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Abstract

This paper presents a novel concept of anomaly detection in complex dynamical systems using tools of Symbolic Dynamics,
Finite State Automata, and Pattern Recognition, where time-series data of the observed variables on the fast time-scale
are analyzed at slow time-scale epochs for early detection of (possible) anomalies. The concept of anomaly detection in
dynamical systems is elucidated based on experimental data that have been generated from an active electronic circuit with
a slowly varying dissipation parameter.
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1. Introduction

Anomaly in a dynamical system is de3ned as a
deviation from its nominal behavior and can be as-
sociated with parametric or non-parametric changes
that may gradually evolve in the system. Early detec-
tion of anomalies in complex dynamical systems is
essential not only for prevention of cascading catas-
trophic failures, but also for enhancement of perfor-
mance and availability [16]. For anomaly detection, it
might be necessary to rely on time-series data gener-
ated from sensors and other sources of information [1],
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because accurate and computationally tractable mod-
elling of complex system dynamics is often infea-
sible solely based on the fundamental principles of
physics.
This paper formulates and validates, by labora-

tory experimentation, a novel concept for detection
of slowly evolving anomalies in complex dynamical
systems. Often such dynamical systems are either
self-excited or can be stimulated with a priori known
exogenous inputs to recognize (possible) anomaly
patterns from the observed stationary response. Early
detection of an anomaly (i.e., small parametric or
non-parametric changes) has motivated formulation
and validation of the proposed Symbolic Dynamic
approach to pattern recognition, which is based on
the following assumptions:

• The system behavior is stationary at the fast time
scale of the process dynamics;
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• An observable non-stationary behavior of the dy-
namical system can be associated with anomaly(ies)
evolving at a slow time scale.

The theme of anomaly detection, formulated in this
paper, is built upon the concepts of Symbolic Dynam-
ics [14,15] Finite State Automata [12], and Pattern
Recognition [9] as a means to qualitatively describe
the (fast-time-scale) dynamical behavior in terms
of symbol sequences [2,4]. Appropriate phase-space
partitioning of the dynamical system yields an alpha-
bet to obtain symbol sequences from time-series data
[1,8,13]. Then, tools of computational mechanics [7]
are used to identify statistical patterns in these sym-
bolic sequences through construction of a (probabilis-
tic) 3nite-state machine from each symbol sequence.
Transition probability matrices of the 3nite-state ma-
chines, obtained from the symbol sequences, capture
the pattern of the system behavior by information
compression. For anomaly detection, it su7ces that a
detectable change in the pattern represents a deviation
of the nominal behavior from an anomalous one. The
state probability vectors, which are derived from the
respective state transition matrices under the nominal
and an anomalous condition, yield a vector measure of
the anomaly, which provides more information than a
scalar measure such as the complexity measure [20].
In contrast to the �-machine [7,20] that has an a

priori unknown structure and yields optimal pattern
discovery in the sense of mutual information [5,11],
the state machine adopted in this paper has an a priori
known structure that can be freely chosen. Although
the proposed approach is suboptimal, it provides a
common state machine structure where physical sig-
ni3cance of each state is invariant under changes in
the statistical patterns of symbol sequences. This fea-
ture allows unambiguous detection of possible anoma-
lies from symbol sequences at diDerent (slow-time)
epochs. The proposed approach is apparently compu-
tationally faster than the �-machine [20], because of
signi3cantly fewer number of Eoating point arithmetic
operations. These are the motivating factors for in-
troducing this new anomaly detection concept that is
based on a 3xed-structure 3xed-order Markov chain,
called the D-Markov machine in the sequel.
The anomaly detection problem is separated into

two parts [21]: (i) forward problem of Pattern
Discovery to identify variations in the anomalous

behavior patterns, compared to those of the nominal
behavior; and (ii) inverse problem of Pattern Recog-
nition to infer parametric or non-parametric changes
based on the learnt patterns and observed stationary
response. The inverse problem could be ill-posed or
have no unique solution. That is, it may not always
be possible to identify a unique anomaly pattern
based on the observed behavior of the dynamical
system. Nevertheless, the feasible range of parameter
variation estimates can be narrowed down from the
intersection of the information generated from inverse
images of the responses under several stimuli.
It is envisioned that complex dynamical systems

will acquire the ability of self-diagnostics through us-
age of the proposed anomaly detection technique that
is analogous to the diagnostic procedure employed in
medical practice in the following sense. Similar to
the notion of injecting medication or inoculation on a
nominally healthy patient, a dynamical system would
be excited with known stimuli (chosen in the for-
ward problem) in the idle cycles for self diagnosis and
health monitoring. The inferred information on health
status can then be used for the purpose of self-healing
control or life-extending control [25]. This paper fo-
cuses on the forward problem and demonstrates the
e7cacy of anomaly detection based on experimental
data generated from an active electronic circuit with
a slowly varying dissipation parameter.
The paper is organized in seven sections and two

appendices. Section 2 brieEy introduces the notion
of nonlinear time-series analysis. Section 3 pro-
vides a brief overview of symbolic dynamics and
encoding of time series data. Section 4 presents two
ensemble approaches for statistical pattern represen-
tation. It also presents information extraction based
on the �-machine [7] and the D-Markov machine,
as well as their comparison from diDerent perspec-
tives. Section 5 presents the notion of anomaly
measure to quantify the changing patterns of anoma-
lous behavior of the dynamical system form the
information-theoretic perspectives, followed by an
outline of the anomaly detection procedure. Sec-
tion 6 presents experimental results on a nonlinear
active electronic circuit to demonstrate e7cacy of
the proposed anomaly detection technique. Section
7 summarizes and concludes the paper with recom-
mendations for future research. Appendix A explains
the physical signi3cance of information-theoretic
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quantities used in the Section 4.1 and Section 5.
Appendix B introduces the concept of shift spaces,
which is used to delineate the diDerences
between the �-machine [7] and theD-Markov machine
in Section 4.4.

