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Abstract

This paper formulates a signed real measure of sublanguages of a regular language based on the prin-

ciples of automata theory and real analysis. The measure allows total ordering of any set of partially or-

dered sublanguages of a regular language for quantitative evaluation of the controlled behavior of a

deterministic finite-state automaton (DFSA) plant under different supervisors. The computational com-
plexity of the language measure algorithm is polynomial in the number of DFSA states.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of discrete-event supervisory (DES) control, pioneered by Ramadge and Wonham
[1] and subsequently enhanced by other researchers (for example, citations in [2]), provides a
framework for achieving prescribed qualitative performance of physical plants. In this setting, the
legal behavior of a physical plant is modelled by a deterministic finite-state automaton, abbre-
viated as DFSA, that is equivalent to a regular language [3–5]. A parallel composition of the
unsupervised plant automaton and a supervisor automaton yields a sublanguage of the un-
supervised plant language, which enables restricted legal behavior of the supervised plant [1].
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Traditionally, the concept of permissiveness has been used in DES control literature [2,6] to
facilitate qualitative comparison of DES controllers under the language controllability condition.
It has been shown that there exists a unique supremal controllable sublanguage that is maximally
permissive and controllable with respect to the set of uncontrollable events associated with a
DFSA plant model [7]. Design of maximally permissive DES controllers has been proposed by
several researchers based on different conditions. However, maximal permissiveness does not
necessarily imply best performance of the supervised plant from the perspectives of plant oper-
ational objectives. For example, in the travelling salesman problem, a maximally permissive
supervisor may not yield the least expensive way of visiting the scheduled cities and returning to
the starting point because no quantitative measure of performance is addressed in this type of
supervisor design.

The motivation of this paper is to present a signed real measure of regular languages, which can
be used for quantitative evaluation and comparison of different supervisors for a physical plant,
instead of relying on permissiveness as the (qualitative) performance index. Construction of the
proposed language measure follows the Myhill–Nerode Theorem [4], where a state-based parti-
tioning of the (unsupervised) plant language yields equivalence classes of finite-length event
strings. Each marked state is characterized by a signed real value that is chosen based on the
designer�s perception of the state�s impact on the system performance. Conceptually similar to the
conditional probability, each event is assigned a cost based on the state at which it is generated.
This procedure permits a string of events, terminating on a good (bad) marked state, to have a
positive (negative) measure. A supervisor can be designed in this setting such that the supervisor
attempts to eliminate as many bad strings as possible and retain as few good strings as possible.
Different supervisors may achieve this goal in different ways and generate a partially ordered set of
controlled languages. The language measure then creates a total ordering on the performance of
the controlled languages, which provides a precise quantitative comparison of the controlled plant
behavior under different supervisors. This feature is formally stated as follows:
Given that the relation ˝ induces a partial ordering on a set of controlled sublanguages
fLðSj=GÞ; j ¼ 1; . . . ;mg of the plant language LðGÞ, the language measure l induces a
total ordering 6 on flðLðSj=GÞÞg. In other words, the range of the set function l is
totally ordered while its domain could be partially ordered.
The above problem was originally formulated and solved by Wang and Ray [8] who introduced
a quantitative measure of regular languages. The present paper enhances this concept of language
measure by augmentation with additional key concepts and an engineering example. The major
contribution of the present paper is mathematically rigorous formulation and systematic con-
struction of a real signed measure of regular languages based on the fundamental principles of real
analysis and automata theory. This language measure can quantify sublanguages of a regular
language and is readily applicable to analysis and synthesis of discrete-event supervisory control
algorithms. Specifically, performance indices of DES supervisors can be defined in terms of the
language measure, regardless of how the supervisor is designed (e.g., maximally permissive or not;
blocking or non-blocking; and completely or partially observed).

The paper is organized in seven sections. Section 2 formally introduces the concept of quanti-
tative measure of regular languages representing DFSA models of unsupervised plants. Section 3
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extends the language measure to those of controlled plant sublanguages under different supervi-
sors. Section 4 addresses the issue of language measure computation. Section 5 discusses the usage
of the language measure for quantitative analysis and synthesis of DES control systems. Section 6
presents an engineering example to demonstrate how the language measure has been used in the
analysis and design of a DES controller for an aircraft gas turbine engine. The paper is summarized
and concluded in Section 7 along with recommendations for future research.
2. The language measure

Let Gi � ðQ;R; d; qi;QmÞ be a DFSA model that represents the discrete-event dynamic behavior
of a physical plant, where Q is the set of states with cardinality n, i.e., jQj ¼ n; the (finite) alphabet
of events is denoted as R and its Kleene closure R� is the set of all finite-length strings of events
including the empty string �; the (possibly partial) function d : Q	 R ! Q represents the state
transitions of the DFSA and d�: Q	 R� ! Q is an extension of d; the state qi 2 Q is the initial
state; and Qm � Q is the set of marked (i.e., accepted) states.

