
Supervisory Control of Software Systems
Vir V. Phoha, Senior Member, IEEE, Amit U. Nadgar,

Asok Ray, Fellow, IEEE, and Shashi Phoha, Senior Member, IEEE

Abstract—We present a new paradigm to control software systems based on the Supervisory Control Theory (SCT). Our method

uses the SCT to model the execution of a software application by restricting the actions of the OS with little or no modifications in the

underlying OS. Our approach can be generalized to any software application as the interactions of the application with the OS are

modeled at a process level as a Deterministic Finite State Automaton (DFSA) termed as a “plant.” A “supervisor” that controls the plant

is a DFSA synthesized from a set of control specifications. The supervisor operates synchronously with the plant to restrict the

language accepted by the plant to satisfy the control specifications. Using the above method of control to mitigate faults, as a proof-of-

concept, we implement two supervisors under the Redhat Linux 7.2 OS to mitigate overflow and segmentation faults in five different

programs. We quantify the performance of the unsupervised and supervised plant by using a Language Measure and give methods to

compute the measure using state transition cost matrix and characteristic vector.

Index Terms—Systems and software, control theory, fault tolerance, automata, languages.

�

1 INTRODUCTION

Acomputer program is a discrete-event system in which
the supervisory control theory (SCT) [1] can be applied

to augment a general-purpose operating system (OS) to
control and direct a wide range of software applications.
We propose a novel SCT-based technique, built upon
formal language theory, to model and control software
systems without any structural modifications in the under-
lying OS. In this setting, the user has the privilege to
override the OS actions to control a software application.

SCT is a well-studied paradigm and has been used in a
variety of applications. However, for the sake of complete-
ness, we very briefly review some relevant applications of
SCT to software systems. Self-adaptation in software
systems where supervisory control is augmented with an
adaptive component is reported in [2]. SCT has been used in
the Workflow management paradigm to schedule concur-
rent tasks through scheduling controllers [3] and also for
protocol converters to ensure consistent communications in
heterogeneous network environments. Hong et al. [4] has
adopted supervisor-based closed-loop control to facilitate
software rejuvenation—a technique to improve software
reliability during its operational phase.

Ramadge and Wonham [1] present a novel SCT
approach to control discrete event systems (DES) using a
feedback control mechanism. Here, the DES to be controlled
is modeled by the plant automaton G. The uncontrolled
behavior of the plant is modified by a supervisor S such
that behavior of the plant is restricted to a subset of LðGÞ.
The feedback control that is achieved using the supervisor
satisfies a given set of specifications interpreted as sub-
languages of LðGÞ representing legal behavior for the
controlled system. Following the approach, this paper
models interactions of software applications with the OS as
a deterministic finite state automaton (DFSA) (i.e., a

representation for the class of regular language) [6] and
applies the SCT for development of a recognizer of this
language to control andmitigate faults in software execution.
Specifically, the discrete-event supervisor restricts the legal
language of themodel in an attempt to mitigate the normally
detrimental consequences of faults or undesirable events.

In our approach, we first enumerate the DFSA’s states
and the events of the plant model G. The specifications to
control (restrict) the behavior of a computer program by
controlling the interactions with the OS are represented by
another DFSA S that has the same event alphabet as the
plant model. The parallel combination of S and G gives rise
to a DFSA ðS=GÞ, which is the generator under supervisory
control [1].

The significant contributions of the decision and control
approach proposed in this paper are:

1. a novel technique for fault mitigation in software
systems,

2. real-time control of software systems,
3. runtime behavioral modification and control of the

OS with insignificant changes in the underlying OS,
4. modeling of the OS-Application interactions as

symbols (events) in the formal language setting,
5. accommodation of multiple control policies by

varying the state transitions,
6. from the perspectives of fundamental research, this

work introduces the concept of discrete-event super-
visory control theory to software systems. From the
application perspectives, it provides new approach
to software fault mitigation.

A few other researchers (see, for example, [7], [8], [9])
report monitoring of programs at runtime using automata
and, in one case, transforming the sequence when it deviates
from the specified policy [7]. However, the approach in [7], [8],
[9] is significantly different from that taken in our work,
where we have used novel principles of supervisory control
theory as an extension of Ramadge andWonham’s work [1].
This concept results in parallel, synchronized operation of
twoormore automata, namely, a plant (i.e., the application or
the computer program) and a controller (or a set of
controllers), which implements the supervisory control
policyon the entirplant rathern thanon selected components.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004 1187

. V.V. Phoha and A.U. Nadgar are with Louisiana Tech University, Ruston,
LA 71272. E-mail: phoha@latech.edu, rangekutta@hotmail.com.

. A. Ray and S. Phoha are with Pennsylvania State University, University
Park, PA 16802. E-mail: {axr2, sxp26}@psu.edu.

Manuscript received 7 Sept. 2003; revised 29 Mar. 2004; accepted 6 Apr.
2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0147-0903.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

The rest of the paper is organized as follows: We review
the Supervisory Control Theory in Section 2. In Section 3,
we present discrete-event modeling of interactions of a
computer process and the OS. Modeling of two supervisors
based on a given specification is shown in Section 4.
Section 5 describes an implementation of the supervisory
control system for process execution under Red Hat
Linux 7.2. In Section 6, we review the Language Measure
Theory [10], [11], [12] and give a procedure for estimation of
the event cost ~��-matrix parameters in Section 7. A
description of the experiments and the corresponding
results are given in Section 8. We summarize and conclude
our work in Section 9. In Appendix A, we give the
definitions pertinent to Supervisory Control Theory. In
Appendix B, we present a theoretical bound on the number
of experimental observations necessary for identification of
the language measure parameters.

2 BACKGROUND

In this section, we review the supervisory control theory
(SCT) of Discrete Event Systems [1], [13], [14]. A discrete
event system (DES) is a dynamical system which evolves
due to asynchronous occurrences of certain discrete
changes called event. A DES has discrete states which
correspond to some continua in the evolution of a task. The
state transitions in such systems are produced at asynchro-
nous discrete instants of time in response to events and
represent discrete changes in the task evolution.

The SCT introduced by Ramadge and Wonham [1] is
based on automata and formal language models. Under
these models the focus is on the order in which the events
occur. A plant is assumed to be the generator of these
events. The behavior of the plant model describes event
trajectories over the (finite) event alphabet �. These event
trajectories can be thought of as strings over �. Then, L �
�� represents the set of those event strings that describe the
behavior of the plant. In this formal language setting, the
concepts of plant and supervisor are discussed in the
following subsections.

2.1 Plant Model

The plant G is a generator of all the strings in L and is
described as a quintuple deterministic finite state auto-
maton (DFSA)

G ¼ ðQ;�; �; q0; QmÞ; ð1Þ

whereQ is the set of states for the systemwith Qj j ¼ n, q0 is the
initial state, � is the (finite) alphabet of events causing the
state transitions, �� is the set of all finite-length strings of
events including the empty string �. The state transition
function is defined as: � : Q� �! Q and �� : Q� �� ! Q is
an extension of �which can be defined recursively as follows:

For any q 2 Q, ��ðq�Þ ¼ q; for any s 2 ��, a 2 �, and
q 2 Q, ��ðq; saÞ ¼ �ð��ðq; sÞ; aÞ; Qm � Q is the subset of states
called the marked (or accepted) states.

A marked state represents the completion of a task or a
set of tasks by the physical system we model. To give this
system a means of control, the event alphabet � is classified
into two categories: uncontrollable events (� 2 �uc), which
can be observed but cannot be prevented from occurring,
and controllable events (� 2 �c), which can be prevented
from occurring.