2. Nonlinear time-series analysis

This section presents nonlinear time-series analysis
(NTSA) that is needed to extract relevant physical in-
formation on the dynamical system from the observed
data. NTSA techniques are usually executed in the
following steps [1]:
1. Signal separation: The (deterministic) time-

dependent signal {y(n) : n∈N}, where N is the set
of positive integers, is separated from noise, using
time-frequency and other types of analysis.
2. Phase space reconstruction: Based on the Tak-

ens Embedding theorem [22], time lagged or delayed
variables are used to construct the state vector x(n)
in a phase space of dimension dE (which is diDeo-
morphically equivalent to the attractor of the original
dynamical system) as follows:

x(n) = [y(n); y(n+ T ); : : : ; y(n+ (dE − 1)T )]; (1)

where the time lag T is determined using mutual in-
formation; and one of the ways to determine dE is the
false nearest neighbors test [1].
3. Signal classi4cation: Signal classi3cation and

system identi3cation in nonlinear chaotic systems re-
quire a set of invariants for each subsystem of interest
followed by comparison of observations with those
in the library of invariants. The invariants are proper-
ties of the attractor and could be independent of any
particular trajectory. These invariants can be divided
into two classes: fractal dimensions and Lyapunov
exponents. Fractal dimensions characterize geometri-
cal complexity of dynamics (e.g., spatial distribution
of points along a system orbit); and Lyapunov expo-
nents describe the dynamical complexity (e.g., stretch-
ing and folding of an orbit in the phase space) [18].
4. Modeling and prediction: This step involves

determination of the parameters of the assumed model
of the dynamics, which is consistent with the invari-
ant classi3ers (e.g., Lyapunov exponents, and fractal
dimensions).

The 3rst three steps show how chaotic systems may
be separated from stochastic ones and, at the same
time, provide estimates of the degrees of freedom
and the complexity of the underlying dynamical sys-
tem. Based on this information, Step 4 formulates a
state-space model that can be used for prediction of
anomalies and incipient failures. The functional form
often used in this step, includes orthogonal polynomi-
als and radial basis functions. This paper has adopted
an alternative class of discrete models inspired from
Automata Theory, which is built upon the principles
of Symbolic Dynamics as described in the following
section.

3. Symbolic dynamics and encoding

This section introduces the concept of Symbolic
Dynamics and its usage for encoding nonlinear sys-
tem dynamics from observed time-series data. Let a
continuously varying physical process be modelled as
a 3nite-dimensional dynamical system in the setting
of an initial value problem:
dx(t)
dt

= f(x(t); �(ts); x(0) = x0; (2)

where t ∈ [0;∞) denotes the (fast-scale) time; x∈Rn

is the state vector in the phase space; and �∈R‘ is
the (possibly anomalous) parameter vector varying
in (slow-scale) time ts. Sole usage of the model in
Eq. (2) may not always be feasible due to unknown
parametric and non-parametric uncertainties and
noise. A convenient way of learning the dynami-
cal behavior is to rely on the additional information
provided by (sensor-based) time-series data [1,4].
A tool for behavior description of nonlinear dynam-

ical systems is based on the concept of formal lan-
guages for transitions from smooth dynamics to a dis-
crete symbolic description [2]. The phase space of the
dynamical system in Eq. (2) is partitioned into a 3nite
number of cells, so as to obtain a coordinate grid of
the space. A compact (i.e., closed and bounded) re-
gion �∈Rn, within which the (stationary) motion un-
der the speci3c exogenous stimulus is circumscribed,
is identi3ed. Encoding of � is accomplished by intro-
ducing a partition B ≡ {B0; : : : ; Bm−1} consisting of
m mutually exclusive (i.e., Bj ∩ Bk = ∅ ∀j �= k), and
exhaustive (i.e.,

⋃m−1
j=0 Bj = �) cells. The dynamical

system describes an orbit by the time-series data as:
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Fig. 1. Continuous dynamics to symbolic dynamics.

O ≡ {x0; x1 · · · ; xk · · ·}; xi ∈�, which passes through
or touches the cells of the partition B.
Let us denote the cell visited by the trajectory at a

time instant as a random variable S that takes a sym-
bol value s∈A. The setA of m distinct symbols that
label the partition elements is called the symbol alpha-
bet. Each initial state x0 ∈� generates a sequence of
symbols de3ned by a mapping from the phase space
into the symbol space as:

x0 → si0si1si2 · · · sik · · · : (3)

The mapping in Eq. (3) is called Symbolic Dynam-
ics as it attributes a legal (i.e., physically admissible)
symbol sequence to the system dynamics starting from
an initial state. (Note: A symbol alphabetA is called
a generating partition of the phase space � if every
legal symbol sequence uniquely determines a speci3c
initial condition x0, i.e., every symbolic orbit uniquely
identi3es one continuous space orbit.) Fig. 1 pictori-
ally elucidates the concepts of partitioning a 3nite re-
gion of the phase space and mapping from the parti-
tioned space into the symbol alphabet. This represents
a spatial and temporal discretization of the system
dynamics de3ned by the trajectories. Fig. 1 also shows
conversion of the symbol sequence into a 3nite-state
machine as explained in later sections.
Symbolic dynamics can be viewed as coarse grain-

ing of the phase space, which is subjected to (possible)
loss of information resulting from granular impreci-
sion of partitioning boxes, measurement noise and
errors, and sensitivity to initial conditions. However,
the essential robust features (e.g., periodicity and
chaotic behavior of an orbit) are expected to be pre-
served in the symbol sequences through an appropri-
ate partitioning of the phase space [2]. Although the
theory of phase-space partitioning is well developed

for one-dimensional mappings, very few results are
known for two- and higher-dimensional systems [4].

4. Pattern identi�cation

Given the intricacy of phase trajectories in complex
dynamical systems, the challenge is to identify their
patterns in an appropriate category by using one of
the following two alternative approaches:

• The single-item approach, which relies on Kol-
mogorov Chiatin (KC) complexity, also known as
algorithmic complexity [5], for exact pattern regen-
eration;

• The ensemble approach, which regards the pattern
as one of many possible experimental outcomes,
for estimated pattern regeneration.

While the single-item approach is common in coding
theory and computer science, the ensemble approach
has been adopted in this paper due to its physical
and statistical relevance. As some of the legal sym-
bol sequences may occur more frequently than oth-
ers, a probability is attributed to each observed se-
quence. The collection of all legal symbol sequences
S−M · · · S−2S−1S0S1 · · · SN , N;M = 0; 1; 2 : : :, de3nes
a stochastic process that is a symbolic probabilistic
description of the continuous system dynamics.
Let us symbolically denote a discrete-time,

discrete-valued stochastic process as

S ≡ · · · ; S−2S−1S0S1S2 · · · ; (4)

where each random variable Si takes exactly one
value in the (3nite) alphabet A of m symbols (see
Section 3). The symbolic stochastic process S is de-
pendent on the speci3c partitioning of the phase space
and is non-Markovian, in general. Even if a partition-
ing that makes the stochastic process a Markov chain
exists, identi3cation of such a partitioning is not al-
ways feasible because the individual cells may have
fractal boundaries instead of being simple geometri-
cal objects. In essence, there is a trade-oD between
selecting a simple partitioning leading to a compli-
cated stochastic process, and a complicated partition-
ing leading to a simple stochastic process. Recent
literature has reported a comprehensive numerical pro-
cedure for construction phase-space partitions from
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the time-series data [13]. Having de3ned a partition
of the phase space, the time-series data is converted
to a symbol sequence that, in turn, is used for con-
struction of a 3nite-state machine using the tools of
Computational Mechanics [7] as illustrated in Fig. 1.
This paper considers two alternative techniques of

3nite-state machine construction from a given sym-
bol sequence S: (i) the �-machine formulation [20];
and (ii) a new concept based on Dth order Markov
chains, called the D-Markov machine, for identifying
patterns based on time series analysis of the observed
data. Both techniques rely on information-theoretic
principles (see Appendix A) and are based on
computational mechanics [7].