Definition 2.1. The language LðGiÞ generated by a DFSA Gi initialized at the state qi 2 Q is
defined as
LðGiÞ ¼ fs 2 R�jd�ðqi; sÞ 2 Qg: ð1Þ
Definition 2.2. [9] Given a DFSA plant model Gi and two supervisors S1, S2, the (event disabling)
mapping LðGiÞ ! 2Rc , where Rc � R is the subset of controllable events. S1 is said to be less
permissive than S2, denoted as S1  S2, if
8s 2 LðGiÞ; S2ðsÞ � S1ðsÞ: ð2Þ

In other words, S1 may disable more events than S2 following the execution of any event string s.
That is, LðS1=GiÞ � LðS2=GiÞ.

Definition 2.3. The language LmðGiÞ marked by a DFSA Gi initialized at the state qi 2 Q is defined
as
LmðGiÞ ¼ fs 2 R�jd�ðqi; sÞ 2 Qmg: ð3Þ
The set Qm of marked states is partitioned into Qþ
m and Q�

m, i.e., Qm ¼ Qþ
m [ Q�

m and Qþ
m \ Q�

m ¼ ;,
where Qþ

m contains all good marked states at which we desire to terminate, and Q�
m contains all

bad marked states that we want to avoid terminating on, although it may not always be possible
to completely avoid the bad states while attempting to reach the good states. In general, the
marked language LmðGiÞ consists of both good and bad event strings that, starting from the initial
state qi, respectively lead to Qþ

m and Q�
m. Any event string belonging to the language

L0 ¼ LðGiÞ � LmðGiÞ leads to one of the non-marked states belonging to Q� Qm and L0 does not
contain any one of the good or bad strings. Ray and Phoha [10] and Surana and Ray [11] have
provided a detailed explanation on partitioning of the language into positive, negative, and zero
measures following the Hahn Decomposition Theorem [12].
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Definition 2.4. For every qk 2 Q, let Lðqi; qkÞ denote the set of all strings that, starting from the
state qi, terminate at the state qk, i.e.,
Lðqi; qkÞ ¼ fs 2 R�jd�ðqi; sÞ ¼ qk 2 Qg: ð4Þ

Based on the equivalence classes defined in the Myhill–Nerode Theorem [4], the regular languages
LðGiÞ and LmðGiÞ can be expressed as
LðGiÞ ¼
[
qk2Q

Lðqi; qkÞ ¼
[n
k¼1

Lðqi; qkÞ; ð5Þ

LmðGiÞ ¼
[

qk2Qm

Lðqi; qkÞ ¼ Lþ
m [ L�

m; ð6Þ
where the sublanguage Lðqi; qkÞ � Gi having the initial state qi is uniquely labeled by the terminal
state qk, k 2 I � f1; . . . ; ng that is the index of Q. Then, Lðqi; qjÞ \ Lðqi; qkÞ ¼ ; 8j 6¼ k; and
Lþ

m �
S

q2Qþ
m
Lðqi; qÞ and L�

m �
S

q2Q�
m
Lðqi; qÞ are good and bad sublanguages of LmðGiÞ, respec-

tively. Consequently, LðGiÞ ¼ L0 [ Lþ
m [ L�

m, where L0 �
S

q62Qm
Lðqi; qÞ.

Definition 2.5. Let H be a r-algebra of LðGiÞ. Then, the set function l : H ! R � ð�1;þ1Þ,
is called a signed real measure if the following two conditions are satisfied [12]:

(1) lð;Þ ¼ 0;
(2) lð[1

j¼1LjÞ ¼
P1

j¼1 lðLjÞ 8Lj 2 H and Lj \ Lk ¼ ; if j 6¼ k.

We select the power set 2LðGiÞ as the r-algebra of LðGiÞ. Consequently, a signed real measure
l : 2LðGiÞ ! R for the DFSA, whose (regular) language is LðGiÞ, is constructed as follows:
8q 2 Q; lðLðqi; qÞÞ
¼ 0; q 62 Qm;
> 0; q 2 Qþ

m;
< 0; q 2 Q�

m:

8<: ð7Þ
To achieve the above goal of signed measure, we characterize the marked states such that each
state in Qþ

m is assigned a positive weight and each state in Q�
m a negative weight; and each un-

marked state is assigned the zero weight. The weights are chosen by the designer based on the
perception of each marked state�s role in the system performance.

Definition 2.6. The characteristic function v : Q ! ½�1; 1� that assigns a signed real weight to
state-based sublanguages Lðqi; qÞ is defined as
8q 2 Q; vðqÞ 2
½�1; 0Þ; q 2 Q�

m;
f0g; q 62 Qm;
ð0; 1�; q 2 Qþ

m:

8<: ð8Þ
The state weighting vector, denoted by X ¼ ½ v1 v2 � � � vn �
T
, where vk � vðqkÞ 8k 2 I, is

called the X-vector. The kth element vk of X-vector is the weight assigned to the corresponding
terminal state qk.

