2 M;

(iii) negative, denoted as L<0, if �ðL \ JÞ < 0
8J 2 M.

Proposition 1: Total variation measure j�j of any regu-
lar language L is non-negative and finite, i.e. j�jðLÞ 2
½0,1Þ. Hence, j�jðLÞ 2 ½0,1Þ 8L 2 M.

Proof of Proposition 1: The proof follows from stan-
dard theorems on complex measures (Rudin 1988). œ

Proposition 2: Every sublanguage L 2 M can be parti-
tioned as: L ¼ L0

[ Lþ [ L� where mutually exclusive
sublanguages L0, Lþ and L� are null, positive, and
negative, respectively, relative to a signed real measure �.

Proof of Proposition 2: The proof is based on the Hahn
decomposition theorem (Rudin 1988). œ

3. Formulation of the language measure

For a given DFSA Gi � hQ,S, �, qi,Qmi, we now
construct a �-algebra M as the power set 2LðGiÞ of the
regular language L(Gi).

Proposition 3: Total variation measure j�j on the
�-algebra 2LðGiÞ is

j�jðKÞ ¼
X
s2K

j�ðfsgÞj 8K � LðGiÞ:

Proof of Proposition 3: The proof follows from
Definition 4 based on the facts that LðGiÞ � S* is at
most countable and that every singleton set of a legal
string belongs to 2LðGiÞ. œ

The marked (i.e. accepted) language LmðGiÞ of a trim
DFSA Gi has the properties ; � LmðGiÞ � LðGiÞ and
LmðGiÞ ¼ LðGiÞ iff Qm¼Q. Let the marked states be
designated as Qm � fqm1

, qm2
, . . . , qm‘

g � Q where qmk
¼

qj for some j 2 f1, 2, . . . , ng.

Definition 6: For a state q 2 Q of a given DFSA
Gi � hQ,S, �, qi,Qmi, the regular language L(qi, q) is
defined to be the set of all strings that terminate at q
starting from the initial state qi. Equivalently, L(q, qi)
is the sublanguage of all legal event strings terminating
at q starting from qi.

The Myhill–Nerode theorem is now applied to con-
struct the following state-based partitions (Martin 1997,
Hopcroft et al. 2001)

LðGiÞ ¼
[
q2Q

Lðqi, qÞ and LmðGiÞ ¼
[
q2Qm

Lðqi, qÞ

where the sublanguage L(qi, qk) of all (legal) event
strings starting at the initial state qi is uniquely labelled
by the terminal state qk 8k 2 f1, 2, . . . , ng.

In order to obtain a quantitative measure of the
marked language Lm(Gi), the set of marked states is
partitioned as: Qm ¼ Qþm [Q

�
m and Qþm \Q

�
m ¼ ;. The

positive set Qþm contains good marked states that we
desire to reach, and the negative set Q�m contains bad
marked states that we want to avoid, although it may
not always be possible to completely avoid the bad
states while attempting to reach the good states. In gen-
eral, the marked language Lm(Gi) consists of both good
and bad event strings that, starting from the initial stage
qi, respectively lead to Qþm and Q�m. Any event string
belonging to the language L(Gi)�Lm(Gi) leads to one
of the non-marked states belonging to (Q�Qm) and
does not contain any one of the good or bad strings.

The objective is to construct a performance measure
of sublanguages of a regular language for discrete-event
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control and to define quantitative metrics of the
controlled (i.e. supervised) plant performance. To this
end, the following definitions are introduced to
construct a signed real measure of sublanguages of
the regular language. This measure is not restricted to
regular sublanguages of the original regular language
based on which the measure is constructed.

In view of Definition 5, we proceed to construct a
signed real measure � : 2LðGiÞ ! < � ð�1,1Þ to allow
state-based decomposition of L(Gi) into null, positive,
and negative sublanguages such that:

(i) �ðLðqi, qÞÞ ¼ 0 8q =2Qm, i.e. a (legal) event string
starting at the initial state qi and terminating
on any non-marked state has zero measure;

(ii) partitioning of Qm into Qþm and Q�m yields
the properties �ðLðqi, qÞÞ > 0 8q 2 Qþm and
�ðLðq, qiÞÞ < 0 8q 2 Q�m, which is in agreement
with Proposition 2 in the sense that L0

¼S
q =2Qm L(qi, q), L

þ
m ¼

S
q2Qþm

Lðqi, qÞ and L�m ¼
[q2Q�mLðqi, qÞ.