4.1. The �-machine

Like statistical mechanics [10,4], computational
mechanics is concerned with dynamical systems
consisting of many partially correlated components.
Whereas Statistical Mechanics deals with the local
space–time behavior and interactions of the system
elements, computational mechanics relies on the joint
probability distribution of the phase-space trajectories
of a dynamical system. The �-machine construction
[7,20] makes use of the joint probability distribution
to infer the information processing being performed
by the dynamical system. This is developed using
the statistical mechanics of orbit ensembles, rather
than focusing on the computational complexity of
individual orbits.
Let the symbolic representation of a discrete-time,

discrete-valued stochastic process be denoted by: S ≡
· · · S−2S−1S0S1S2 · · · as de3ned earlier in Section 4.
At any instant t, this sequence of random variables can

be split into a sequence
←
S t of the past and a sequence

→
S t of the future. Assuming conditional stationarity of

the symbolic process S (i.e., P[
←
S t |
→
S t =

→
s ] being in-

dependent of t), the subscript t can be dropped to de-

note the past and future sequences as
←
S and

→
S , respec-

tively. A symbol string, made of the 3rst L symbols

of
→
S , is denoted by

→
S L. Similarly, a symbol string,

made of the last L symbols of
←
S , is denoted by

←
S L.

Prediction of the future
→
S necessitates determina-

tion of its probability conditioned on the past
←
S , which

requires existence of a function � mapping histories

←
s to predictions P(

→
S |←s ). In essence, a prediction im-

poses a partition on the set
←
S of all histories. The cells

of this partition contain histories for which the same
prediction is made and are called the e7ective states
of the process under the given predictor. The set of
eDective states is denoted by R; a random variable for
an eDective state is denoted by R and its realization
by �.
The objective of �-machine construction is to 3nd

a predictor that is an optimal partition of the set
←
S of

histories, which requires invoking two criteria in the
theory of Computational Mechanics [6]:
1. Optimal Prediction: For any partition of his-

tories or eDective states R, the conditional entropy

H [
→
S L|R]¿H [

→
S L|←S ]; ∀L∈N; ∀←S ∈←S , is equiva-

lent to remembering the whole past. EDective statesR
are called prescient if the equality is attained ∀L∈N.
Therefore, optimal prediction needs the eDective states
to be prescient.
2. Principle of Occam Razor: The prescient states

with the least complexity are selected, where complex-
ity is de3ned as the measured Shannon information of
the eDective states:

H [R] = −
∑
�∈R

P(R= �)logP(R= �): (5)

Eq. (5) measures the amount of past information
needed for future prediction and is known as Statisti-
cal Complexity denoted by C�(R) (see Appendix A).
For each symbolic processS, there is a unique set of

prescient states known as causal states that minimize
the statistical complexity C�(R).

De�nition 4.1 (Shalizi et al. [20]): Let S be a (con-

ditionally) stationary symbolic process and
←
S be the

set of histories. Let a mapping � :
←
S → �(

→
S) from

the set
←
S of histories into a collection �(

→
S) of mea-

surable subsets of
←
S be de3ned as:

∀ ∈�(
→
S); �(

←
s ) ≡ {←s ′ ∈←S such that

P(
→
S ∈ |←S =

←
s ) = P(

→
S ∈ |←S =

←
s ′)}: (6)

Then, the members of the range of the function � are
called the causal states of the symbolic process S.
The ith causal state is denoted by qi and the set of

all causal states by Q ⊆ �(
→
S). The random variable
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corresponding to a causal state is denoted by Q and
its realization by q.

Given an initial causal state and the next symbol
from the symbolic process, only successor causal
states are possible. This is represented by the legal
transitions among the causal states, and the probabil-
ities of these transitions. Speci3cally, the probability
of transition from state qi to state qj on a single
symbol s is expressed as:

T (s)
ij = P(

→
S 1 = s;Q′ = qj |Q= qi) ∀qi; qj ∈Q; (7)

∑
s∈A

∑
qj∈Q

T (s)
ij = 1: (8)

The combination of causal states and transitions is
called the �-machine (also known as the causal state
model [20]) of a given symbolic process. Thus, the
�-machine represents the way in which the symbolic
process stores and transforms information. It also pro-
vides a description of the pattern or regularities in the
process, in the sense that the pattern is an algebraic
structure determined by the causal states and their tran-
sitions. The set of labelled transition probabilities can
be used to obtain a stochastic matrix [3] given by:
T=

∑
s∈A Ts where the square matrixTs is de3ned

as: Ts = [T s
ij] ∀s∈A. Denoting p as the left eigen-

vector of T, corresponding to the eigenvalue " = 1,
the probability of being in a particular causal state can
be obtained by normalizing ‖p‖‘1 = 1. A procedure
for construction of the �-machine is outlined below.
The original �-machine construction algorithm is the

subtree-merging algorithm as introduced in [7,6]. The
default assumption of this technique was employed
by Surana et al. [21] for anomaly detection. This ap-
proach has several shortcomings, such as lack of a sys-
tematic procedure for choosing the algorithm param-
eters, may return non-deterministic causal states, and
also suDers from slow convergence rates. Recently,
Shalizi et al. [20] have developed a code known as
Causal State Splitting Reconstruction (CSSR) that is
based on state splitting instead of state merging as was
done in the earlier algorithm of subtree-merging [7].
The CSSR algorithm starts with a simple model for
the symbolic process and elaborates the model com-
ponents only when statistically justi3ed. Initially, the
algorithm assumes the process to be independent and
identically distributed (iid) that can be represented by

a single causal state and hence zero statistical com-
plexity and high entropy rate. At this stage, CSSR uses
statistical tests to determine when it must add states
to the model, which increases the estimated complex-
ity, while lowering the entropy rate h� (see Appendix
A). A key and distinguishing feature of the CSSR
code is that it maintains homogeneity of the causal
states and deterministic state-to-state transitions as the
model grows. Complexity of the CSSR algorithm is:
O(mLmax ) + O(m2Lmax+1) + O(N ), where m is the size
of the alphabet A; N is the data size and Lmax is the
length of the longest history to be considered. Details
are given in [20].