To compute the measure of the language Lðq; qiÞ, we assign a cost to each string terminating at
the state q starting from the initial state qi. To this end, the event cost is defined conceptually
similar to the conditional transition probability, assuming that the DFSA model is Markov.
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Definition 2.7. The event cost of the DFSA Gi is defined as a (possibly partial) function
~p : R� 	 Q ! ½0; 1� such that 8qi 2 Q, 8rj 2 R, 8s 2 R�,

(1) ~p½rj; qi� � ~pij 2 ½0; 1Þ;
P

j ~pij < 1;
(2) ~p½rj; qi� ¼ 0 if dðqi; rjÞ is undefined; ~p½�; qi� ¼ 1;
(3) ~p½rjs; qi� ¼ ~p½rj; qi�~p½s; dðqi;rjÞ�.

Now we introduce the language measure in terms of the event cost function ~p and the char-
acteristic function v.

Definition 2.8. The signed real measure of every singleton string set fsg 2 2LðGiÞ, where s 2 Lðqi; qÞ,
is defined as lðfsgÞ � ~p½s; qi�vðqÞ implying that
8s 2 Lðqi; qÞ; lðfsgÞ
¼ 0; q 62 Qm;
> 0; q 2 Qþ

m;
< 0; q 2 Q�

m:

8<: ð9Þ
It follows from Definition 2.8 that the signed measure of the sublanguage Lðqi; qÞ � LðGiÞ, of all
events starting at qi and terminating at q is
lðLðqi; qÞÞ ¼
X

s2Lðqi;qÞ
~p½s; qi�

 !
vðqÞ: ð10Þ
Definition 2.9. The signed real measure of the language of a DFSA Gi initialized at a state qi 2 Q,
is defined as
li � lðLðGiÞÞ ¼
X
q2Q

lðLðqi; qÞÞ: ð11Þ
The language measure vector, denoted as l ¼ ½ l1 l2 � � � ln �, is called the l-vector.

Since lðLðqi; qÞÞ ¼ 0 8q 62 Qm by Definition 2.8, it follows from Definition 2.9 that li is the
signed measure of the marked language LmðGiÞ of the DFSA Gi, i.e., li ¼ lðLmðGiÞÞ. Therefore
ðLðGiÞ; 2LðGiÞ;liÞ forms a measure space. In principle, any measure can be defined on the mea-
surable space ðLðGiÞ; 2LðGiÞÞ. The choice of the signed language measure as given by Definitions 2.9
has been motivated by the physical significance of marked states in terms of DES system oper-
ations and control objectives.

The marked language LmðGiÞ of the unsupervised plant consists of good strings terminating on
Qþ

m and bad strings terminating on Q�
m. A supervisor S may disable some of the bad strings and

retain some of the good string enabled, depending on its ability to access controllable events.
Different supervisors Sj : j 2 f1; 2; . . . ; nsg for a DFSA Gi may achieve this goal in different ways
and generate a partially ordered set of controlled sublanguages fLmðSj=GiÞ : j 2 f1; 2; . . . ; nsgg.
The real signed measure l provides a precise quantitative comparison of the controlled plant
behavior under different supervisors because the set flðLmðSj=GiÞÞ : j 2 f1; 2; . . . ; nsgg is totally
ordered. In essence, the range of the language measure l is totally ordered while its domain 2LðGiÞ

is partially ordered. Section 4 shows how the language measure is computed.
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3. Measure of supervised plant sublanguages

The previous section formulated a quantitative measure for a regular language, equivalently, a
deterministic finite-state automaton (DFSA) model of an unsupervised plant. Given the P-matrix
and X-vector, the corresponding language measure is evaluated following Definition 2.9. This
section addresses an important issue: how to evaluate the measure of different supervisors on a
common quantitative basis. It is noted that all supervisors are designed with respect to the same
DFSA plant model G. Let LðSÞ be the generating language of a supervisor S. The language LðS=GÞ
of the supervised plant is formally defined by the parallel composition of G and S as follows.

Definition 3.1. Let G � ðQ1;R; d1; q11;Qm1Þ and S � ðQ2;R; d2; q21;Qm2Þ be the DFSAs that gen-
erate the plant language and the supervisor�s specification language, respectively. The supervised
plant behavior is represented by a DFSA S=G ¼ ðQ;R; d; q1;QmÞ, where Q � Q1 	 Q2;
Qm � Qm1 	 Qm2; qj � hq1j; q2ji; and for q 2 Q and r 2 R, the state transition is defined as
dðq;rÞ ¼ ðd1ðq1;rÞ; d2ðq2; rÞÞ; ð12Þ

implying that LðS=GÞ ¼ LðGÞ \ LðSÞ and LmðS=GÞ ¼ LmðGÞ \ LmðSÞ. Specifically, S=G � S if
LðSÞ � LðGÞ.