Partitioning the marked language Lm(Gi) into a
positive language Lþm and a negative language L�m is
equivalent to partitioning Qm into the positive set Qþm
and the negative set Q�m. Each state belonging to Qþm is
characterized by a positive weight and each state belong-
ing to Q�m by a negative weight. These weights are
chosen by the designer based on the perception of
each marked state’s role in the system performance.

Definition 7: The characteristic function �: Q! ½�1, 1�
that assigns a signed real weight to event strings of L(Gi)
based on their terminal states is defined as

�ðqÞ 2

½�1, 0Þ if q2Q�m
f0g if q =2Qm

ð0, 1� if q2Qþm

8<
:

For any accessible DFSA Gi, the sublanguage
L(qi, qk) is a non-empty language 8k 2 f1, 2, . . . , ng. In
that case, the implication of the characteristic function
is that a string belonging to a sublanguage L(qi, qk),
which is labelled by the terminal state qk, has a zero
measure if qk is not a marked state, a positive measure
if qk is a good marked state and a negative measure if
qk is a bad marked state.

We now introduce the cost of event strings belonging
to L(Gi). The cost assignment procedure is conceptually
similar to that for state-based conditional probability to
events of a string. Since the consecutive events in a string
may not be statistically independent, it is necessary to
find the joint probability mass functions of arbitrarily
large order. This makes the probability space of S* ever
expanding as there is no finite upper bound on the
length of strings in S*. This problem is circumvented
by using the state transition function � of the DFSA Gi.

Definition 8: The event cost generated at a DFSA state
is defined as ~�� : S*�Q! ½0, 1Þ such that 8qj 2 Q, 8�,
�k 2 S, 8s 2 S*:

. ~��½�k j qj� � ~��jk 2 ½0, 1Þ:
Pm

j¼1 ~��jk < 1;

. ~��½� j qj � ¼ 0 if �(qj, �) is undefined; ~��½" j qk� ¼ 1:

. ~��½�s j qj� ¼ ~��½� j qj� ~��½s j �ðqj , �Þ�.

The event cost function ~�� for an event string
s 2 Lðqk, qiÞ starting from the initial state qi and termi-
nating at qk is obtained as the product of respective
costs conditioned on the state from which the events
are generated. This is conceptually similar to having
a product of conditional probabilities. For example,
if s ¼ �j�k�‘ for a DFSA Gi � hQ,S, �, qi,Qmi, then
~��ðs j qiÞ ¼ ~��ij ~��ak ~��b‘ where the state transition function
� defines the (Markov) states qa¼ �(qi, �j) and qb¼
�(qa, �k).

Definition 9: The signed measure � of every singleton
set member of 2LðGiÞ is defined as �ðfsgÞ � ~��ðs j qiÞ�ðqÞ,
where s 2 Lðqi, qÞ.

Definition 10: Given a DFSA Gi � hQ,S, �, qi,Qmi, the
cost v of a sublanguage K � LðGiÞ is defined as the sum
of the event cost ~�� of individual strings belonging to K

vðKÞ ¼
X
s2K

~��ðs j qiÞ

and the signed measure of K � LðGiÞ is defined as
the sum of the signed measures of equivalence classes
of K as

�ðKÞ ¼
X
j

vðLðqi, qjÞ \ KÞ�ðqjÞ

Definitions 7, 8 and 10 imply that, for an event string
s belonging to an accessible language L(Gi)

�ðfsgÞ

¼ 0 if s 2 Lðqi, qÞ for q =2Qm

> 0 if s 2 Lðqi, qÞ for q2Q
þ
m

< 0 if s 2 Lðqi, qÞ for q2Q
�
m

8><
>:

Therefore, the signed measure � can be assigned to each
event string belonging to s 2 LðGiÞ that is partitioned
by the sublanguages L(qk, qi), k 2 f1, 2, . . . , ng in terms
of the non-negative cost ~�� and the signed characteristic
function �.