4.2. The suboptimal D-markov machine

This section presents a new alternative approach for
representing the pattern in a symbolic process, which
is motivated from the perspective of anomaly detec-
tion. The core assumption here is that the symbolic
process can be represented to a desired level of accu-
racy as a Dth order Markov chain, by appropriately
choosing D∈N.

De�nition 4.2. A stochastic symbolic stationary pro-
cess S ≡ · · · S−2S−1S0S1S2 · · · is called Dth order
Markov process if the probability of the next symbol
depends only on the previous (at most) D symbols,
i.e. the following condition holds:

P(Si|Si−1Si−2 · · · Si−D · · ·) = P(Si|Si−1 · · · Si−D) (9)

Alternatively, symbol strings
←
S ,
←
S ′ ∈←S become indis-

tinguishable whenever the respective substrings
←
S D

and
←
S ′D, made of the most recent D symbols, are iden-

tical.

De3nition (4.2) can be interpreted as follows:

∀ ←
S ,
←
S ′ ∈←S such that |←S |¿D and |

←
S ′|¿D,

(
←
S ′ ∈ �(

←
S ) and

←
S ∈ �(

←
S ′)) iD

←
S D =

←
S ′D. Thus, a set

{←S L :L¿D} of symbol stings can be partitioned into
a maximum of |A|D equivalence classes where A is
the symbol alphabet, under the equivalence relation

de3ned in Eq. (6). Each symbol string in {←S L: L¿D}
either belongs to one of the |A|D equivalence classes
or has a distinct equivalence class. All such symbol
strings belonging to the distinct equivalence class
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form transient states, and would not be of concern to
anomaly detection for a (fast-time-scale) stationary
condition under (slowly changing) anomalies. Given
D∈N and a symbol string

←
s with |←s |=D, the e7ec-

tive state q(D;
←
s ) is the equivalence class of symbol

strings as de3ned below:

q(D;
←
s ) = {←S ∈←S :

←
S D =

←
s } (10)

and the set Q(D) of e7ective states of the symbolic
process is the collection of all such equivalence
classes. That is,

Q(D) = {q(D;
←
s ):
←
s ∈←SD} (11)

and hence |Q(D)| = |A|D. A random variable for a
state in the above set Q of states is denoted by Q and
the jth state as qj. The probability of transitions from
state qj to state qk is de3ned as:

$jk = P(s∈→S 1 | qj ∈Q; (s; qj) → qk);
∑
k

$jk = 1; (12)

Given an initial state and the next symbol from the
original process, only certain successor states are ac-
cessible. This is represented as the allowed state tran-
sitions resulting from a single symbol. Note that $ij=0
if s2s3 · · · sD �= s′1 · · · s′D−1 whenever qi ≡ s1s2 · · · sD
and qj ≡ s′1s

′
2 · · · s′D. Thus, for a D-Markov machine,

the stochastic matrix % ≡ [$ij] becomes a branded
matrix with at most |A|D+1 nonzero entries.
The construction of a D-Markov machine is fairly

straightforward. GivenD∈N, the states are as de3ned
in Eqs. (10) and (11). On a given symbol sequence
S, a window of length (D + 1) is slided by keeping
a count of occurrences of sequences si1 · · · siDsiD+1

and si1 · · · siD which are, respectively, denoted by
N (si1 · · · siDsiD+1) and N (si1 · · · siD). Note that if
N (si1 · · · siD) = 0, then the state q ≡ si1 · · · siD ∈Q has
zero probability of occurrence. For N (si1 · · · siD) �= 0),
the transitions probabilities are then obtained by these
frequency counts as follows:

$jk =
P(si1 · · · siDs)
P(si1 · · · siD)

≈ N (si1 · · · siDs)
N (si1 · · · siD)

; (13)

where the corresponding states are denoted by: qj ≡
si1si2 · · · siD and qk ≡ si2 · · · siDs.
As an example, Fig. 2 shows the 3nite-state ma-

chine and the associated state transition matrix for a
D-Markov machine, where the alphabet A = {0; 1},

p00    1-p00 0       0

0       0    p01 1-p01

p10 1-p10 0       0

0       0    p11 1-p11

00

10

01

11

0

0

0

0

1

1

1

1

Fig. 2. State machine with D = 2, and |A| = 2.

i.e., alphabet size |A| = 2; and the states are chosen
as words of length D=2 from a symbol sequenceS.
Consequently, the total number of states is |A|D = 4,
which is the number of permutations of the alphabet
symbols within a word of length D; and the set of
states Q = {00; 01; 10; 11}. The state transition ma-
trix on the right half of Fig. 2 denotes the probability
$ij = pij of occurrence of the symbol 0∈A at the
state q ≡ ij, where i; j ∈A. The states are joined by
edges labelled by a symbol in the alphabet. The state
machine moves from one state to another upon oc-
currence of an event as a new symbol in the symbol
sequence is received and the resulting transition ma-
trix has at most |A|D+1 =8 non-zero entries. The ma-
chine language is complete in the sense that there are
diDerent outgoing edges marked by diDerent symbols;
however, it is possible that some of these arcs may
have zero probability.

4.3. Statistical mechanical concept of D-Markov
machine

This section outlines an analogy between the struc-
tural features of the D-Markov machine and those of
spin models in Statistical Mechanics. The main idea
is derived from the doctoral dissertation of Feldman
[10] who has demonstrated how measures of patterns
from Information Theory and Computational Mechan-
ics are captured in the construction of �-Machines. In
general, the eDects of an anomaly are reEected in the
respective state transition matrices. Thus, the structure
of the 3nite-state machine is 3xed for a given alpha-
bet size |A| and window length D. Furthermore, the
number of edges is also 3nite because of the 3nite al-
phabet size. The elements of the state transition matrix
(that is a stochastic matrix [3]) are identi3ed from the
symbol sequence.
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For |A| = 2 and D = 2, the 3nite-state machine
construction is (to some extent) analogous to the
one-dimensional Ising model of spin-1/2 systems with
nearest neighbor interactions, where the z-component
of each spin takes on one of the two possible values
s=+1 or s= −1 [10,19]. For |A|¿ 3, the machine
would be analogous to one-dimensional Potts model,
where each spin is directed in the z-direction with
|A| diDerent discrete values sk : k ∈ 1; 2; : : : ; |A|; for
a j=2-spin model, the alphabet size |A| = j + 1 [4].
For D¿ 2, the spin interactions extend up to the
(D − 1)th neighbor.