It follows from the construction of the language measure in Section 2 that LðGÞ ¼
[n1

k¼1Lðq11; q1kÞ, where n1 ¼ jQ1j and q1k 2 Q1, 16 k6 n1. Following Definition 3.1, each sublan-
guage Lðq11; q1kÞ � LðGÞ can be further partitioned as Lðq11; q1kÞ \ Lðq21; q2jÞ, 16 k6 n1, 16 j6 n2

where n2 ¼ jQ2j. Therefore, the set of strings retained in LmðGÞ \ LmðSÞ, corresponding to every
q1k 2 Qm1, can be expressed as
Lðq11; q1kÞ
\ [

q2j2Qm2

Lðq21; q2jÞ

0@ 1A; ð13Þ
that, in turn, is used for refining the partitioning of the unsupervised language to obtain the
parameters of the supervised sublanguage. The objective is to measure the performance of a
supervisor in terms of the language measure of the supervised plant language. In this context, the
role of a well-designed supervisor is delineated below.

The supervised plant sublanguage should attempt to retain (as many as possible) strings that
terminate on a good state (i.e., q 2 Qþ

m1) and discard (as many as possible) strings that terminate
on a bad state (i.e., q 2 Q�

m1). Therefore, a more positive measure of the supervised sublanguage
is deemed to yield a better performance.

The above interpretation on refinement of equivalence classes in the supervised sublanguage
(i.e., the closed-loop system) shows how the parameters (i.e., event cost matrix eP and the char-
acteristic vector X) of the unsupervised plant can be used to generate the respective parameters
for different (regular) sublanguages of supervised plants.

Definition 3.2. Let G, S and S=G be as in Definition 3.1. Let ePP -matrix be the event cost matrix
and XP -vector be the characteristic vector for the unsupervised plant G. The event cost matrixePS=G and characteristic vector XS=G of the supervised DFSA S=G are defined as
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~pS=G½r; hq1i; q2ji� ¼ ~pP ½r; q1i� ð14Þ

8~pS=G 2 ePS=G 8r 2 R and 16 i6 n1, 16 j6 n2.
vS=Gðhq1i; q2jiÞ ¼ vP ðq1iÞIðq2jÞ; ð15Þ
where Ið�Þ is the indicator function defined as
IðqÞ ¼ 1; q 2 Qm2;
0; q 62 Qm2:

�
ð16Þ
Let s 2 Lðq1; qijÞ where qij � hq1i; q2ji. By Definition 2.9, the measure of the singleton set fsg in the
unsupervised plant language LðG) is lP ðfsgÞ ¼ ~pP ½s; q11�vP ðq1iÞ. By Definition 3.2, the measure of
fsg in the supervised plant S=G is given by
lCðfsgÞ ¼ ~pC½s; q1�vCðqijÞ ¼ ~pP ½s; q11�vP ðq1iÞIðq2jÞ:

Therefore, if no controllable event in the string s is disabled by the supervisor, then lCðfsgÞ ¼
lP ðfsgÞ; otherwise lS=GðsÞ ¼ 0. Definition 2.9 guarantees that identical strings in different
supervised plant sublanguages LðS=GÞ are assigned an identical measure to provide a common
base for quantitative evaluation of different supervisors� performance. Section 6 illustrates per-
formance comparison of three different supervisors.
4. Language measure computation

Various methods of obtaining regular expressions for DFSAs are reported in Hopcroft et al.
[4], Drobot [3], and Wonham [7]. While computing the measure of a given DFSA, the same event
may have different significance when emanating from different states. This requires assigning
(possibly) different values to the same event defined on different states. Therefore, it is necessary to
obtain a regular expression which explicitly yields the state-based event sequences. A procedure
for language measure computation in closed form [8] is presented below.

Definition 4.1. Let Li � ŁmðGiÞ, i 2 I ¼ f1; . . . ; ng, denote the regular expression representing the
marked language of an n-state DFSA Gi � ðQ;R; d; qi;QmÞ where qi is the initial state.

Definition 4.2. Let rk
j denote the set of event(s) r 2 R that is defined on the state qj and leads to

the state qk 2 Q, where j; k 2 I, i.e., dðqj; rÞ ¼ qk, 8r 2 rk
j � R.

Lemma 4.1. Let u, v be two known regular expressions and r be an unknown regular expression that
satisfies the following algebraic identity:
r ¼ ur þ v: ð17Þ

Then, the following relations are true:

(1) r ¼ u�v is a solution to Eq. (17).
(2) If � 62 u, then r ¼ u�v is the unique solution to Eq. (17).