In view of Proposition 3, Definition 10 assigns a total
variation measure j�j to each event string s 2 LðGiÞ and
hence to every sublanguage K � LðGiÞ as

j�jðKÞ ¼
X
j

vðLðqi, qjÞ \ KÞ�ðqjÞ

4. Convergence of the language measure

The previous section formulated the real signed mea-
sure � based on Definition 10. This section establishes
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convergence of the measure � in view of Proposition 1
and Proposition 3 by showing that j�jðLðqk, qiÞÞ <1
8qk, qi 2 Q, which is equivalent to�ðLmðGiÞÞ¼�ðLðGiÞÞ�
j�jðLðGiÞÞ <1:

The following definitions and propositions are intro-
duced to compute �(L) and j�j(L) for any L � LðGiÞ
and establish the convergence.

Definition 11: Given qi, qk 2 Q, a non-empty string p of
events (i.e. p 6¼ ") starting from qi and terminating at qk
is called a path. A path p from qi to qk is said to pass
through qj if 9 strings s 6¼ " and t 6¼ " such that p¼ st,
�*(qi, s)¼ qj and �*(qj, t)¼ qk where �*: Q� S*! Q.

Definition 12: A path language p j
ik is defined to be the

set of all paths from qi to qk, which do not pass through
any state q‘ for ‘ > j. The path language pik is defined to
be the set of all paths from qi to qk. Thus, the language
L(qi, qk) is obtained in terms of the path language pik as

Lðqi, qkÞ ¼
pii [ f"g if k ¼ i

pik if k 6¼ i

�

) vðLðqi, qkÞÞ ¼
vðpiiÞ þ 1 if k ¼ i

vðpikÞ if k 6¼ i

�
Based on the above definitions, we present the

following propositions and lemmas to quantify the
language measure �.

Proposition 4: Let Gi � hQ,S, �, qi,Qmi be a DFSA with
jQj ¼ n. Then, p j

ik ¼ pik 8j � n.

Proof of Proposition 4: The proof relies on the fact
that no string passes through a state numbered higher
than n. œ

Proposition 5: Every path language is regular for a
DFSA Gi � hQ,S, �, qi,Qmi.

Proof of Proposition 5: Since p0ik is a finite language
and hence regular, it follows from the proof of Kleene’s
theorem (Martin 1997, p. 123) by the induction hypo-
thesis that p jþ1

ik is regular if p j
ik is regular for all

1� j� n. œ

Proposition 6: Let u and v be two known regular expres-
sions and let r be an unknown regular expression that is
governed by the implicit equation r¼ urþ v. Then, 9
solutions r ¼ u*vþ � where � satisfies the condition
u�þ v¼ �þ v and the solution r¼ u*v is unique if " =2 u.

Proof of Proposition 6: Existence is established by
substituting r¼ u*vþ � in r¼ urþ v and then using the
identity u�þ v¼ �þ v

urþ v ¼ uðu*vþ �Þ þ v ¼ uu*vþ ðu� þ vÞ

¼ uu*vþ ð� þ vÞ ¼ ðuu*þ "Þvþ � ¼ u*vþ � ¼ r

If " =2 u, then u*¼ u*uþ " is a partition of u*, which
implies u*r¼ u*urþ r is a partition of u*r. It follows
from r¼ urþ v that u*r ¼ u*urþ u*v) r � u*v.

Suppose r � u*v. Partitioning of u*v yields u*v¼
rþ� for some ’ 6¼ ;. If follows from r¼ urþ v that
rþ�¼ u*v¼ uu*vþ v. Therefore, uðrþ ’Þ þ v ¼ rþ u’
) ’ � u’ which is a contradiction because " =2 u.
Hence, the solution r¼ u*v is unique if " =2 u. An alter-
native proof is given by Drobot (1989). œ