4.4. Comparison of D-Markov machine and
�-machine

An �-machine seeks to 3nd the patterns in the
time series data in the form of a 3nite-state machine,
whose states are chosen for optimal prediction of the
symbolic process; and a 3nite-state automation can
be used as a pattern for prediction [20]. An alterna-
tive notion of the pattern is one which can be used
to compress the given observation. The 3rst notion
of the pattern subsumes the second, because the ca-
pability of optimal prediction necessarily leads to the
compression as seen in the construction of states by
lumping histories together. However, the converse is
not true in general. For the purpose of anomaly detec-
tion, the second notion of pattern is su7cient because
the goal is to represent and detect the deviation of
an anomalous behavior from the nominal behavior.
This has been the motivating factor for proposing
an alternative technique, based on the 3xed structure
D-Markov machine. It is possible to detect the evolv-
ing anomaly, if any, as a change in the probability
distribution over the states.
Another distinction between the D-Markov ma-

chine and �-machine can be seen in terms of 4nite-type
shifts and so4c shifts [15] (see Appendix B). Basic
distinction between 3nite-type shifts and so3c shifts
can be characterized in terms of the memory: while a
3nite-type shift has 3nite-length memory, a so3c shift
uses 3nite amount of memory in representing the
patterns. Hence, 3nite-type shifts are strictly proper
subsets of so3c shifts. While, any 3nite-type shift has
a representation as a graph, so3c shifts can be repre-
sented as a labelled graph. As a result, the 3nite-type
shift can be considered as an “extreme version” of a

D-Markov chain (for an appropriateD) and so3c shifts
as an “extreme version” of a Hidden Markov process
[24], respectively. The shifts have been referred to as
“extreme” in the sense that they specify only a set of
allowed sequences of symbols (i.e., symbol sequences
that are actually possible, but not the probabilities of
these sequences). Note that a Hidden Markov model
consists of an internal D-order Markov process that
is observed only by a function of its internal-state
sequence. This is analogous to so3c shifts that are ob-
tained by a labelling function on the edge of a graph,
which otherwise denotes a 3nite-type shift. Thus, in
these terms, an �-machine infers the Hidden Markov
Model (so3c shift) for the observed process. In
contrast, the D-Markov Model proposed in this paper
infers a (3nite-type shift) approximation of the (so3c
shift) �-machine.

5. Anomaly measure and detection

The machines described in Sections 4.1 and 4.2 rec-
ognize patterns in the behavior of a dynamical system
that undergoes anomalous behavior. In order to quan-
tify changes in the patterns that are representations of
evolving anomalies, we induce an anomaly measure
on these machines, denoted byM. The anomaly mea-
sure M can be constructed based on the following
information-theoretic quantities: entropy rate, excess
entropy, and complexity measure of a symbol string
S (see Appendix A).

• The entropy rate h�(S) quanti3es the intrinsic ran-
domness in the observed dynamical process.

• The excess entropy E(S) quanti3es the memory in
the observed process.

• The statistical complexity C�(S) of the state ma-
chine captures the average memory requirements
for modelling the complex behavior of a process.

Given two symbol strings S and S0, it is possible to
obtain a measure of anomaly by adopting any one of
the following three alternatives:

M(S;S0)) =




|h�(S) − h�(S0)|; or
|E(S) − E(S0)|; or
|C�(S) − C�(S0)|:
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Note that each of the anomaly measures, de3ned
above, is a pseudo metric [17]. For example, let us
consider two periodic processes with unequal periods,
represented byS andS0. For both processes, h� =0,
so thatM(S;S0) = 0 for the 3rst of the above three
options, even if S �=S0.
The above measures are obtained through scalar-

valued functions de3ned on a state machine and do
not exploit the rich algebraic structure represented in
the state machine. For example, the connection matrix
T associated with the �-machine (see Section 4.1),
can be treated as a vector representation of any possi-
ble anomalies in the dynamical system. The induced
2-norm of the diDerence between the T-matrices for
the two state machines can then be used as a measure
of anomaly, i.e., M(S;S0) = ‖T − T0‖2. Such a
measure, used in [21], was found to be eDective. How-
ever, there is some subtlety in using this measure on
�-machines, because �-machines do not guarantee that
the machines formulated from the symbol sequences
S and S0 have the same number of states; and these
states do not necessarily have similar physical sig-
ni3cance. In general, T and T0 may have diDerent
dimensions and diDerent physical signi3cance. How-
ever, by encoding the causal states, T could be em-
bedded in a larger matrix, and an induced norm of the
diDerence betweenTmatrices for these two machines
can be de3ned. Alternatively, a (vector) measure of
anomaly can be derived directly from the stochastic
matrix T as the left eigenvector p corresponding to
the unit eigenvalue ofT, which is the state probabil-
ity vector under a stationary condition.
This paper has adopted the D-Markov machine ap-

proach, described in the Section 4.2 to build the state
machines. Since D-Markov machines have a 3xed
state structure, the state probability vector p associated
with the state machine have been used for a vector
representation of anomalies, leading to the anomaly
measure M(S;S0)) as a distance function between
the respective probability vectors p and p0 (that are
of identical dimensions), or any other appropriate
functional.

5.1. Anomaly detection procedure

Having discussed various tools and techniques, this
section outlines the steps of the forward problem and
the inverse problem described in Section 1. Following

are the steps for the forward problem:

(F1) Selection of an appropriate set of input stimuli.
(F2) Signal–noise separation, time interval selection,

and phase-space construction.
(F3) Choice of a phase space partitioning to generate

symbol alphabet and symbol sequences.
(F4) State Machine construction using generated sym-

bol sequence(s) and determining the connection
matrix.

(F5) Selection of an appropriate metric for the
anomaly measureM.

(F6) Formulation and calibration of a (possibly
non-parametric) relation between the computed
anomaly measure and known physical anomaly
under which the time-series data were collected
at diDerent (slow-time) epochs.

Following are the steps for the inverse problem:

(I1) Excitation with known input stimuli selected in
the forward problem.

(I2) Generation of the stationary behavior as
time-series data for each input stimulus at dif-
ferent (slow-time) epochs.

(I3) Embedding the time-series data in the phase
space determined for the corresponding input
stimuli in Step F2 of the forward problem.

(I4) Generation of the symbol sequence using the
same phase-space partition as in Step F3 of the
forward problem.

(I5) State Machine construction using the symbol se-
quence and determining the anomaly measure.

(I6) Detection and identi3cation of an anomaly, if
any, based on the computed anomaly measure
and the relation derived in Step F6 of the forward
problem.