The proof of Lemma 4.1 can be found in [3]. Part (2) of it is also known as Arden�s rule [7].
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Example 4.1. Let R ¼ fa; bg; Q ¼ f1; 2; 3g; the initial state is 1, and the sole marked state is 2 in
Fig. 1. Let the set of linear algebraic equations represent the transitions at each state of the DFSA.
L1 ¼ a1
1L1 þ b2

1L2;
L2 ¼ a1

2L1 þ b3
2L3 þ �;

L3 ¼ a1
3L1 þ b2

3L2;

8<: ð18Þ
where the �forcing� term � is introduced on the right side of the ith equation whenever qi 2 Qm,
i 2 I. By application of Lemma 4.1, the regular expression for the marked language LmðG1Þ is
LmðG1Þ � L1 ¼ ða1
1Þ

�b2
1ða1

2ða1
1Þ

�b2
1 þ b3

2a
1
3ða1

1Þ
�b2

1 þ b3
2b

2
3Þ

�
:

The method of system description in Example 4.1 can be extended to the general case without any
difficulty. Given a DFSA Gi ¼ ðQ;R; d; qi;QmÞ with jQj ¼ n, we proceed to obtain the system
equation by a set of regular expressions Li of the marked language LmðGiÞ, i 2 I, as follows:
8qi 2 Q; Li ¼
X
j

Ri;j þ Ei; i 2 I; ð19Þ
where 8i, Ri;j is defined as

1. If 9r 2 R, such that dðqi;rÞ ¼ qj 2 Q, j 2 I, then Ri;j ¼ rj
iLj, otherwise, Ri;j ¼ ;.

2. If qi 2 Qm, Ei ¼ �, otherwise, Ei ¼ ;.

The set of symbolic equations may be written as
Li ¼
X
j

rj
iLj þ Ei: ð20Þ
We note the following special cases.

(1) If Ei ¼ ;, 8Li, then LmðGÞ ¼ ;. This implies that the DFSA has no marked state.
(2) If 9qi 2 Q such that Li ¼ �, then qi is marked. Furthermore, qi is a deadlock state.

In order to convert the symbolic equations (20) into a set of algebraic equations, we introduce
the (one-hop) state transition cost that is defined below.
Fig. 1. Example 1.
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Definition 4.3. The state transition cost of the DFSA Gi is defined as a function p : Q	 Q ! ½0; 1Þ
such that 8qi; qj 2 Q, p½qjjqi� ¼

P
r2R:dðqi;rÞ¼qj

~p½r; qi� � pij and pij ¼ 0 if fr 2 R : dðqi; rÞ ¼
qjg ¼ ;. The n	 n state transition cost matrix is defined as
P ¼

p11 p12 . . . p1n

p21 p22 . . . p2n

..

. ..
. . .

. ..
.

pn1 pn2 . . . pnn

26664
37775;
and is referred to as the P-matrix in the sequel.

Now we present an alternative form of language measure (Definition 2.9) in terms of the state
transition cost (Definition 4.3) instead of event cost (Definitions 2.7) as delineated below.

Theorem 4.1. The language measure of the symbolic equations (20) is given by
li ¼
X
j

pijlj þ vi: ð21Þ
Proof. Following Eq. (19) and Definition 2.6:
8i 2 I; lðEiÞ ¼
vi if Ei ¼ �;
0 otherwise:

�
ð22Þ
Therefore, X ¼ ½ v1 v2 � � � vn �
T

is the forcing vector in Eq. (20). Starting from the state qi, the
measure
li ¼ lðLiÞ ¼ l
X
j

rj
iLj

 
þ Ei

!

¼ l
X
j

rj
iLj

 !
þ lðEiÞ

¼
X
j

lðrj
iLjÞ þ lðEiÞ

¼
X
j

lðrj
iÞlðLjÞ þ lðEiÞ

¼
X
j

pðrj
iÞlðLjÞ þ lðEiÞ

¼
X
j

pijlðLjÞ þ lðEiÞ

¼
X
j

pijlj þ vi:
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The third equality in the above derivation follows from the fact that Ei \ rj
iLj ¼ ;. It is also true

that
8j 6¼ k; rj
iLj \ rk

i Lk ¼ ; ð23Þ

since each string in rj

iLj starts with an event in rj
i while each string in rk

i Lk starts from an event in
rk
i for some k 6¼ j. This justifies the fourth equality. Since the DFSA model is modelled to be

Markov, lðrj
iLjÞ ¼ lðrj

iÞlðLjÞ. Therefore, by Definitions 2.7 and 4.2, lðrj
iLjÞ ¼ p½qjjqi�lðLjÞ ¼

pijlðLjÞ. h

In vector notation, Eq. (21) in Theorem 4.1 is expressed as l ¼ Pl þ X whose solution is given
by
l ¼ ðI� PÞ�1
X ð24Þ
provided that the matrix I� P is non-singular. Definitions 2.7 and 4.3 state that each element in
the P-matrix is non-negative and each row sum is less than 1. These conditions make the P-
matrix a contraction operator that is sufficient for the matrix ðI� PÞ�1

to be a bounded linear
operator [13]. Therefore, Definitions 2.7 and 4.3 provide a sufficient condition for the language
measure l of the DFSA G to be finite.