Proposition 7: For a given DFSA Gi � hQ,S, �, qi,Qmi,
the following recursive relation holds for 0 � ‘ � n� 1

p0ik ¼ f� 2 S : �ðqi, �Þ ¼ qkg

and

p‘þ1ik ¼ p‘ik [ p
‘
i, ‘þ1ðp

‘
‘þ1, ‘þ1Þ*p

‘
‘þ1, k

Proof of Proposition 7: Since the states are numbered
from 1 to n in increasing order, p0ik þ f� 2 S : �ðqi, �Þ ¼
qkg follows directly from the state transition map
� : Q� S! Q and Definition 12. Given p‘ik � p‘þ1ik , let
us consider the set p‘þ1ik � p‘ik in which each string passes
through q‘þ1in the path from qi to qk and no string
must pass through q‘ for ‘ > ð j þ 1Þ. Then, it follows
that p‘þ1ik � p‘ik ¼ p‘i, ‘þ1p

‘þ1
‘þ1, k where p‘þ1‘þ1, k can be

expanded as p‘þ1‘þ1, k ¼ ðp
‘
‘þ1, ‘þ1p

‘þ1
‘þ1, kÞ [ p

‘
‘þ1, k that has

a unique solution

p‘þ1‘þ1, k ¼ ð p
‘
‘þ1, ‘þ1Þ*p

‘
‘þ1, k

by Proposition 6 because " =2 p‘‘þ1, ‘þ1 based on
Definition 11. Therefore

p‘þ1ik ¼ p‘ik [ p
‘
i, ‘þ1ð p

‘
‘þ1, ‘þ1Þ*p

‘
‘þ1, k

An alternative proof is given in Martin (1997, p. 124).
œ

Proposition 8: The following recursive relations hold for
0 � ‘ � n� 1

vð p‘þ1ik Þ ¼ vð p‘ikÞ þ
vð p‘i, ‘þ1Þvð p

‘
‘þ1, kÞ

1� vð p‘‘þ1, ‘þ1Þ
2 ½0,1Þ

Proof of Proposition 8: We need three lemmas to prove
the proposition.

Lemma 1:

v ð p0kkÞ*
[
j 6¼k

p0kj

 !
2 ½0, 1Þ

Proof of Lemma 1: Following Definition 8, vð p0kkÞ 2
½0, 1Þ. Therefore, by convergence of a geometric series

v ð p0kkÞ*
[
j 6¼k

p0kj

 !
¼

P
j 6¼k

vð p0kjÞ

1� vð p0kkÞ
2 ½0, 1Þ

becauseX
j

vð p0kjÞ < 1 )
X
j 6¼k

vð p0kjÞ < 1� vð p0kkÞ

œ
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Lemma 2: vð p j
jþ1, jþ1Þ 2 ½0, 1Þ.

Proof of Lemma 2: The path p j
jþ1, jþ1 may contain

at most j loops, one around the states q1, q2, . . . , qj. If
the path p j

jþ1, jþ1 does not contain any loop, then
vð p j

jþ1, jþ1Þ 2 ½0, 1Þ because it is a product of ~��ik’s, each
of which is a non-negative fraction. Next suppose there
is loop around q‘ that does not contain any other
loop; this loop must be followed by one or more events
�k generated at q‘ and leading to some other states
qm where m 2 f1, . . . , j þ 1g and m 6¼ ‘. By Lemma 1,
vð p j

jþ1, jþ1Þ 2 ½0, 1Þ. Proof follows by starting from the
innermost loop and ending with all loops at qj. œ

Lemma 3: vðð p j
jþ1, jþ1Þ*Þ 2 ½1,1Þ.

Proof of Lemma 3: Since vð p j
jþ1, jþ1Þ 2 ½0, 1Þ from

Lemma 2

v ð p j
jþ1, jþ1Þ*

� �
¼

1

1� vð p j
jþ1, jþ1Þ

2 ½1,1Þ

œ
Now we proceed to prove Proposition 8. Since

the languages p‘j, ‘þ1, p
‘
‘þ1, ‘þ1 and p‘‘þ1, k are mutually

disjoint, it follows from Proposition 7 that

vð p‘þ1ik Þ ¼ vð p‘ikÞ þ vð p‘i, ‘þ1Þvðð p
‘
‘þ1, ‘þ1Þ*Þvð p

‘
‘þ1, kÞ

The proof follows by applying Lemmas 1, 2 and 3 to
the above expression. œ

Now we present the main result that the cost of any
path language is finite.

Proposition 9: For a given DFSA Gi � hQ,S, �, qi,Qmi,
the measure and total variation of every sublanguage
K � LðGiÞ are finite. Specifically, j�ðKÞj � j�jðKÞ <1.