6. Application to an active electronic circuit

This section illustrates an application of the
D-Markov machine concept for anomaly detection
on an experimental apparatus that consists of an ac-
tive electronic circuit. The apparatus implements a
second-order non-autonomous, forced Du7ng equa-
tion in real time [23]. The governing equation with
a cubic nonlinearity in one of the state variables is
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Fig. 3. Phase plots for electronic circuit experiment.

given below:

d2x(t)
dt2

+ )(ts)
dx(t)
dt

+ x(t) + x3(t) = A cos!t: (14)

The dissipation parameter )(ts), realized in the form
of a resistance in the circuit, is made to vary in the
slow time scale ts and is treated as a constant in the fast
time scale t at which the dynamical system is excited.
The goal is to detect, at an early stage, changes in )(ts)
that are associated with the anomaly.
In the forward problem, the 3rst task is the selection

of appropriate input stimuli. For illustration purposes,
we have used the stimulus with amplitude A = 22:0
and frequency ! = 5:0 in this paper. Changes in the
stationary behavior of the electronic circuit take place
starting from ) ≈ 0:10 with signi3cant changes oc-
curring in the narrow range of 0:28¡)¡ 0:29. The
stationary behavior of the system response for this in-
put stimulus is obtained for several values of ) in the
range of 0.10–0.35.
The four plates in Fig. 3 exhibit four phase plots

for the values of the parameter ) at 0.10, 0.27, 0.28,
and 0.29, respectively, relating the phase variable of
electrical charge that is proportional to the voltage
across one of the capacitors in the electronic circuit,
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Fig. 4. Time plots for electronic circuit experiment.

and its time derivative (i.e., the instantaneous cur-
rent). While a small diDerence between the plots for
)=0:10 and 0.27 is observed, there is no clearly visi-
ble diDerence between the plots for )=0:27 and 0.28
in Fig. 3. However, the phase plots for ) = 0:28 and
0.29 display a very large diDerence indicating period
doubling possibly due to onset of bifurcation. Fig. 4
displays time responses of the stationary behavior of
the phase variable for diDerent values of the parameter
) corresponding to the phase plots in Fig. 3. The plots
in Fig. 4 are phase-aligned for better visibility. (Note
that the proposed anomaly detection method does not
require phase alignment; equivalently, the 3nite-state
machine Fig. 2 can be started from any arbitrary
state corresponding to no speci3c initial condition.)
While the time responses for ) = 0:27 and 0.28 are
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indistinguishable, there is a small diDerence between
those for )=0:27 and 0.10. Similar to the phase plots
in Fig. 3, the time responses for ) = 0:28 and 0.29
display existence of period doubling due to a possible
bifurcation.
Additional exogenous stimuli have been identi3ed,

which also lead to signi3cant changes in the station-
ary behavior of the electronic system dynamics for
other ranges of ). For example, with the same ampli-
tude A= 22:0, stimuli at the excitation frequencies of
! = 2:0 and ! = 1:67 (not shown in Figs. 3 and 4)
detect small changes in the ranges of 0:18¡)¡ 0:20
and 0:11¡)¡ 0:12, respectively [21]. These ob-
servations reveal that exogenous stimuli at diDerent
excitation frequencies can be eDectively used for
detection of small changes in ) over an operating
range (e.g., 0:10¡)¡ 0:35).
Having obtained the phase plots from the time-series

data, the next step is to 3nd a partition of the phase
space for symbol sequence generation. This is a
di7cult task especially if the time-series data is
noise-contaminated. Several methods of phase-space
partitioning have been suggested in literature (for
example, [1,8,13]). Apparently, there exist no
well-established procedure for phase-space partition-
ing of complex dynamical systems; this is a subject
of active research. In this paper, we have introduced
a new concept of symbol sequence generation, which
uses wavelet transform to convert the time-series
data to time-frequency data for generating the symbol
sequence. The graphs of wavelet coe7cients ver-
sus scale at selected time shifts are stacked starting
with the smallest value of scale and ending with its
largest value and then back from the largest value
to the smallest value of the scale at the next in-
stant of time shift. The resulting scale series data
in the wavelet space is analogous to the time-series
data in the phase space. Then, the wavelet space
is partitioned into segments of coe7cients on the
ordinate separated by horizontal lines. The number
of segments in a partition is equal to the size of
the alphabet and each partition is associated with a
symbol in the alphabet. For a given stimulus, parti-
tioning of the wavelet space must remain invariant
at all epochs of the slow time scale. Nevertheless,
for diDerent stimuli, the partitioning could be chosen
diDerently. (The concept of proposed wavelet-space
partitioning would require signi3cant theoretical

research before its acceptance for application to a
general class of dynamical systems for anomaly de-
tection; and its e7cacy needs to be compared with
that of existing phase-space partitioning methods such
as false nearest neighbor partitioning [13].)
The procedure, described in the subsection IV-B

constructs a D-Markov machine and obtains the con-
nection matrixT and the state vector p from the sym-
bol sequence corresponding to each ). For this anal-
ysis, the wave space generated from each data set
has been partitioned into eight (8) segments, which
makes the alphabet size |A|=8 to generate symbol se-
quences from the scale series data. At each value of ),
the generated symbol sequence has been used to con-
struct several D-Markov Machines starting with D=1
and higher integers. It is observed that, the dominant
probabilities of the state vector (albeit having diDer-
ent dimensions) for diDerent values of D are virtually
similar. Therefore, a 3xed-structure D-Markov Ma-
chine with alphabet size |A| = 8 and depth D = 1,
which yields the number of states |A|D =8, is chosen
to generate state probability (p) vectors for the sym-
bol sequences.
The electronic circuit system is assumed to be at

the nominal condition for the dissipation parameter
) = 0:10, which is selected as the reference point
for calculating the anomaly measure. The anomaly
measureM is computed based on two diDerent com-
putation methods as discussed in Section 5. Fig. 5
exhibits three plots of the normalized anomaly mea-
sure M versus the dissipation parameter ), where
M is computed based on diDerent metrics. In each

 

Fig. 5. Anomaly measure versus parameter ).
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case, the reference point of nominal condition is rep-
resented by the parameter ) = 0:10. The 3rst plot,
shown in solid line, showsM expressed as the angle
(in radians) between the p vectors of the state ma-
chines under nominal and anomalous conditions, i.e.,
M =“(pref ; p) ≡ cos−1( |〈pref ;p〉|