The jth element of the ith row of the ðI� PÞ�1
matrix, denoted as mji , is the language measure of

a DFSA with the same state transition function d as G and having the following properties: (i) the
initial state is qi; (ii) qj is the only marked state; and (iii) the v-value of qj is equal to 1 i.e., vl ¼ 1 if
l ¼ j and vl ¼ 0 if l 6¼ j. In that case, li ¼ lðLmðGiÞÞ becomes li ¼

P
j m

j
i vj. Numerical evaluation

of the language measure of Gi requires Gaussian elimination of the single variable li involving the
real square matrix ðI� PÞ. As such the computational complexity of the language measure
algorithm is polynomial in the number of plant states.

In general the language measure of Gi does not require computation of lj, j 6¼ i. However, on-
line supervisory control may require the information on the performance of the automaton
starting from an arbitrary state qi, i 6¼ 1. In that case, li ¼

P
j m

j
ivj, i 6¼ 1 should be computed.

Example 4.2 (Example 4.1 revisited). Let us assign the P-matrix and X-vector in Example 4.1
as follows:
P ¼
0:3 0:4 0

0:2 0 0:6
0:5 0:4 0

0@ 1A; X ¼
0

1

0

0@ 1A

then l ¼ ðI� PÞ�1

X ¼ ½ 1:2048 2:1084 1:4458 �T, therefore, l1 ¼ 1:2048, l2 ¼ 2:1084, and l3 ¼
1:4458.
5. Usage of the language measure for supervisor synthesis

The language measure, introduced in the previous sections, serves as a common quantitative
tool to compare the performance of different supervisors and is assigned a state characteristic
X-vector and an event cost ~P-matrix. The X-vector is chosen based on the designer�s perception
of the individual state�s impact on the system performance. On the other hand, event costs
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(i.e., elements of the ~P-matrix) are dependent on the plant states, where the respective events are
generated and are conceptually similar to their transition probabilities that have been modelled in
the setting of a stochastic finite-state automaton (SFA) in diverse applications including the
speech recognition problem [1,14,15]. While the main objective in the speech recognition problem
is to identify the minimal SFA for a stochastic regular language, the event cost ~P-matrix needs to
be identified as language measure parameters for the given DFSA plant model with known
structure. The ~P-matrix and the X-vector are critical for (quantitative) performance comparison
of different supervisory controllers.

Several researchers have proposed optimal control of DFSA based on different assumptions.
Some of these researchers have attempted to quantify the controller performance using different
types of cost assigned to the individual events. Kumar and Garg [16] introduced the concept of
payoff and control costs that are incurred only once regardless of the number of times the system
visits the state associated with the cost; consequently, the resulting cost is not a function of the
dynamic behavior of the plant. Sengupta and Lafortune [17] used control cost in addition to the
path cost in optimization of the performance index for trade-off between finding the shortest path
and reducing the control cost. Although costs were assigned to the events, no distinction was
made for events generated at (or leading to) different states that could be ‘‘good’’ or ‘‘bad’’. These
optimal control strategies have addressed performance enhancement of discrete-event control
systems without a quantitative measure of languages. The (signed) language measure l may serve
as an index for synthesis of an optimal control policy that maximizes the performance of a
controlled sublanguage. The salient concept is succinctly presented below.

Let S � fS0; S1; . . . ; SNg be a set of supervisory control policies for the open loop plant
automaton G where S0 is the null controller (i.e., no event is disabled) implying that
LðS0=GÞ ¼ LðGÞ. Therefore the controller cost matrix PðS0Þ ¼ P0 that is the P-matrix of the open
loop plant automaton G. For a supervisor Sk; k 2 f1; 2; . . . ;Ng, the control policy is required to
selectively disable certain controllable events so that the following (elementwise) inequality holds:
Pk � PðSkÞ6P0 and LðSk=GÞ � LðGÞ; 8Sk 2 S. The task is to synthesize an optimal cost
matrix P�

6P0 that maximizes the performance vector l� � ½I� P���1
X, i.e.,

l� P lk � ½I� Pk��1
X 8 Pk

6P0 where the inequalities are implied elementwise. The research
work in this direction is in progress and the results on robust and optimal DES control have been
reported in recent publications [18–20].
6. An example of engineering application

This section presents an engineering example to illustrate the role of the language measure in the
design of supervisory control systems for a given plant. A family of supervisors, based on different
control specifications, are designed for a twin-engine unmanned aircraft that is used for surveil-
lance and data collection. The measures of the uncontrolled plant language and the controlled
sublanguages are compared to quantitatively evaluate the performance of these supervisors.