Proof of Proposition 9: The proof follows from Propo-
sition 3 and Lemma 3. œ

To facilitate numerical computation of �, we intro-
duce the state transition cost � that can be used in place
of the event cost ~�� in Definition 8.

Definition 13: The state transition cost of the DFSA
is defined as a function �: Q�Q! ½0, 1Þ such that
8qj, qk 2 Q

�ðqk, qjÞ ¼ vð p0jkÞ ¼
X

�2S:�ðqj , �Þ¼qk

~��ð�, qjÞ ¼ �jk

and �jk¼ 0 if f� 2 S: �ðqj, �Þg ¼ ;. The state transition
cost matrix, denoted as P-matrix: is defined as

P ¼

�11 �12 . . . �1n

�21 �22 . . . �2n

..

. . .
. ..

.

�n1 �n2 . . . �nn

2
6664

3
7775

An algorithm to compute the language measure �
and total variation j�j based on the recursive relation
in Proposition 8 is presented below:

Step 1. For Gi � hQ,S, �, qi,Qmi, obtain the event cost
matrix ½ ~��ij � and the characteristic vector �.

Step 2. Generate the state transition cost matrix [�ij]
from the event cost matrix ½ ~��ij� and the state
transition function � following Definition 13.

Step 3. Execute the following nested for loops:

Initialize v0jk ¼ �jk 8j, k 2 f1, 	 	 	 , ng
for ‘ ¼ 0 to n� 1

for j¼ 1 to n
for k¼ 1 to n

vð p‘þ1jk Þ  vð p‘jkÞ þ
vð p‘j, ‘þ1Þvð p

‘
‘þ1, kÞ

1� vð p‘‘þ1, ‘þ1Þend
end

end

Step 4: Generate v(L(qk, qj)) from v( pjk) using Defini-
tion 12.

Step 5: �i  
P

q2Qm
vðLðq, qiÞ�ðqÞ

The above algorithm can be generated in polynomial
time. Specifically, the algorithm for numerically solving
v( pik) requires three for-loops and hence, for a n-state
automaton, the computation time is in the order of n3.

5. Usage of the language measure

This section outlines usage of the language measure
� for analysis and synthesis of discrete-event supervi-
sory control system. The following two subsections pre-
sent construction of metric spaces of formal languages
and construction of discrete-event supervisor control
laws.

5.1. Vector space of formal languages

This subsection makes use of the language measure
to construct a metric space of sublanguages of a regular
language representing the DFSA Gi � hQ,S, �, qi,Qmi

where the total variation measure j�j induces a metric
on this space to quantify the distance function between
any two sublanguages of L(Gi).

Proposition 10: Let L(Gi) be the language of a DFSA
Gi � hQ,S, �, qi,Qmi. Let the binary operation of sym-
metric difference (i.e. exclusive-OR) 
: 2LðGiÞ� 2LðGiÞ !
2LðGiÞ be defined as

ðK1 
 K2Þ � ðK1 [ K2Þ � ðK1 \ K2Þ

8K1,K2 � LðGiÞ. Then, h2
LðGiÞ,
i is a vector space over

the Galois field GF(2).

Proof of Proposition 10: We note that h2LðGiÞ,
i is an
abelian group where ; is the zero element of the group
and the unique inverse of every element K 2 2LðGiÞ is
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K itself because K1 
 K2 ¼ ; if and only if K1¼K2.
The associativity and distributivity of the space follows
by defining the scalar multiplication of vectors as:
0� K � ; and 1� K � K . œ

The collection of singleton languages made from
each element of L(Gi) forms a basis set of the vector
space h2LðGiÞ,
i over GF(2). Thus, L(Gi) is bijective to
any basis set of h2LðGiÞ,
i.

Definition 14: Let L(Gi) be the regular language for
the DFSA Gi. The distance function d : 2LðGiÞ � 2LðGiÞ !
½0,1Þ is defined in terms of the total variation measure
j�j as

8K1,K2 � LðGiÞ

dðK1,K2Þ ¼ j�jðK1 
 K2Þ ¼ j�jððK1 [ K2Þ � ðK1 \ K2ÞÞ

The above distance function dð	, 	Þ quantifies the
difference between two supervisors relative to the con-
trolled performance of the DFSA plant.