2.2 Supervisor

A supervisor S is realized as a function S ¼ ðS; �Þ. S is
given by the DFSA quintuple:

S ¼ ðX;�; �; x0; XmÞ; ð2Þ

where X is the state set, � is the event alphabet which is
same as that of the plant, � : ��X ! X is the transition
function, and Xm � X is a subset of marked states, � is a
function that maps the states of the supervisor into control
patterns � 2 � where � ¼ f0; 1g�c is the set of all binary
assignments to the elements of �c. Each state of the
supervisor corresponds to a fixed control pattern where
some controllable events are enabled or disabled. Thus, the
plant is controlled by the supervisor by switching to control
patterns corresponding to the supervisor’s state of opera-
tion which is fully synchronized [15] with that of the plant.

The methods developed in this paper use the SCT
terminology; interested readers may refer to definitions
given in Appendix A.

2.3 Supervisory Controller Synthesis

The objective of SCT is to synthesize a supervisor in such a
way that the supervised plant behaves in accordance with
constraints pertaining its restricted behavior. The control
specifications provide the constraints to enforce the
restricted behavior of the plant. The following steps
delineate the synthesis of a supervisory controller (see
Section 4 for an illustration of this process; see Appendix A
for the definitions of terms in italics referred to in the
following steps):

. Model the unsupervised, i.e., open loop physical
plant as a DFSA G.

. Provide the specifications of the constrained beha-
vior of G as English statements. Let K be the formal
language obtained for these specifications. Design
another DFSA, say S, with the same event alphabet
�, to produce the language K.

. Perform the completion on S of the specification
language K to obtain the automaton S containing
the dump state.

. Perform synchronous composition ðGkSÞ.

. The result of the previous operation is used to verify
if the specification given by the language K � �� is
controllable. The controllability check [1], [13] is done to
ascertain the existence of a supervisor for the given
specification.

. If language K is not controllable, then we have to
determine the supremal controllable sublanguage K"C

[1], [13]. The resultant automaton for this language is
a desired supervisory controller that satisfies the
control specification.

In the following sections, we illustrate the synthesis of
two controllers for the OS and process interactions.

3 MODELING OPERATING SYSTEM—PROCESS

INTERACTIONS

Aprocess is a program in execution. The terms process (i.e., a
computerprogram inexecution) andsoftwareapplication are
used interchangeably hereafter. For the controller synthesis
(seeSection2.3), this sectionmodels the interaction between a

1188 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

process and the OS as a DFSA plant model that is to be
controlled by another DFSA, known as the supervisor
DFSA.

3.1 Plant Model of OS—Process Interactions

The states in the DFSA model represent operational states
of a process while the arcs illustrate the system events
leading to transitions between these operational states as
shown in Fig. 1. This plant model DFSA is given as a
5-tuple G ¼ ðQ;�; �; q1; QmÞwith initial state as q1. Here,
Q ¼ fq1; . . . ; q7g, � ¼ f�1; . . . ; �10g, and Qm ¼ Q is the set
of marked states that represent the completion of
important operational states of an application program
from an OS perspective (see Fig. 1). Note that LðGÞ
contains only the legal (physically admissible) strings that
can be achieved starting from the initial state q1. We
make G trim (see Definition A.6) so that it should contain
only those states that can be accessed starting from the
initial state. By Definitions A.1 and A.2, the language
LðGÞ and marked language LmðGÞ � LðGÞ of the DFSA G
are derived as: LðGÞ ¼ s 2 ��j�ðq1; sÞ 2 Qf g � �� and
LmðGÞ ¼ s 2 ��j�ðq1; sÞ 2 Qmf g � LðGÞ � ��, where LmðGÞ
contains all event strings that terminate in a marked state.
By Definition A.3, it can be seen that LðGÞ is prefix-closed,
i.e., LðGÞ ¼ prðLðGÞÞ.

In this paper, all events in � that are used to model the
automaton G are assumed to be observable [13] events, i.e.,
the events are visible to the supervisor. These events are
constructed by observing signals received by a process [16]
and by monitoring the free physical memory resource
available to the system. As given in Section 2, we partition
the event alphabet � into subsets of controllable events �c

and uncontrollable events �uc such that �uc [�c ¼ � and
�uc \ �c ¼ ;. A supervisor controls the computer process by
selectively disabling the controllable events based on the
control specifications. For a given DFSA plant model G, we
define the control specifications that, in turn, generates the
supervisor DFSA S.

The states and events of a process G (with initial state q1)
are listed in Table 2 and Table 1, respectively. Fig. 1 presents
the state transition diagram for the DFSA G that captures
the behavior of a program in execution as it interacts with
the OS. Each of the circles with labels represents a state of

the DFSA G. Labels on the arcs are the events contained in
the alphabet � of the automaton G.

3.1.1 The Plant DFSA Model

The initial state q1 in Fig. 1 is the idle state in which the OS is
ready to execute a new process. The program start (event
�1) is the only event that can produce a transition from q1.
The system is in state q3 under normal execution of the
program. There are four possible transitions from q3 in the
unsupervised model. The process can remain in q3 during
its lifetime if it does not incur any exceptions and then move
to q2 by exiting on its own volition using the system call
exit() or when the program control flow reaches the last
statement of the main procedure main(). However, if the
program causes the CPU to generate an exception due to a
program error (event �2), its state changes to q4, where the
OS executes its exception handler in the context of the
process and then notifies the process by a signal of the
anomalous condition. For a fatal exception, the OS takes the
default action of terminating the process even if a signal
handler [16] is provided. We model this behavior as an event
�3 arising from state q3. For a nonfatal exception, the signal
handler (if provided) is executed and the process (if not
terminated by the OS) will continue to run at state q4.

At state q3, it is possible that the process is terminated by
the user which is shown by the event �6 that causes a
transition to state q7. The user’s decision to terminate the
process cannot be controlled and, therefore, the event �6 is
made uncontrollable. Such an event is possible from other
states of the task and, hence, we see �6 from all states except
q1. The self-loop of event �10 indicates that the OS has not
yet recovered all the resources locked by the process.
Event �9 represents the actions of the OS to release any

PHOHA ET AL.: SUPERVISORY CONTROL OF SOFTWARE SYSTEMS 1189

Fig. 1. Process-OS interactions modeled by the DFSA G.

TABLE 1
List of Events in DFSA G

C ¼ Controllable Event, UC ¼ Uncontrollable Event.

TABLE 2
List of States Q in DFSA G

resources owned by the process. These resources include
memory, open files, and possibly synchronization resources
such as semaphores. Any process that completes its
execution via event �4 traverses to q2 and thereafter to
state q1 via �9.

States q5 and q6 depict the scenario in which the system is
low on resources such as memory. While q6 can be reached
from q3 via the low resource event �5, q5 can be reached
from q4 and q6 via events �5 and �2, respectively. By giving
state q5, we want to show that a process can incur
exceptions when running with inadequate resources. Ob-
serve the self-loop at q4 due to the program error event �2

that implies that a task can execute in state q4 while causing
exceptions.

When the system is low on resources (e.g., memory leaks
are one of the reasons causing the free physical memory
resource to reduce over time and are observed as the
running software ages [4]), the OS may take actions to
create resources for normal operation of the task and this is
accomplished by using the event �8. It is also possible that
the OS does not take any such action and the task is allowed
to execute in the same state where there are chances that it
can cause exceptions as shown by the �2 self-loop at q5. The
OS may halt a task if it has insufficient resources for further
execution, in which case �7 causes transition to q7. As long
as the process resources remain locked, the system is at q7
due to the self-loop �10. We do not consider a resumption of
the process from state q7. Therefore, as and when the OS
releases these resources after it has removed the process’s
descriptor from memory, event �9 captures this behavior by
producing a transition to the idle state q1.