‖pref‖‘2‖p‖‘2 ). The remain-
ing two plots, one in dashed line and the other in dot-
ted line, show the anomaly measure expressed as the
‘1-norm and ‘2-norm of the diDerence between the
p vectors of the state machines under nominal and
an anomalous conditions, i.e., M = ‖pref − p‖‘1 and
M = ‖pref − p‖‘2, respectively. In each of the three
plots, M is normalized to unity for better compari-
son. All three plots in Fig. 5 show gradual increase
in the anomaly measure M for ) in the approximate
range of 0.10–0.25. At ) ≈ 0:25 and onwards, M
starts increasing at a faster rate and 3nally saturates
at )¿ 0:29. The large values of anomaly measure at
) = 0:29 and beyond indicate the occurrence of pe-
riod reduction as seen in Figs. 3 and 4. This abrupt
disruption, preceded by gradual changes, is analogous
to a phase transition in the thermodynamic sense [4],
which can also be interpreted as a catastrophic disrup-
tion in a physical process. Hence, observation of mod-
est changes in the anomaly measure may provide very
early warnings for a forthcoming catastrophic failure
as indicated by the gradual change in the )−M curve.
Following the steps (I1)–(I5) of the inverse prob-

lem in Section 5.1, the state probability vector p can be
obtained for the stationary behavior under the known
stimulus. The a priori information on the anomaly
measure, generated in the step F6 of the forward prob-
lem in the Section 5.1, can then be used to determine
the possible range in which ) lies. Solutions of the for-
ward problem can generate more information on dif-
ferent ranges of ) under diDerent input stimuli. Thus,
the range of the unknown parameter ) can be further
narrowed down by repeating this step for other known
stimuli as reported earlier [21]. This ensemble of in-
formation provides inputs for the inverse problem for
detecting anomalies based on the sensor data collected
in real time, during the operation of machineries.

7. Summary and conclusions

This paper presents a novel concept of anomaly
detection in complex systems based on the tools of

Symbolic Dynamics, Finite State Automata, and Pat-
tern Recognition. It is assumed that dynamical sys-
tems under consideration exhibit nonlinear dynami-
cal behavior on two time scales. Anomalies occur
on a slow time scale that is (possibly) several or-
ders of magnitude larger than the fast time scale of
the system dynamics. It is also assumed that the un-
forced dynamical system (i.e., in the absence of ex-
ternal stimuli) is stationary at the fast time scale and
that any non-stationary behavior is observable only on
the slow time scale. This concept of small change de-
tection in dynamical systems is elucidated on an ac-
tive electronic circuit representing the forced Du7ng
equation with a slowly varying dissipation parameter.
The time-series data of stationary phase trajectories
are collected to create the respective symbolic dynam-
ics (i.e., symbol sequences) using wavelet transform.
The resulting state probability vector of the transition
matrix is considered as the vector representation of
a phase trajectory’s stationary behavior. The distance
between any two such vectors under the same stimu-
lus is the measure of anomaly that the system has been
subjected to. This vector representation of anomalies
is more powerful than a scalar measure. The major
conclusion of this research is that Symbolic Dynam-
ics along with the stimulus-response methodology and
having a vector representation of anomaly is eDective
for early detection of small anomalies.
The D-Markov machine, proposed for anomaly

detection, is a suboptimal approximation of the
�-machine. It is important that this approximation is
a su7ciently accurate representation of the nominal
behavior. Research in this direction is in progress and
the results will be presented in a forthcoming publi-
cation. Further theoretical research is recommended
in the following areas:

• Separation of information-bearing part of the signal
from noise.

• Identi3cation of a relevant submanifold of the phase
space and its partitioning to generate a symbol al-
phabet.

• Identi3cation of appropriate wavelet basis functions
for symbol generation and construction of a map-
ping from the wavelet space to the symbol space.

• Selection of the minimal D for the D-Markov ma-
chine and identi3cation of the irreducible submatrix
of the state transition matrix that contains relevant
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information on anomalous behavior of the
dynamical system.
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Appendix A. Information theoretic quantities

This appendix introduces the concepts of standard
information-theoretic quantities: entropy rate, excess
entropy and statistical complexity [11], which are
used to establish the anomaly measure in Section 5.
Entropy rate (h�): The entropy rate of a symbol

string S is given by the Shannon entropy as follows:

h� = lim
L→∞

H [L]
L

; (A.1)

where H [L] ≡ −∑
sL∈A L P(sL) log2(P(s

L)) is the
Shannon entropy of all L-blocks (i.e., symbol se-
quences of length L) in S. The limit is guaranteed
to exist for a stationary process [5]. The entropy rate
quanti3es the irreducible randomness in sequences
produced by a source: the randomness that remains
after the correlation and the structures in longer and
longer sequence blocks are taken into account. For
a symbol string S represented as an �-machine,

h� = H [
→
S 1|S].

Excess entropy (E): The excess entropy of a sym-
bol string S is de3ned as

E=
∞∑
L=1

[h�(L) − h�] (A.2)

where h�(L) ≡ H [L]−H [L−1] is the estimate of how
random the source appears if only L-blocks in S are
considered. Excess entropy measures how much addi-
tional information must be gained about the sequence

in order to reveal the actual per-symbol uncertainty h�,
and thus measures di7culty in the prediction of the
process. Excess entropy has alternate interpretations
such as: it is the intrinsic redundancy in the process;
geometrically it is a sub-extensive part of H (L); and
it represents how much historical information stored
in the present is communicated to the future.
Statistical complexity (C�) [11]: The information

of the probability distribution of causal states, as
measured by Shannon entropy, yields the minimum
average amount of memory needed to predict future
con3gurations. This quantity is the statistical com-
plexity of a symbol string S, de3ned by Crutch3eld
and Young [7] as

C� ≡ H (S) = −
n−1∑
k=0

[Pr(Sk) log2Pr(Sk)]; (A.4)

where n is the number of states of the 3nite-state ma-
chine constructed from the symbol stringS. As shown
in [11], E6C� in general, and C� = E+ Dh�.

Appendix B. Finite-type shift and so�c shift

This appendix very brieEy introduces the concept
of shift spaces with emphasis on 3nite shifts and so3c
shifts that respectively characterize theD-Markov ma-
chine and the �-machine described in the Section 4.4.
The shift space formalism is a systematic way to study
the properties of the underlying grammar, which rep-
resent the behavior of dynamical systems encoded
through symbolic dynamics. The diDerent shift spaces
provide increasingly powerful classes of models that
can be used to represent the patterns in the dynamical
behavior.

De�nition 2.1. Let A be a 3nite alphabet. The full
A-shift is the collection of all bi-in3nite sequences of
symbols from A and is denoted by:

AZ = {x = (xi)i∈Z : xi ∈A ∀i∈Z}: (A.5)

De�nition 2.2. The shift map / on the full shift AZ

maps a point x to a point y=/(x) whose ith coordinate
is yi = xi+1.

A block is a 3nite sequence of symbols overA. Let
x∈AZ and w be a block overA. Then w occurs in x
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if ∃ indices i and j such that w = x[i; j] = xixi+1 · · · xj.
Note that the empty block � occurs in every x.
LetF be a collection of blocks, i.e., 3nite sequences

of symbols overA. Let x∈AZ and w be a block over
A. Then w occurs in x if ∃ indices i and j such that
w= x[i; j] = xixi+1 · · · xj. For any suchF, let us de3ne
XF to be the subset of sequences inAZ , which do not
contain any block in F.