Proposition 11: The distance function d : 2LðGiÞ�
2LðGiÞ ! ½0,1Þ is a pseudo-metric on the space 2LðGiÞ.

Proof of Proposition 11: We note that 8K1,K2 2 2LðGiÞ,
dðK1,K2Þ ¼ j�jðK1 
 K2Þ � 0 and d(K1,K2)¼ d(K2,K1).
The remaining property of triangular inequality follows
from the inequality j�jðK1 
 K2Þ � j�jðK1Þ þ j�jðK2Þ

based on the facts that ðK1 
 K2Þ � ðK1 [ K2Þ and
j�j(K1)� j�j(K2) 8K1 � K2, following Definition 3. œ

The pseudo-metric j�j : 2LðGiÞ ! ½0,1Þ can be con-
verted to a metric of the space h2LðGiÞ,
i by clustering
all languages that have zero total variation measure as
the null equivalence class N � fK 2 2LðGiÞ: j�jðKÞ ¼ 0g.
This procedure is conceptually similar to what is done
for defining norms in the Lp spaces (Rudin 1988). In that
case, N contains all sublanguages of L(Gi), which termi-
nate on non-marked states starting from the initial state,
i.e. N ¼ ; [ ð

S
q =2Qm

Lðqi, qÞÞ. In the sequel, j�jð	Þ is
referred to as a metric of the space 2LðGiÞ. The metric
j�jð	Þ can be generated from dð	, 	Þ as:

j�jðKÞ ¼ dðK , JÞ 8K 2 2LðGiÞ 8J 2 N

Unlike the norms on vector spaces defined over
infinite fields, the metric j�jð	Þ for the vector space,
h2LðGiÞ,
i over GF(2), is not a functional.

The metric space h2LðGiÞ, di can be completed by
augmenting the state set Q with the additional dump
state qnþ1. In that case, the state transition function �
becomes a total function with �(qnþ1)¼ 0 following
Definitions 7 and 9. As the domain of the language
measure � is extended from 2LðGiÞ to 2S*, non-zero
values of � remain unchanged and the null equivalence
class is expanded as N ¼ fK 2 2S*: j�jðKÞ ¼ 0g.

5.2. Optimal control of regular languages

While the recursive solution of the language measure
in } 4 is very useful for construction of executable codes
in real time, a closed form solution is more amenable
for analysis and synthesis of decision and control
algorithms. Wang and Ray (2002) have shown that the
measure �i � �ðLðGiÞÞ of the language L(Gi), with the
initial state qi, can be expressed as

�i ¼
X
j

�ij�j þ �i

where �i��(qi). Equivalently, in vector notation

� ¼ P�þ ���

where the measure vector ��� � ½�1 �2 	 	 	 �n�
T and the

characteristic vector ��� � ½�1 �2 	 	 	 �n�
T. Following

Definitions 8 and 13, there exists � 2 ð0, 1Þ such that
the induced infinity norm kPk1 ¼ maxi Sj �ij ¼ 1� �
and the matrix operator [I�P] is invertible. This
implies that the inverse [I�P]�1 is a bounded opera-
tor with its induced infinity norm k½I �P��1k1 �
��1(Naylor and Sell 1982, p. 431). Therefore, the
language measure vector ��� is uniquely determined in
the closed form as

��� ¼ ½I �P��1 ���

Following the above closed form expression of the
language measure, Fu et al. (2002, 2003 b) have estab-
lished a theory for supervisory control of regular
languages by selectively disabling controllable events
so that the resulting optimal policy can be realized as
a controllable supervisor. The plant model is first modi-
fied to satisfy the specified operational constraints,
if any. Then, starting with the (regular) language of
the unsupervised plant, the optimal policy maximizes
the performance of the controlled sublanguage of the
supervised plant without any further constraints. The
performance index of the optimal policy is a signed
real measure of the supervised sublanguage which is
expressed in terms of the modified state transition cost
matrix (due to disabling of certain controllable events)
and the characteristic vector ���.