3.2 Marked States and Weight Assignments

The purpose of making a state “marked” is that the state
should represent completed or important operational phases
of the physical plant represented by the model. In the plant
model,we havemade all the states asmarkedbecause of their
importance during the execution of the process. The marked
language of the plant initialized at the state q1 is given by
LmðGÞ ¼ fs 2 ��j��ðq1; sÞ 2 Qmg. In order to obtain a quanti-
tative measure of LmðGÞ, we partition the plant’s set Qm of
marked states into subsets of good and bad marked states. A
good marked state is assigned a positive value while a bad
marked state is given a negative value. We characterize each
marked state by assigning a signed real value on the scale of
½�1; 1� based on our perception of the state’s impact on the
performance of the software system. A lower value assigned
to a marked state implies a greater degradation in the
performance of the system in that state.

Marked states of the plant G are assigned the weights
given by the characteristic vector

�G ¼ ½0:3 0:8 0:8 0:1 0:08 0:4 � 0:8�T :

For example, in state q7, we consider that the software
application has failed and cannot recover. State q7 is
therefore assigned a high negative weight of -0.8 but not
-1 as it does not necessarily represent a failure of the OS and
other applications. State q1 has a weight of 0.3 since the
application has yet to enter the existing workload on the
system, so we give q1 a relatively lower weight. Together,

states q2 and q3 represent the best desired operation of the
system where a process assigned to the CPU for execution,
performs its operation and relinquishes control upon
completion without producing conditions that adversely
affect the system performance. Hence, they have weights of
0.8 each. Software faults at state q4 can cause the software to
produce erroneous results, we consider this to be a
degraded performance of the system and assign it a
comparatively lower weight of 0.1. In state q5, the system
is in a condition that is relatively worse than that in state q4
due to depletion of resources, e.g., free physical memory,
which is an additional reason for a degraded execution.
Therefore, it has a weight of 0.08, which is lower than that of
state q4. With no prior faulty operation except for reduced
resource levels in state q6, we consider the system to be in
an operational state that is better than states q4 and q5. So, it
is assigned a weight of 0.4, which is higher than the weights
of both q4 and q5.

4 FORMULATION OF SUPERVISORY CONTROL

POLICIES

This section devises two control policies under supervisors
S1 and S2. The specifications of these two control policies
are as follows:

Policy 1 (S1). Prevent termination of process on first
occurrence of a fatal exception. Enable termination of
process on the second occurrence of this exception.
Prevent halting of process due to low resources.

Policy 2 (S2). Prevent termination of process on first and
second occurrence of a fatal exception. Enable termina-
tion of process on the third occurrence of this exception.
Prevent halting of process due to low resources.

Let K1 and K2 be the regular languages induced by the
specifications of the supervisors S1 and S2 that are
synthesized separately in the following two subsections.
The languages K1 and K2 are regular and are therefore
converted into the respective supervisor’s DFSA [13], [6] as
seen in Fig. 2a and Fig. 2b. The dotted lines signify that the
associated controllable events are disabled according to the
specifications. Note that the event alphabet � is common to
the plant model and both the supervisors. In addition, it is
assumed that all events are observable (see Section 3).
However, there are no restrictions on the state setX (see (2))
to be same as the state set Q of the plant model. Table 3 lists
the states of the supervisory control automata generated
from the specification languages K1 and K2.

4.1 Synthesis of Supervisor S1

Let S1 be the DFSA (see Fig. 2a) created for the specification
given by Policy 1. Let K1 be the language of this supervisor
DFSA. Fig. 2a shows that there are additional states in the
supervisor automaton than in plant model automaton G.

We analyze the supervisor DFSA given in Fig. 2a to
examine the restrictions enforced on the plant’s behavior by
the specification S1 (Policy 1). The supervisor captures the
start of a process through event �1 which produces a
transition from state x1 to x3. The first time a process causes
an exception, the supervisor observes it through the
transition from state x3 to state x4. The process is not

1190 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

terminated immediately as we disable the event �3 at state
x4, i.e., prevent the OS from terminating the process.

In G at state q4 (see Fig. 1), we show a self-loop due to the
additional occurrences of exceptions while running in that
state. The specification of S1 restricts the language of G such
that an event sequence it produces contains at the most two
instances of the event �2. Therefore, to remove the effect of
the self-loop, we create state x5 to which the supervisor
moves on the second occurrence of an exception, i.e., the
event �2. Note that x4 and x5 are states where the process is
not low on a resource such as memory.

Similar counting of exceptions is performed when the
process shows a degraded state of operation due to less
than required resources. The supervisor has state x6 to
indicate that the process is running on low physical
memory. As modeled in G, under low resource conditions,
the process moves to state q5 when an exception occurs and
continues there if additional exceptions occur (shown by the
self-loop at state q5 in Fig. 1). Under this situation, the
supervisor is required to restrict the language produced by
the process and, so, states x8 and x9 are added in the
supervisor automaton. The policy states that the process
should not halt due to less available memory and, so, we

disable the event �7 from states x6 and x8. Enabling �7 at
state x9 does not affect the specification as the OS terminates
the process when event �3 is enabled at state x9.

4.1.1 Controllability of Supervisor S1

In order to determine if the specification language K1 is
controllable we verify if the controllability condition (see
Definition A.9, [1]) on K1 is satisfied. For this we create the
DFSA ðGkS1Þ (see Fig. 2b) by the synchronous composition
operation (see Definition A.7) of G and S1, where S1 is the
completion of the automaton S1 in Fig. 2a, with dump state.
In Fig. 2b, state “10” is the dump state.

K1 � LðGÞ is controllable if and only if, for each s 2
prðK1Þ and u 2 �uc such that su 2 LðGÞ, then we have
su 2 prðK1Þ. Fig. 2b shows that there are uncontrollable
events from states ðq4; x5Þ and ðq5; x9Þ leading to the dump
state “10.”.Observe that a string in Fig. 2b such as
ð�1�5�8�2�2�5Þ 62 prðK1Þ. The supervisor therefore does
not enable feasible uncontrollable events possible in the
plant. Thus, the controllability condition on K1 is not
satisfied and, so, K1 is not controllable.

Since the controllability condition does not hold on K1,
we determine the supremal controllable sublanguage (see

PHOHA ET AL.: SUPERVISORY CONTROL OF SOFTWARE SYSTEMS 1191

Fig. 2. (a) and (b) show the DFSA of the sublanguageK1 for supervisor S1 and its failure to satisfy the Controllability Condition, respectively. Dashed

lines show controllable events disabled at states as per the specification given by Policy 1. (a) DFSA of the control specification language K1 for

supervisor S1 obtained from the specification given by Policy 1. (b) DFSA of ðGkS1Þ is the Completion of automaton S1 given in (a).

TABLE 3
List of States in DFSAs S1 and S2

Definition A.10 and [13]) of K1 . To obtain the supremal

controllable sublanguage K"C1 of K1, we remove the strings

with uncontrollable prefixes, e.g., ð�1�5�8�2�2Þ. To remove

the set of strings with uncontrollable prefixes, it suffices to

remove the states reached by their execution in ðGkS1Þ.
Thus, we remove the state ðq4; x5Þ; ðq5; x9Þ and the dump

state—“10” from ðGkS1Þ. The result of this operation is

shown in Fig. 3. The DFSA shown in Fig. 3 is our controller

ðS1=GÞ that satisfies the control policy (Policy 1) in the

supervisor S1.

4.1.2 Weight Assignment to Marked States

The weights assigned assigned to the marked states of the

supervisor S1=G are given by the characteristic vector

�S1=G ¼ ½ 0:3 0:8 0:8 0:1 0:08 0:4 �0:8 �T . We apply

the same rationale for assigning weights as done for the

plant G in Section 3.2.