De�nition 2.3. A shift space is a subset X of a full
shiftAZ such that X = XF for some collectionF of
forbidden blocks over A.

For a given shift space, the collectionF is at most
countable (i.e., 3nite or countably in3nite) and is
non-unique (i.e., there may be many such F’s de-
scribing the shift space). As subshifts of full shifts,
these spaces share a common feature called shift in-
variance. Since the constraints on points are given in
terms of forbidden blocks alone and do not involve
the coordinate at which a block might be forbidden, it
follows that if x∈XF, then so are its shifts /(x) and
/−1(x). Therefore /(XF) =XF, which is a necessary
condition for a subset ofAZ to be a shift space. This
property introduces the concept of shift dynamical
systems.

De�nition 2.4. Let X be a shift space and /X :X →
X be the shift map. Then (X; /X ) is known as a shift
dynamical system.

The shift dynamical system mirrors the dynamics
of the original dynamical system from which it is gen-
erated (by symbolic dynamics). Several examples of
shift spaces are given in [15].
Rather than describing a shift space by specify-

ing the forbidden blocks, it can also be speci3ed by
allowed blocks. This leads to the notion of a language
of a shift.

De�nition 2.5. Let X be a subset of a full shift, and
let Bn(X ) denote the set of all n-blocks (i.e., blocks
of length n) that occur in X . The language of the shift
space X is de3ned as:

B(X ) =
∞⋃
n=0

Bn(X ): (A.6)

Sliding block codes: Let X be a shift space overA,
then x∈X can be transformed into a new sequence y=
· · ·y−1y0y1 · · · over another alphabet U as follows.
Fix integers m and n such that −m6 n. To compute
yi of the transformed sequence, we use a function 2
that depends on the “window” of coordinates of x from
i − m to i + n. Here 2 :Bm+n+1(X ) → U is a 3xed
block map, called a (m+ n+ 1)-block map from the
allowed (m + n + 1)-blocks in X to symbols in U.
Therefore,

yi = 2(xi−mxi−m+1 · · · xi+n) = 2(x[i−m; i+n]): (A.7)

De�nition 2.6. Let 2 be a block map as de3ned in
Eq. (A.7). Then the map 3 :X → (U)Z de3ned by
y = 3(x) with yi given by Eq. (A.7) is called the
sliding block code with memory m and anticipation n
induced by 2.

De�nition 2.7. Let X and Y be shift spaces, and 3 :
X → Y be a sliding block code.

• If 3 :X → Y is onto, then 3 is called a factor code
from X onto Y .

• If 3 :X → Y is one-to-one, then 3 is called an
embedding of X into Y .

• If 3 :X → Y has a inverse (i.e., ∃ a sliding block
code  :Y → X such that  (3(x)) = x ∀x∈X and
3( (y))=y ∀ y∈Y ), then 3 is called a conjugacy
from X to Y .

If ∃ a conjugacy from X to Y , then Y can be viewed
as a copy of X , sharing all properties of X . Therefore,
a conjugacy is often called topological conjugacy in
literature.
Finite-type shifts: We now introduce the concept of

3nite-type shift that is the structure of the shift space
in the D-Markov machine proposed in the Section 4.2.

De�nition 2.8. A 4nite-type shift is a shift space that
can be described by a 3nite collection of forbidden
blocks (i.e., X having the form XF for some 3nite set
F of blocks).

An example of a 3nite shift is the golden mean shift,
where the alphabet is 6={0; 1} and the forbidden set
F = {11}. That is, X = XF is the set of all binary
sequences with no two consecutive 1’s.
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De�nition 2.9. A 3nite-type shift is M -step or has
memory M if it can be described by a collection of
forbidden blocks all of which have length M + 1.

The properties of a 3nite-type shift are listed below:

• If X is a 3nite-type shift, then ∃M¿ 0 such that X
is M -step.

• The language of the 3nite-type shift is characterized
by the property that if two words overlap, then they
can be glued together along their overlap to from
another word in the language. Thus, a shift space
X is an M -step 3nite-type shift iD whenever uv,
vw∈B(X ) and |v|¿M , then uvw∈B(X ).

• A shift space that is conjugate to a 3nite-type shift
is itself a 3nite-type shift.

• A 3nite-type shift can be represented by a 3nite,
directed graph and produces the collection of all
bi-in3nite walks (i.e. sequence of edges) on the
graph.

So4c shifts: The so3c shift is the structure of the
shift space in the �-machines [7,20] in Section 4.1.
Let us label the edges of a graph with symbols from
an alphabetA, where two or more edges are allowed
to have the same label. Every bi-in3nite walk on the
graph yields a point inAZ by reading the labels of its
edges, and the set of all such points is called a so4c
shift.

De�nition 2.10. A graph G consists of a 3nite set
V=V(G) of vertices together with a 3nite set E =
E(G) of edges. Each edge e∈E(G) starts at a vertex
denoted by i(e)∈V(G) and terminates at a vertex
t(e)∈V(G) (which can be the same as i(e)). There
may be more that one edge between a given initial
state and terminal state; a set of such edges is called
a set of multiple edges. An edge e with i(e) = t(e) is
called a self-loop.

De�nition 2.11. A labelled graph G is a pair (G;L),
where G is a graph with edge set E, and L :E → A
assigns a label L(e) to each edge e of G from the
3nite alphabet A. The underlying graph of G is G.

De�nition 2.12. A subset X of a full shift is a
so4c shift if X = XG for some labelled graph G. A

presentation of a so3c shift X is a labelled graph G
for which XG = X .

An example of a so3c shift is the even shift, which is
the set of all binary sequences with only even number
of 0’s between any two 1’s. That is, the forbidden set
F is the collection {102n+1: n¿ 0}.
Some of the salient characterization of so3c shifts

are presented below [15]:

• Every 3nite-type shift quali3es as a so3c shift.
• A shift space is so3c iD it is a factor of a 3nite-type
shift.

• The class of so3c shifts is the smallest collection
of shifts spaces that contains all 3nite-type shifts
and also contains all factors of each space in the
collection.

• A so3c shift that does not have 3nite-type subshifts
is called a strictly so4c. For example, the even shift
is strictly so3c [15].

• A factor of a so3c shift is a so3c shift.
• A shift space conjugate to a so3c shift is itself so3c.
• A distinction between 3nite-type shifts and so3c
shifts can be characterized in terms of the memory.
While 3nite-type shifts use 3nite-length memory,
so3c shifts require 3nite amount of memory. In
contrast, context-free shifts require in3nite amount
of memory [12].
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