Let S � fS0,S1, . . . ,SN
g be a set of DES control

policies for the (unsupervised) plant automaton G
where S0 is the null controller (i.e. no event is disabled)
implying that L(S0/G)¼L(G). Therefore, the controller
cost matrix P(S0)¼P0 that is the P-matrix of the open
loop plant automaton G. For a supervisor Sk, k 2
f1, 2, . . . ,Ng, the control policy is required to selectively
disable certain controllable events so that the follow-
ing (elementwise) inequality holds: Pk

�P(Sk)�P0

and LðSk=GÞ � LðGÞ 8Sk
2 S. The task is to construct

an optimal cost matrix P*�P0 that maximizes the
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performance vector

�* � ½I �P��1X

i.e.

�* � �k
� ½I �Pk

�
�1X 8Pk

� P0

where the inequalities are implied elementwise. More
details on construction of the optimal control policy
are reported in Fu et al. (2003 b). This is an area of
ongoing research and the completed work is expected
to be reported in a future publication.

6. An application example

As an example of state-based supervisory control,
this section presents the design and performance
analysis of discrete-event supervisory controllers for a
twin-engine unmanned aircraft that is used for surveil-
lance and data collection. Engine health and operating
conditions are monitored in real time based on the
information derived from the observed data. In the
event of any abnormality being detected, the supervisor
may decide to continue or abort the mission. Engine
health and operating conditions, which are monitored
in real time, are classified into three mutually exclusive
and exhaustive categories: Good, Unhealthy (but
operable) and Inoperable.

The plant automaton model in figure 1 has 13 states
(excluding the dump state), of which three are marked
states, and nine events, of which four are control-
lable and the remaining five are uncontrollable. All
events are assumed to be observable. The states and
events of the plant model are listed in table 1 and
table 2, respectively.

The state transition function � and the state-based
event cost ~��ij (see Definition 8) are entered simul-
taneously in table 3. The fraction part in each entry
denotes the corresponding state-based event cost ~��ij

such that each row sum of the event cost matrix ~PP is

strictly less than one. The integer part (within paren-

theses) in each entry denotes the respective destination

resulting from the occurrence of the event. The values

of ~��ij were selected by extensive simulation experiments

on gas turbine engine models and were also based on

experience of gas turbine engine operation and mainten-

ance, following the procedure reported by Wang et al.

(2003 a). The dump state and any transitions to the

dumped state are not shown in table 3. The elements

of the characteristic vector (see Definition 7) were

chosen as signed real weights based on the perception

of each marked state’s role on the gas turbine engine

performance.

Table 4 lists the characteristic values of the 13 states

in table 1. These parameters are selected by the designer

based on the perception of each marked state’s role in

the system performance. As the states 1 to 10 are not

marked, the first 10 elements of the characteristic vector

~�� in table 4 are zeros. The implication is that event

strings terminating at states 1 to 10 have zero measure.
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State# State-description

1 Safe in base

2 Mission executing—two good engines

3 One engine unhealthy

4 Mission executing—one good and

one unhealthy engine

5 Both engines unhealthy

6 One engine good and one engine inoperative

7 Mission execution with two unhealthy engines

8 Mission execution with only one good engine

9 One engine unhealthy and one engine inoperative

10 Mission execution with only one unhealthy engine

11 Mission aborted/not completed (Bad Marked State)

12 Mission successful (Good Marked State)

13 Aircraft destroyed (Bad Marked State)

Table 1. Plant automaton states.

Figure 1. Finite state automaton model of the plant.

Event Event description

s start and take-off (Controllable)

b one good engine being unhealthy (Uncontrollable)

t one unhealthy engine being inoperable (Uncontrollable)

v one good engine being inoperable (Uncontrollable)

k keep engine(s) running (Controllable)

a mission abortion (Controllable)

f mission completion (Uncontrollable)

d destroyed aircraft (Uncontrollable)

‘ landing (Controllable)

Table 2. Plant event alphabet.



The state 12 is a good marked state having a positive
� value and the bad marked states 11 and 13 have nega-
tive � values. Therefore, event strings terminating at
states 12 have a positive measure and those terminating
at states 11 and 13 have negative measures.

Three supervisory controllers were designed inde-
pendently using a graphical interactive package (Wang
et al. 2003 b) based on the following specifications:

. Specification #1: At least one of the two engines
must be in good condition for mission conti-
nuation.