4.2 Synthesis of Supervisor S2

Let S2 be the supervisor DFSA for the specification given by
Policy 2 based on the language K2, as shown in Fig. 4a. The
supervisor S2 is similar to the supervisor S1 with the
difference that it allows the process to execute even after the
second occurrence of an exception.

The supervisor S2 differs from supervisor S1 in the
number of exceptions it permits before the OS is allowed to
terminate the application. Similar to supervisor S1, counting
is made possible by adding states. Fig. 4a shows that we
add states x5 and x9 when the system is not low on
resources and states x10, x11 to satisfy the control policy.

4.2.1 Controllability of Supervisor S2

Fig. 4b shows that specification K2 as there are uncontrol-
lable events leading to the dump state. Therefore, we
determine the supremal controllable sublanguage K"C2 as in
the case of supervisor S1. Fig. 5 shows the automaton for the
desired controller ðS2=GÞ that satisfies Policy (Policy 2).

4.2.2 Weight Assignment to Marked States

The weights assigned assigned to the marked states of the
supervisor S2=G are given by the characteristic vector
�S2=G ¼ ½ 0:3 0:8 0:8 0:1 0:1 0:08 0:08 0:4 �0:8 �T .
The same rationale as for the plant G is applied for the
weight assignment here. New states that are created are
assigned weights depending on the state of the plant with
which the supervisor state has combined. Therefore, states
ðq4; x5Þ and ðq5; x10Þ are assigned weights of 0.1 and 0.08,
respectively.

5 IMPLEMENTATION OF SUPERVISORY CONTROL

This section presents our software architectural framework
for realizing control in software systems. Fig. 6 shows the
supervisory control system comprised of four separate
components in labeled ellipses above the rectangular box
and representing individual user level processes. However,
only a combination of the three fundamental processes

1192 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

Fig. 3. DFSA for Supervised process ðS1=GÞ using the supremal

controllable sublanguage K"C1 for supervisor S1 induced by the

specification Policy 1. Dashed lines show the controllable events that

are disabled at the states.

Fig. 4. (a) and (b) show the DFSA of the sublanguageK2 for supervisor S2 and its failure to satisfy the Controllability Condition, respectively. Dashed

lines show controllable events disabled at states as per the specification given by Policy 2. (a) DFSA of the control specification K2 for supervisor S2

obtained from the specification given by Policy 2. (b) DFSA of GkS2 is the Completion of S2 automaton given in (a).

Psensor, Egen, Psupervisor exercise control over the OS. As we
intend to achieve control over an application indirectly by
being able to access the OS, the process represented by the
ellipse labeled P1 is indirectly controlled by the supervisory
control system. The functional processes Psensor, Egen,
Psupervisor in Fig. 6 are implemented as user level processes
with the capability to insert kernel modules [17] so that the
control path can be changed to satisfy the supervisory
control policy. Entire implementation of the supervisory
control system is under the Red Hat Linux 7.2 OS [16]. For
simplicity of illustration, this paper shows the implementa-
tion for a single process under supervisory control.

5.1 Components of the SCT Framework

The components of the supervisory control system are the
following:

1. Psensor—The sensor/actuator system has two
functions:

a. monitoring signals and collection of resource
status information received from the OS and

b. implementation of supervisory decisions.
2. Egen—The event generator maps the resource mea-

surements and signals received by the process into
corresponding higher-level events.

3. Psupervisor—The supervisor automaton is designed
based on the control specification.

5.1.1 The Sensor/Actuator System

The sensor system implements two threads to track a
process. The threads perform 1) signal capturing and
2) process information collection, respectively. To intercept
the signals received by the process the sensor uses
ptrace() and wait() [16] system calls. We use the Linux
/proc file system (indexed by the process identifier) to obtain
relevant system information of process P1. The information
pertains to the computer process parameters (e.g., code size
and memory usage) and is sent as a different message type
to the event generator. The event generator uses this data
for the generation of a high level events.

5.1.2 The Event Generator

The supervisor process that executes the controlled language
automaton S=G can perceive only high level events (see
Table 1). Egen maps sensor signals and the data provided by
the process information collection thread as higher level
events compatible with Psupervisor.Egen implements both one-
one mapping as well as the many-one mapping of signals to
events. Mapping of signals and resource information to high
level events is shown in Table 4.

5.1.3 The Supervisor Automaton

The controlled language automaton (e.g., S1=G and S2=G) is
executed by the supervisor process. The supervisor is
implemented to control a process using the information
provided by Egen as a message containing the event through
the communication link T2. The supervisor dynamically
makes decisions of disabling certain controllable events
depending on its current state. The status of each
controllable event—enabled ðEÞ or disabled ðDÞ is then sent
to Psensor via the protocol E=D. The sensor process also
performs the task of an actuator to enforce supervisor’s
decisions that may cause the actions of the OS to change. In
the end, the results are reflected in the actions taken by the
OS on the application program tracked by the sensor.

5.2 Operation of SCT Framework

RedHat Linux 7.2 is a multitasking operating system. Here,
a kernel maintains a status repository for each process. The
kernel keeps track of information such as whether a
particular process is currently executing on the CPU or
whether it is blocked on an event, the address space
assigned to the process, and the files the process has opened
during its life time, etc. To facilitate the maintenance of this
information, a process descriptor is implemented in the
kernel using the data structure task_struct. Fig. 6 shows
a rectangular box labeled environment of the process P1

which represents the information base for this process.
We use BSD sockets [18] to communicate between

different components of our system. Different communica-
tion protocols that we have developed (see Fig. 6) are:
Protocol T1 shown by the unidirectional arrow from Psensor

to Egen. Protocol T2 shown by the unidirectional arrow from
Egen to Psupervisor. Protocol E=D shown by the arrow going
from Psupervisor to Psensor. Psensor uses the protocol T1 to send

PHOHA ET AL.: SUPERVISORY CONTROL OF SOFTWARE SYSTEMS 1193

Fig. 5. DFSA for Supervise process S2=G using the supremal

controllable sublanguage K"C2 for supervisor S2 given by the specifica-

tion of Policy 2. Dashed lines show the controllable events that are

disabled at the states.

Fig. 6. Framework for supervisory control of OS.

the raw signal information it collects to Egen. The event

generator creates events from these raw signals and then,

using T2, sends this information to the supervisor process.

The supervisor process executing the S=G automaton is only

capable of disabling or enabling the events and, hence, we

provide the E=D (enable/disable) decision that the Psupervisor

sends to the sensor depending on the current state of the

automaton S=G. The sensor process has control over the

process, but we wish to control the process by making the

operating system deviate from its normal control path.
The sensor process has the ability to dynamically load

and unload kernel modules [17] to create the deviations from

the original control path. These deviations are needed when

a control policy designates a particular event to be disabled

in a particular state. This action is shown by the arrow

labeled D emanating from the decision box. For an enabled

event, the process should be made aware of the situation

and, hence, we show the arrow labeled E going to the

process. Fig. 6 also shows a set of arrows emanating from

the environment of the process. The labels Signal and Signal

Notification relates directly to the mechanism the ptrace()

system call uses for making the sensor process aware of a

signal (e.g., SIGSTOP, SIGWINCH, SIGFPE, SIGSEGV, etc.)

a process has received.

6 PERFORMANCE MEASUREMENT OF

CONTROLLERS

In general, the controlled sublanguages of a plant language
could bedifferent under different controllers that satisfy their
respective policies. The partially ordered set of sublanguages
can then be totally ordered using their respective perfor-
mance measures [10], [11], [12]. This total ordering using
performance measures facilitates comparison between the
unsupervised and the supervisedplantmodels, therefore,we
apply the language measure theory to compute the perfor-
mance measures of the DFSAs we have designed. Compar-
isons of the models along with the corresponding
performance results are shown in Section 8.2. The theoretical
foundation of this performance measure and its mathema-
tical interpretation is given below.