Engine health and operating conditions, which are monitored in real time based on observed
data, are classified into three mutually exclusive and exhaustive categories: good; unhealthy (but
operable); and inoperable. In the event of any observed abnormality, the supervisor may decide to
continue or abort the mission. The finite-state automaton model of the plant in Fig. 2 has 13 states
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(excluding the dump state), of which three are marked states, and nine events, of which four are
controllable and the remaining five are uncontrollable. All events are assumed to be observable.
The states and events of the plant model are listed in Tables 1 and 2, respectively. The state
transition function d and the state-based event cost ~pij (see Definition 2.7) are entered simulta-
neously in Table 3. The fraction part in each entry denotes the corresponding state-based event
cost ~pij such that each row sum of the event cost matrix ~P is strictly less than one. The integer part
(within parentheses) in each entry denotes the respective destination state resulting from the
occurrence of the event. The values of ~pij were selected by extensive experiments on engine
simulation models and were also based on experience of gas turbine engine operation and
maintenance. The dump state and any transitions to the dumped state are not shown in Table 3.
The elements of the characteristic vector (see Definition 2.6) were chosen as signed real weights
based on the perception of each marked state�s role on the engine performance.

The characteristic values of the 13 states in Table 1 is given by the characteristic vector
X ¼ ½0 0 0 0 0 0 0 0 0 0 � 0:05 0:25 � 1:0�T. These parameters are selected by the designer
based on his/her perception of each marked state�s role in the system performance. As the states 1–
10 are not marked, the first 10 elements of the characteristic vector X are zeros. The implication is
that event strings terminating at states 1–10 have zero measure. The state 12 is a good marked
state having a positive v value and the bad marked states 11 and 13 have negative v values.
Therefore, event strings terminating at state 12 have positive measure and those terminating
at states 11 and 13 have negative measure.

Three supervisory controllers were designed independently using a graphical interactive
package based on the following control specifications:

1. Specification #1: At least one of the two engines must be in good condition for mission contin-
uation.

2. Specification #2: None of the two engines must be in inoperable condition for mission contin-
uation.

3. Specification #3: Both engines must be in good condition for mission continuation.
Fig. 2. Finite-state automaton model of the plant.



Table 1

Plant automaton states

State Description

1 Safe in base

2 Mission executing––two good engines

3 One engine unhealthy during mission execution

4 Mission executing––one good and one unhealthy engine

5 Both engines unhealthy during mission execution

6 One engine good and one engine inoperable

7 Mission execution with two unhealthy engines

8 Mission execution with only one good engine

9 One engine unhealthy and one engine inoperable

10 Mission execution with only one unhealthy engine

11 Mission aborted/not completed, bad marked state

12 Mission successful, good marked state

13 Aircraft destroyed, bad marked state

Table 2

Plant event alphabet

Event Event description Rc

s Start and take-off
p

b A good engine becoming unhealthy

t An unhealthy engine becoming inoperable

v A good engine becoming inoperable

k Keep engine(s) running
p

a Mission abortion
p

f Mission completion

d Destroyed aircraft

l Landing
p
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Figs. 3–5 show the finite-state machine diagrams of the supervised plant under control speci-
fications 1–3, respectively. The dashed lines in these figures indicate that the transitions under
corresponding supervisory controllers have been deleted from the plant model as a result of
disabled (controllable) events. The performance measure l1 (i.e., with the initial state 1) of the
uncontrolled plant is 0.0823 and for three supervised plants under specifications #1, #2, and #3
were evaluated to be: 0.0807, 0.0822, and 0.0840, respectively. Therefore, the performance of the
supervised plant under specifications #1, #2, and #3 is inferior, similar, and superior to that of the
unsupervised plant from perspectives of the mission objectives as described by the lan-
guage measure parameters ~p and v. The supervisor #3 yields the best performance among
the three supervisors based on language measure parameters in Table 3 and the characteristic
vector X.



Fig. 3. Controller 1 for Specification #1.

Table 3

State transition and event cost matrix

s b t v k a f d l

1 0.50 0.02

(2) (1)

2 0.05 0.01 0.80 0.10

(3) (6) (12) (3)

3 0.45 0.45

(4) (11)

4 0.12 0.16 0.10 0.50 0.12

(5) (6) (9) (12) (13)

5 0.45 0.45

(7) (11)

6 0.45 0.45

(8) (11)

7 0.25 0.50 0.20

(9) (12) (13)

8 0.20 0.01 0.3 0.4

(9) (13) (12) (13)

9 0.45 0.45

(10) (11)

10 0.35 0.20 0.40

(13) (12) (13)

11 0.95

(1)

12 0.95

(1)

13
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Fig. 4. Controller 2 for Specification #2.