. Specification #2: Do not continue the mission if
any one of the two engines is inoperable.

. Specification #3: Do not continue the mission
unless both engines are in good condition.

Figures 2, 3 and 4 show the finite-state machine
diagrams of the supervised plant under control specifi-
cations 1, 2 and 3, respectively. The dashed lines in these
figures indicate that the transitions under corresponding
controllers have been deleted from the plant model as a
result of disabled (controllable) events. The performance
measure �1 (i.e. with the initial state 1) of the uncon-
trolled plant is 0.0823 and �1 for three supervised plants
under specifications #1, #2, and #3 were evaluated to be:
0.0807, 0.0822, and 0.0840, respectively. Therefore, the
performance of the supervised plant under specifications
#1, #2, and #3 is inferior, similar and superior to that
of the unsupervised plant from perspectives of the mis-
sion objectives as described by the language measure
parameters ~�� and �. The supervisor #3 yields the best

performance among the three supervisors based on

language measure parameters in tables 3 and 4.

An optimal supervisory controller was designed

for the plant model as reported in Fu et al. (2003 b).

The performance of each of these controllers is inferior

to the performance, 0.0850, of the optimal controller as

expected.
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1 0.5 (2) 0.02 (1)

2 0.05 (3) 0.01 (6) 0.8 (12) 0.1 (13)

3 0.45 (4) 0.45 (11)

4 0.12 (5) 0.16 (6) 0.1 (9) 0.5 (12) 0.12 (13)

5 0.45 (7) 0.45 (11)

6 0.45 (8) 0.45 (11)

7 0.25 (9) 0.5 (12) 0.2 (13)

8 0.2 (9) 0.01 (13) 0.3 (12) 0.4 (13)

9 0.45 (10) 0.45 (11)

10 0.35 (13) 0.2 (12) 0.40 (13)

11 0.95 (1)

12 0.95 (1)

13

Table 3. State transition and event cost matrix.

Figure 3. Supervised plant under specification #2.

Figure 2. Supervised plant under specification #1.

��� ¼ 0 0 0 0 0 0 0 0 0 0 �0:05 þ0:25 �1:0
� �T

Table 4. Characteristic vector.



7. Summary, conclusions and future work

This paper presents a signed real measure of regular
languages, which is based on an event cost matrix and a
characteristic vector. While the parameters of character-
istic values are selected based on the perception of each
marked state’s role in the system performance, the even
costs (i.e. ~��ij’s) are identified from analysis of experi-
mental observations or by extensive simulation experi-
ments (Wang et al. 2003 a). Computational complexity
of the language measure is polynomial in the number of
states of the deterministic finite state automaton that is a
minimal realization of the regular language.

The language measure provides a tool for perform-
ance analysis and comparison of the unsupervised
plant automaton and supervised plant automata. The
total variation of this language measure induces a metric
on the vector space of sublanguages of the given regular
language, which is defined over the Galois field GF(2).

The main motivation for constructing the language
measure is quantitative analysis of the performance of
finite-state automata that can be represented by regular
languages. This facilitates quantified analysis and
synthesis of discrete event supervisory (DES) control
laws for complex dynamical systems. Feasibility of
the language-measure-based approach for DES control
system analysis is demonstrated on a finite-state
machine model of a twin-engine unmanned aircraft for
surveillance and data collection. Usage of the language
measure for optimal DES control synthesis is an active
research area. The initial phase of the work in this
direction has been recently reported in technical litera-
ture (Fu et al. 2002, 2003 a,b).

The state-based measure, reported in this paper, is
restricted to regular languages that represent finite-state
machine models of dynamical systems. Since many
physical processes may require more elaborate model-
ling (for example, Petri net representation), it is necess-
ary to extend this measure to non-regular languages
that, even in the simplest form (e.g. deterministic push-

down automata Martin 1997), may not be represented
by finitely many states. Future research in this direction
is recommended. The initial effort for construction of
non-regular languages is envisioned as follows:

Step 1. Construct the language measure in terms of
its generating grammar without referring to
states of the automaton.

Step 2. Generalize the signed real measure for regular
languages to a complex measure for the class
of non-regular languages generated by linear
context free grammars (LCFG) (Martin 1997).
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