6.1 Language Measure Theory

This section briefly reviews the concept of signed real

measure of regular languages [10], [11], [12]. Consider a

plant behavior bemodeled as aDFSAGi � ðQ;�; �; qi; QmÞ as
given in (1) and, therefore, Q, �, and Qm have the same

meaning. Furthermore, we consider Qj j ¼ n excluding the

dump state [1], if any, and �j j ¼ m. To represent the

languages of strings starting from each state q 2 Q, we

consider each such state as 8i 2 I � f0; . . . ; n� 1g 8qi 2 Q at

which the DFSA is initialized. Then, the languages generated

by such a DFSA when initialized at a state qi are a general-

ization of Definitions A.1 and A.2 and are given below.

Definition 1. A DFSA Gi, initialized at qi 2 Q, generates the

language LðGiÞ � s 2 �� : ��ðqi; sÞ 2 Qf g and its marked

sublanguage LmðGiÞ � s 2 �� : ��ðqi; sÞ 2 Qmf g.

The language LðGiÞ is partitioned as the nonmarked and

the marked languages, LoðGiÞ � LðGiÞ � LmðGiÞ and

LmðGiÞ, consisting of event strings that, starting from q 2 Q,

terminate at one of the nonmarked states inQ�Qm and one

of the marked states in Qm, respectively. The set Qm is

partitioned into Qþm and Q�m, where Qþm contains all good

marked states that we desire to reach and Q�m contains all

bad marked states that we want to avoid, although it may

not always be possible to avoid the bad states while

attempting to reach the good states. The marked language

LmðGiÞ is further partitioned into LþmðGiÞ and L�mðGiÞ
consisting of good and bad strings that, starting from qi,

terminate on Qþm and Q�m, respectively.
A signed real measure � : 2�

� ! < � �1; 1ð Þ is con-

structed for quantitative evaluation of every event string

s 2 ��. The language LðGiÞ is decomposed into null (i.e.,

LoðGiÞÞ, positive (i.e., LþmðGiÞÞ, and negative (i.e., L�mðGiÞÞ
sublanguages.

Definition 2. The language of all strings that, starting at a state

qi 2 Q, terminates on a state qj 2 Q, is denoted as Lðqi; qjÞ.
That is, Lðqi; qjÞ � fs 2 LðGiÞ : ��ðqi; sÞ ¼ qjg.

Definition 3. The characteristic function that assigns a signed

real weight to state-partitioned sublanguages Lðqi; qjÞ,
i ¼ 0; 1; . . . ; n� 1, is defined as: � : Q! ½�1; 1� such that

1194 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

TABLE 4
Mapping Signals and Data Collected for /proc Filesystem into Events of the Plant G

PM = Total Physical Memory, FM = Available Free Physical Memory.

�ðqjÞ 2
½�1; 0Þ if qj 2 Q�m
f0g if qj 62 Qm

ð0; 1� if qj 2 Qþm:

8<
:

Definition 4. The event cost is conditioned on a DFSA state at
which the event is generated, and is defined as ~		 :
�� � Q! ½0; 1� such that 8qj 2 Q, 8�k 2 �, 8s 2 ��,
~		 ð�k; qjÞ ¼ 0 if �ðqj; �kÞ is undefined; ~		 ð"; qjÞ ¼ 1,
~		 ð�k; qjÞ � ~		jk 2 0; 1½ Þ,

P
k ~		jk < 1

~		 ð�k s; qjÞ ¼ ~		 ð�k; qjÞ ~		 ðs; �ðqj; �kÞÞ:
The event cost matrix, denoted as ~��-matrix, is defined as:

~�� ¼

~		00 ~		01 � � � ~		0m�1
~		10 ~		11 � � � ~		1m�1
..
. . .

. ..
.

~		n�10 ~		n1 � � � ~		n�1m�1:

2
6664

3
7775

Now we define the measure of a sublanguage of the
plant language L Gið Þ in terms of the signed characteristic
function � and the nonnegative event cost ~		.

Definition 5. Given a DFSA Gi � hQ;�; �; qi; Qmi, the cost

of a sublanguage K � LðGiÞ is defined as the sum of the
event cost ~		 of individual strings belonging to K

ðKÞ ¼

P
s2K ~		ðs; qiÞ.

Definition 6. The signed real measure � of a singleton
string set fsg � Lðqi; qjÞ � LðGiÞ 2 2�� is defined as:
�ðfsgÞ � �ðqjÞ ~		ðs; qiÞ 8s 2 Lðqi; qjÞ.

The signed real measure of Lðqi; qjÞ is defined as:

� Lðqi; qjÞ
� �

�
P

s2Lðqi;qjÞ � fsgð Þ and the signed real measure

of a DFSA Gi, initialized at the state qi 2 Q, is denoted as:

�i � �ðLðGÞÞ ¼
P

j � Lðqi; qjÞ
� �

.

Definition 7. The state transition cost of the DFSA is defined as
a function 	 : Q� Q! ½0; 1Þ such that 8qj; qk 2 Q,
	ðqj; qkÞ ¼

P
�2�: �ðqj; �Þ¼qk ~		ð�; qjÞ � 	jk and 	jk ¼ 0 i f

f� 2 � : �ðqj; �Þ ¼ qkg ¼ ;. The state transition cost matrix,
denoted as �-matrix, is defined as:

� ¼

	00 	01 � � � 	0n�1
	10 	11 � � � 	1n�1
..
. . .

. ..
.

	n�10 	n�11 � � � 	n�1n�1

2
6664

3
7775:

Wang and Ray [10] have shown that the measure �i �
�ðLðGiÞÞ of the language LðGiÞ, with the initial state qi, can
be expressed as: �i ¼

P
j 	ij �j þ �i, where �i � �ðqiÞ.

Equivalently, in vector notation: � ¼ ��þ ���, where the
measure vector ��� � ½�1 �2 � � � �n�Tand the characteristic
vector ��� � ½�1 �2 � � � �n�T .

6.2 Probabilistic Interpretation

The signed real measure (Definition 6) for a DFSA is based
on the assignment of the characteristic vector and the event
cost matrix. As stated earlier, the characteristic function is
chosen by the designer based on his/her perception of the
states’ impact on system performance. On the other hand,
the event cost is an intrinsic property of the plant. The event
cost ~		jk is conceptually similar to the state-based condi-
tional probability as in Markov Chains, except for the fact

that it is not allowed to satisfy the equality conditionP
k ~		jk ¼ 1. Note that

P
k ~		jk < 1 is a sufficiency condition

for convergence of the language measure [10], [19].
With this interpretation of event cost, ~		½s; qi� (Definition 4)

denotes the probability of occurrence of the event string s in
the plant model Gi starting at state qi and terminating at
state ��ðs; qiÞ. Hence,
ðLðq; qiÞÞ (Definition 5), which is a
nonnegative real number, is directly related (but not
necessarily equal) to the total probability that state qi would
be reached as the plant operates. The language measure
�i � �ðLðGiÞÞ ¼

P
q2Q �ðLðqi; qÞÞ ¼

P
q2Q
ðLðqi; qÞÞ�ðqÞ i s

then directly related (but not necessarily equal) to the
expected value of the characteristic function. Therefore, in
the setting of language measure, a supervisor’s performance
is superior if the supervised plant is more likely to
terminate at a good marked state and/or less likely to
terminate at a bad marked state.