Fig. 5. Controller 3 for Specification #3.
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7. Summary and conclusions

This paper presents the concept, formulation and validation of a signed real measure for
regular languages and their sublanguages. The objective is to control the legal behavior of
physical plants that can often be modelled by finite-state automata. Specifically, the relative
performance of supervisors can be quantitatively evaluated in terms of the measure of the con-
trolled sublanguages. Positive weights are assigned to good marked states and negative weights to
bad marked states so that a controllable supervisor is rewarded (penalized) for deleting strings
leading to bad (good) marked states. As such the measure of a (properly designed) controlled
sublanguage should be greater than that of the (unsupervised) plant language.
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Cost assignment to each event based on the state, where it is generated, is conceptually similar
to the conditional probability of the event. The procedure of controller evaluation in terms of its
language measure is validated by an example of a gas turbine engine for three different supervi-
sors. A relatively less permissive supervisor could be more effective than another supervisor that
may not adequately delete event strings leading to bad marked states.

The computational complexity of the language measure algorithm is polynomial in the number
of states. Potential applications of the language measure are model identification, model order
reduction, and analysis and synthesis of robust and optimal control and diagnostic systems in the
discrete-event setting. Further research is recommended for development of systematic procedures
for assigning/identifying the event cost matrix and the characteristic vector. It would be chal-
lenging to extend the concept of (regular) language measure for languages higher up in the
Chomsky Hierarchy [5] such as context free and context sensitive languages. This extension would
lead to controller synthesis when the plant dynamics is modelled by non-regular languages such as
the Petri-Net.
Acknowledgements

The authors acknowledge the benefits of discussions with Mr. Amit Surana and Dr. Jinbo Fu.
References

[1] P.J. Ramadge, W.M. Wonham, Supervisory control of a class of discrete event processes, SIAM J. Control Optim.

25 (1) (1987) 206–230.

[2] C.G. Cassandras, S. Lafortune, Introduction to Discrete Event Systems, Kluwer Academic, Dordrecht, 1999.

[3] V. Drobot, Formal Languages and Automata Theory, Computer Science Press, Rockville, MD, 1989.

[4] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation,

second ed., Addison-Wesley, Reading, MA, 2001.

[5] J.C. Martin, Introduction to Languages and the Theory of Computation, second ed., McGraw-Hill, New York,

2001.

[6] R. Kumar, V. Garg, Modeling and Control Logical Discrete Event Systems, Kluwer Academic, Dordrecht, 1995.

[7] W.M. Wonham, Discrete Event System Control Theory and Application, University of Toronto, 2001.

[8] X. Wang, A. Ray, Signed real measure of regular languages, in: Proceedings of the American Control Conference

2002, Anchorage, Alaska, vol. 5, 2002, pp. 3937–3942.

[9] R. Kumar, V.K. Garg, Control of stochastic discrete event systems modeled by probabilistic languages, IEEE

Trans. Automat. Contr. 46 (4) (2001) 593–606.

[10] A. Ray, S. Phoha, Signed real measure of regular languages for discrete-event automata, Int. J. Control. 76 (2003)

1800–1808.

[11] A. Surana, A. Ray, Signed real measure of regular languages, in: IEEE Conference on Decision and Control, Maui,

Hawaii, 2003.

[12] W. Rudin, Real and Complex Analysis, third ed., McGraw-Hill, 1987.

[13] A.W. Naylor, G.R. Sell, Linear Operator Theory in Engineering and Science, Springer-Verlag, New York, 1982.

[14] R. Carrasco, J. Oncina, Learning deterministic regular grammars from stochastic samples in polynomial time,

Theor. Informat. Appl. 33 (1) (1999) 1–19.

[15] F. Thollard, P. Dupont, C. de la Higuera, Probabilistic DFA inference using Kullback–Leibler divergence and

minimality, in: Proceedings of 17th International Conference on Machine Learning, Stanford University, Stanford,

CA, 2000, pp. 975–982.



X. Wang, A. Ray / Appl. Math. Modelling 28 (2004) 817–833 833
[16] R. Kumar, V.K. Garg, Optimal supervisory control of discrete event dynamical systems, SIAM J. Control Optim.

33 (2) (1995) 419–439.

[17] R. Sengupta, S. Lafortune, An optimal control theory for discrete event systems, SIAM J. Control Optim. 36 (2)

(1998) 488–541.

[18] J. Fu, C.M. Lagoa, A. Ray, Robust optimal control of regular languages with event cost uncertainties, in: IEEE

Conference on Decision and Control, Maui, Hawaii, 2003, pp. 3209–3214.

[19] J. Fu, A. Ray, C.M. Lagoa, Unconstrained optimal control of regular languages, in: IEEE Conference on Decision

and Control, Las Vegas, Nevada, 2002, pp. 799–804.

[20] J. Fu, A. Ray, C.M. Lagoa, Optimal control of regular languages with event disabling cost, in: Preprints American

Control Conference, Denver, Colorado, 2003, pp. 1691–1695.


	A language measure for performance evaluation of discrete-event supervisory control systems
	Introduction
	The language measure
	Measure of supervised plant sublanguages
	Language measure computation
	Usage of the language measure for supervisor synthesis
	An example of engineering application
	Summary and conclusions
	Acknowledgements
	References