7 ESTIMATION OF EVENT COST ~��-MATRIX

PARAMETERS

We use the result of our derivation of the theoretical bound,
Nb, on the number of experimental observations (see (6),
Appendix B) for each state of a DFSA to compute the event
cost matrix parameters for a given � and ". Let pij be defined
as the transition probability of event �j on the state qi, i.e.,

pij ¼
P ½�jjqi�; if 9q 2 Q; s:t: q ¼ �ðqi; �jÞ
0; otherwise

�

and its estimate p̂pij that is to be estimated from the ensemble
of experiments and/or simulation data. We introduce the
indicator function Itði; jÞ to represent the occurrence of
event �j at time t if the system was in state qi at time t� 1,
where t represents a generalized time epoch, for example,
the experiment number. Formally, Itði; jÞ is expressed as:

Itði; jÞ ¼
1; if �j is observed at state qi
0; otherwise:

�

Let NtðiÞ, denoting the number of incidents of reaching
the state qi up to the time instant t, be a random process
mapping the time interval up to the instant t into the set of
nonnegative integers. Similarly, let ntði; jÞ denote the
number of occurrences of the event �j at the state qi up to
the time instant t.

The plant model in general is an inexact representation
of the physical plant; therefore, there exist unmodeled
dynamics which can manifest themselves either as
unmodeled events that may occur at each state or as
unaccounted states in the model. Let �u

i denote the set of
unmodeled events at state i of the DFSA. Therefore, the
residue �i ¼ 1�

P
j ~		ij denotes the probability of all the

unmodeled events emanating state qi. Let

�u ¼ [i�u
i ; 8i 2 I � f1; . . . ; ng;

at each state qi, P½�ujqi� ¼ �i 2 ð0; 1Þ and
P

i ~		ij ¼ 1� �i.
Therefore, an estimate of the ði; jÞth element in ~��-matrix,
denoted ~̂		ij~		ij, is obtained by

~̂		~		ij ¼ p̂pijð1� �iÞ: ð3Þ

PHOHA ET AL.: SUPERVISORY CONTROL OF SOFTWARE SYSTEMS 1195

Since �i 	 1, an alternative approximation approach is

taken for ease of implementation. We set �i ¼ � 8i, where

the parameter 0 < �	 1 is selected from the numerical

perspective based on the fact that the sup-norm k�k1
 ��1

[10], [12].
Following is the formulation of the Event Cost Matrix

Parameter Estimation algorithm we use to compute ele-

ments of ~��-matrix.

Algorithm: Event Cost Matrix Parameter Estimation

(1) Initialize 8qi 2 Q n0ðiÞ ¼ 0 and N0ðiÞ ¼ 0

(2) ComputeN for a given � and "using (6) (seeAppendix B)

/*For each state qi 2 Q check if it occurs in

the tth experiment. If a state qi occurs then

increment its occurrence count. Similarly

if an event �j occurs at state qi in the tth

experiment then increment the event

occurrence count for event �j at state qi In

order to obtain stable state transition

probabilities this loop is repeated until

all states reach the upper bound computed in

step 2.

*/

(3) do

for i=1 to jQj
NtðiÞ ¼ Nt�1ðiÞ þ ItðiÞ
ntði; jÞ ¼ nt�1ði; jÞ þ Itði; jÞ

end

until 8 qi 2 Q; min fNtðiÞg
 N

/*Each element ~̂		~		ij of the ~��-matrix is an

estimate of the true

transition probability pij such that p̂pij ¼ ntði;jÞ
NtðiÞ

and limNtðiÞ!1 p̂ptij ¼ pij.

(4) for i=1 to jQj
for j=1 to j�j

p̂ptij ¼
ntði;jÞ
NtðiÞ

~��½i�½j� ~̂		~		ij ¼ p̂ptijð1� �Þ
end

end

This estimation procedure is conservative since some

elements of the ~��-matrix reach the bound before others

under the stopping condition of 8qi 2 Q; minfNtðiÞg
 N .

7.1 ~��-Matrix Parameter Identification by Simulation

The estimation of event cost ~��-matrix parameters (see

Section 7) takes into consideration the number of occur-

rences of a state qi 2 Q and the number of occurrences of

some event �j 2 � at state qi, of a DFSA ðG; S1=G and S2=GÞ
under study. To collect this data, we simulate the produc-

tion of events. A real-time experiment needs the field data

on the distribution of types of faults and also one to decide

when to inject a fault. We know the high level events into

which Egen maps the lower level signals when a fault is

injected and also the capability of the model to respond to

these events [20]. Then, assuming that we use the same

distribution for injecting the faults in experiments and for

producing the corresponding events in simulations, we

obtain similar observation sequences. This is the rationale

for simulating the production of events in our data
collection phase.

7.1.1 Simulation Procedure

We use a uniform random number generator that produces
a random number in the range ½0; 1Þ to simulate the
production of events. For each state, we designate regions
in range ½0; 1Þ which are mapped to events defined on that
state. This applies to each DFSA we consider in our
simulations. One run of a simulation is defined when the
DFSA starts from the initial state and returns back to the
initial state, designated as the idle state (see Tables 2 and 3).
When a random number is generated, its position in the
½0; 1Þ range decides the event to be produced. The random
number produced could lie in a region which maps to an
event that is disabled by the control policy. In such a case,
the event is not produced, but the random number
generation is done again until a random value that maps
to an enabled event is generated. This process is repeated at
each state. For each event that is produced, the DFSA will
make transitions and, thus, we obtain a simulated path an
application would take under the influence of software
faults. At the end of each such run, we collect the event
trajectory (observation sequence or event string) and
compute the event production frequency ðntði; jÞÞ and the
state frequency ðNtðiÞÞ. We give here one such observation
sequence: �1; �5; �2; �6; �10; �10; �10; �9. To account for the
occurence of unmodeled events, we consider � ¼ 0:02.
Therefore, each row element of the ~��-matrix is multiplied
by 1� �, i.e., 0.98.

8 EXPERIMENTAL RESULTS AND DISCUSSION

As a proof of concept we have implemented a prototype of
our fault mitigation model. To test this model, we have used
five different computer programs where each program
performs simple mathematical operations in a loop. These
programs, which are written in the C programming
language, were injected with overflow errors such as
division by zero and memory errors such as segmentation
faults. In the following subsections, we report the repre-
sentative results of controlling these computer programs
using the two supervisory control policies S1 and S2,
described in Section 3 and the performance results of the
DFSAs for plant and the controllers.

8.1 Observations of Real-Time Software Control
under SCT Framework

The default result of both division by zero and segmentation
faults is termination of the process. When the divide by zero
exception occurs, the sensor detects the exception. According
to both the control policies, the process is not terminated on
the very first instance of the exception, implying the event �3

is disabled. To enforce the disabling decision of the super-
visor, the sensor inserted its own handlers at runtime by
dynamically loading and unloading kernel modules and then
made the process aware of the exception. The new handlers
incremented the instruction pointer so that same exception
does not occur again. When the instruction pointer is
incremented the first time, it produces a segmentation fault.
The sensor intercepted the segmentation fault and then
modified the task_struct of the process to accommodate
newhandlers for segmentation faults. Here, too, the handlers

1196 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

incremented the instruction pointer. Finally, as the applica-
tion resumed from the exception handling, it continued with
its normal execution. When the number of exceptions
incurred by the software application was more than that
prescribed by the control language, the supervisor permitted
the OS to terminate the process.

8.2 Performance Measure Results

The event cost matrix is computed using the simulation

data (see Section 7.1) for a � ¼ 0:005, " ¼ 0:075, and � ¼ 0:02

by applying the Event Cost Matrix Parameter Estimation

procedure (see Section 7 and Appendix B). In this section,

we compute the state transition cost matrix � from the

event cost ~��-matrix using Definition 7. Each � matrix is

followed by the � vector of each DFSA. We repeat the �

vectors here for the readers ease. The �matrix of each DFSA

contains weights that are assigned to the marked states of

the DFSA. For the rationale used in assigning weights to

marked states refer to Sections 3.2, 4.1.2, 4.2.2, 6.1, and 6.2.

We map the states of the controllers ðS1=GÞ and ðS2=GÞ into
row indexes of their corresponding � matrices. State q1 of

the plant model and ðq1; x1Þ of both supervisors are mapped

into the first row of their respective �-matrices.
The matrix �G is the �-matrix for the uncontrolled plant

model G.

�G ¼
0:0 0:0 0:98 0:0 0:0 0:0 0:0

0:98 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:2515 0:0 0:2427 0:0 0:2466 0:2392

0:0 0:1997 0:0 0:2013 0:2055 0:0 0:3736

0:0 0:1413 0:0 0:1505 0:1542 0:0 0:5341

0:0 0:1671 0:184 0:0 0:2292 0:0 0:3997

0:4887 0:0 0:0 0:0 0:0 0:0 0:4913

2
666666666664

3
777777777775

:

Our choice of the weights given to the marked states of

the DFSA G are below in the �G matrix.

�G ¼ 0:3 0:8 0:8 0:1 0:08 0:4 �0:8½ �T :

Using the vector space formula � ¼ ½I ����1� (see

Section 6.1), we compute the language measure for the

DFSA of the uncontrolled plant model and is given below

by matrix �G.

�G ¼ 8:332 8:965 8:195 7:157 6:927 7:564 6:431½ �T :

Similarly the �, �, and � matrices for the DFSA S1=G are

given as follows:

�S1=G ¼
0:0 0:0 0:98 0:0 0:0 0:0 0:0

0:98 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:2591 0:0 0:2408 0:0 0:2383 0:2417

0:0 0:2454 0:0 0:0 0:2396 0:0 0:495

0:0 0:3114 0:0 0:2308 0:0 0:0 0:4378

0:0 0:2495 0:2542 0:0 0:2325 0:0 0:2438

0:4959 0:0 0:0 0:0 0:0 0:0 0:4841

2
666666666664

3
777777777775

The weights which we assign to the marked states of the
DFSA S1=G are below in the �S1=G matrix.

�S1=G ¼ 0:3 0:8 0:8 0:1 0:08 0:4 �0:8½ �T

�S1=G ¼
10:178 10:774 10:079 9:00 9:117 9:777 8:232½ �T :

Similarly the �, �, and � matrices for the DFSA S2=G are
given as follows:

�S2=G ¼
0:0 0:0 0:98 0:0 0:0 0:0 0:0 0:0 0:0

0:98 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:2491 0:0 0:2417 0:0 0:0 0:0 0:2475 0:2417

0:0 0:2536 0:0 0:0 0:2284 0:2618 0:0 0:0 0:2362

0:0 0:2229 0:0 0:0 0:0 0:0 0:2466 0:0 0:5105

0:0 0:2569 0:0 0:2354 0:0 0:0 0:2661 0:0 0:2216

0:0 0:2092 0:0 0:0 0:2331 0:0 0:0 0:0 0:5377

0:0 0:2597 0:2491 0:0 0:0 0:2343 0:0 0:0 0:2368

0:4892 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:4908

2
66666666666666664

3
77777777777777775

The �S2=G matrix given below contains our choice of weights
assigned to the marked states of S2=G.

�S2=G ¼ 0:3 0:8 0:8 0:1 0:1 0:08 0:08 0:4 �0:8½ �T

�S2=G ¼
10:635 11:223 10:547 9:626 9:253 9:605 9:243 10:24 8:65½ �T :

In each experiment, the initial state is state q1 for G and
state ðq1; x1Þ for both ðS1=GÞ and S2=G; therefore, we are
interested in the first member of each of the � matrices. We
see that �ðLmðGÞÞ ¼ 8:33, �ðLmðS1=GÞÞ ¼ 10:17, while
�ðLmðS2=GÞÞ ¼ 10:63. The language measures of the con-
trolled plant model S=G and S2=G show very little change.
However, the measure for S2=G is large as compared to that
of both G and S1=G. Therefore, we say that the application
under the influence of software faults provides the required
service, though degraded better under the supervisor S2

than under S1. Its operational time and the capacity to
provide service when affected by faults is also better than
without any external control. This is because supervisor S2

disables the events �3 and �7 at the state ðq5; x10Þ in S2=G,
where, otherwise, the application would have been termi-
nated under S1 at state ðq5; x8Þ. Therefore, the performance
of S2 is superior as compared to S1 and G.

9 SUMMARY AND CONCLUSIONS

This paper presents a language-theoretic technique to model
and control software systems without any structural mod-
ifications to the application and the underlying operating
system. A supervisory controller is designed to control the
execution of a software application which we use here to
mitigate the detrimental effects of faults when the program is
in execution. The supervisor directs a software system to a
safe state under the occurrence of selected faults or other
undesirable events, e.g., low resources andphysicalmemory.
We delineate the process of synthesizing a supervisor from a
plain English language specification and demonstrate the
controllability of each specification. The concept of super-

PHOHA ET AL.: SUPERVISORY CONTROL OF SOFTWARE SYSTEMS 1197

visory control applied to software systems is implemented
under the Red Hat Linux 7.2 Operating System and the
experimental results are presented.

We present a procedure for computing the language

measure parameters, specifically the event cost ~��-matrix,

identified from test data to obtain the performance

measures of the supervisors and the uncontrolled plant

model. These language measures assure that the perfor-

mance of the controlled software application is superior to

the uncontrolled application. The qualitative analysis using

the language measure determines when it is advantageous

to run the software application under the control of a given

supervisor over another. The control technique augmented

with the language measure has a wide applicability to

mitigate faults in software systems and to provide a ranking

among a family of supervisors.

APPENDIX A

DEFINITIONS AND NOMENCLATURE

We reproduce definitions and nomenclature of concepts in
automata theory from [13], [1] that are generally used in
supervisory control theory.

Definition A.1. Language generated—LðGÞ.
The language generated by a generator G in (1) is

LðGÞ ¼ fs 2 ��j �ðq0; sÞ is definedg.
Definition A.2. Language Marked—LmðGÞ.

The language marked by a generator G in (1) is
LmðGÞ ¼ fs 2 LðGÞj �ðq0; sÞ 2 Qmg.

Definition A.3. Prefix-closure—prðLÞ.
Let L � �� , then prðLÞ ¼ fs 2 ��j 9t 2 �� ðst 2 LÞg. L

is said to be prefix-closed if L ¼ prðLÞ. In other words, pr(L)
contains all the prefixes of the language L.

Definition A.4. Accessibility.
For a DFSA G given in (1), the set of states

reachable from a state p 2 Q in G is denoted by
ReGðpÞ ¼ fq 2 Qj 9s 2 �� s:t: �ðp; sÞ ¼ qg. G is said to be
accessible if ReGðpÞ ¼ Q, i.e., if all the states in G are reachable
from the initial state q0.

Definition A.5. Coaccessibility.
A DFSA G given by (1) is said to be coaccessible if

8q 2 Q;ReGðqÞ \Qm 6¼ ;, i.e., at least one marked state is
reachable from each state of G.

Definition A.6. Trimness.
An automaton G given by (1) is said to be trim if it is both

accessible and coaccessible.

Definition A.7. Synchronous Composition.
Synchronous Composition of DFSAs is used to

represent the concurrent operation of component systems.
Given two DFSAs M1 ¼ ðQ1;�1; �1; q0;1; Qm;1Þ and
M2 ¼ ðQ2;�2; �2; q0;2; Qm;2Þ, the synchronous composition
of M1 and M2 is a DFSA defined as follows:
M ¼M1kM2 ¼ ðQ;�; �; q0; QmÞ, where Q ¼ Q1 �Q2; � ¼
�1 [�2; q0 ¼ ðq0;1; q0;2Þ;Qm ¼ Qm;1 �Qm;2; 8q ¼ ðq1; q2Þ 2
Q; � 2 � the transition function �ð�; �Þ is defined as follows:

�ðq; �Þ ¼
ð�1ðq1; �Þ; �2ðq2; �ÞÞ �1ðq1; �Þ; �2ðq2; �Þ defined; � 2 �1 \ �2

ð�1ðq1; �Þ; q2Þ �1ðq1; �Þ defined; � 2 �1 � �2

ðq1; �2ðq2; �ÞÞ �2ðq2; �Þ defined; � 2 �2 � �1

undefined otherwise

8>>><
>>>:

and, if �1 ¼ �2, then LmðM1kM2Þ ¼ LmðM1Þ \ LmðM2Þ.
Definition A.8. Completion—M.

The completion of a DFSA M ¼ ðY ;�; �; y0; YmÞ, given by
the DFSA M ¼ ðY ;�; �; y0; YmÞ, where Y ¼ Y [fyDg, with
yD 62 Y (yD denotes the dump state), and 8y 2 Y ; � 2 �

�ðy; �Þ ¼ �ðy; �Þ if y 2 Y ; �ðy; �Þ defined
yD otherwise:

�

Definition A.9. Controllability.
For an unsupervised plant model G given by (1), let

K � �� be a set of specifications that restricts the plant’s
behavior. The language K is said to be controllable with
respect to G and �u if prðKÞ�u \ LðGÞ � prðKÞ. This
condition on K is called the controllability condition. The
controllability condition is equivalent to saying that the
supervisor never disables an uncontrollable event in G,
formally 8s 2 ��; � 2 �u; if s 2 prðKÞ; s� 2 LðGÞ, then
s� 2 prðKÞ.

Definition A.10. Supremal Controllable Sublanguage K"C .
For an unsupervised plant model G given by the automaton

in (1), let K � �� be a set of specification that restricts the
plant’s behavior. If the language K is not controllable, then we
should find the “largest” sublanguage ofK that is controllable,
where “largest” is in terms of inclusion. Let Cin be the class of
controllable sublanguages (L

0
) of K, where

Cin ¼ fL
0 � KjprðL0 Þ�u \ LðGÞ � prðL0 Þg;

then K"C ¼
S

L
0 2 CinðKÞ L

0
.

APPENDIX B

BOUND ON EXPERIMENTAL OBSERVATIONS

This section presents a stopping rule to determine a bound

on the number of experiments to be conducted for

identification of the ~��-matrix parameters. The objective is

to achieve a trade off between the number of experimental

observations and the estimation accuracy. We propose a

stopping rule as presented below.
A bound on the required number of samples is estimated

using the Gaussian structure for the binomial distribution

that is an approximation of the sum of a large number of

independent and identically distributed (i.i.d.) Bernoulli

trials. Denoting ~		ij as p and ~̂		~		ij as p̂p, we have

p̂p � Nðp; pð1�pÞN Þ, where E½p̂p� ¼ p and Var½p̂p� ¼ �2 � pð1�pÞ
N ,

provided that the number of samples N is sufficiently

large. Let X � p̂p� p, then X
� � Nð0; 1Þ. Given 0 < "	 1 and

0 < �	 1, the problem is to find a bound Nb on the number

of experiments such that P jXj "f g
 �. Equivalently,

P
jXj
�
 "

�

� �

 � ð4Þ

that yields a bound on N as:

Nb
��1ð�Þ

"

� �2

pð1� pÞ; ð5Þ

where �ðxÞ � 1�
ffiffi
2
	

q R x
0 e�

t2

2 dt. Since the parameter p is

unknown, we use the fact that pð1� pÞ
 0:25 8p 2 ½0; 1� to
obtain a (possibly conservative) estimate of the bound in

terms of the specified parameters " and � as:

1198 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 9, SEPTEMBER 2004

Nb
��1ð�Þ
2"

� �2

: ð6Þ

The above estimate of the bound on the required number

of samples, which suffices to satisfy the specified "� �

criterion, is less conservative than that obtained from the

Chernoff bound and is significantly less conservative than

that obtained from Chebyshev bound [21], which does not

require the assumption of any specific distribution of X

except for finiteness of the rth (r ¼ 2) moment.

ACKNOWLEDGMENTS

The authors thank Vijay Jain for help in running part of the
simulations and help in event cost matrix parameter

estimation. This work is supported in part by the US Army
Research Office under Grant No. DAAD 19-01-1-0646.

REFERENCES

[1] P. Ramadge and W. Wonham, “Supervisory Control of a Class of
Discrete Event Processes,” SIAM J. Control and Optimization,
vol. 25, no. 1, pp. 206-230, 1987.

[2] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, and T.
Kovacshazy, “An Approach to Self Adapive Software Based on
Supervisory Control,” Proc. Int’l Workshop Self Adaptive Software,
2001.

[3] C. Wallace, P. Jensen, and N. Soparkar, “Supervisory Control of
Workflow Scheduling,” Proc. Int’l Workshop Advanced Transaction
Models and Architectures, 1996.

[4] Y. Hong, D. Chen, L. Li, and K. Trivedi, “Closed Loop Design for
Software Rejuvenation,” SHAMAN—Self-Healing, Adaptive and
self-MANaged Systems, 2002.

[5] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
Rejuvenation: Analysis, Module and Applications,” Proc. 25th Int’l
Symp. Fault-Tolerant Computing, 1995.

[6] H. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages, and Computation, second ed. Addison Wesley,
2001.

[7] L. Bauer, J. Ligatti, and D. Walker, “More Enforceable Security
Policies,” Proc. Foundations of Computer Security Workshop, July
2002.

[8] U. Erlingsson and F. Schneider, “SASI Enforcement of Security
Policies: A Retrospective,” Proc. New Security Paradigms Workshop,
pp. 87-95, Sept, 1999,

[9] Y. Hong, D. Chen, L. Li, and K. Trivedi, “Enforceable Security
Policies,” ACM Trans. Information and System Security, vol. 3, no. 1,
pp. 30-50, 2002.

[10] X. Wang and A. Ray, “A Language Measure for Performance
Evaluation of Discrete Event Supervisory Control Systems,”
Applied Math. Modelling, to appear.

[11] A. Ray and S. Phoha, “Signed Real Measure of Regular Languages
for Discrete-Event Automata,” Int’l J. Control, vol. 76, no. 18,
pp. 1800-1808, 2003.

[12] A. Surana and A. Ray, “Measure of Regular Languages,”
Demonstratio Mathematica, vol. 37, no. 2, 2004.

[13] C. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. 1999.

[14] F. Charbonnier, H. Alla, and R. David, “Supervised Control of
Discrete-Event Dynamic Systems,” IEEE Trans. Control Systems
Technology, vol. 7, no. 2, pp. 175-187, 1989.

[15] M. Heymann, “Concurrency and Discrete Event Control,” IEEE
Control Systems Magazine, pp. 103-112, 1990.

[16] D. Bovet and M. Cesati, Understanding the Linux Kernel. O’Reilly &
Assoc., Jan. 2001.

[17] A. Rubini, Linux Device Drivers. O’Reilly & Assoc., June 2001.
[18] W. Stevens, Unix Network Programming, vol. 1, second ed.

Singapore: Addison-Wesley Longman, 1999.
[19] X. Wang, A. Ray, and A. Khatkhate, “On-Line Identification of

Language Measure Parameters for Discrete Event Supervisory
Control,” Proc. IEEE Conf. Decision and Control, pp. 6307-6312,
2003.

[20] V. Phoha, A. Nadgar, A. Ray, J. Fu, and S. Phoha, “Supervisory
Control of Software Systems for Fault Mitigation,” Proc. 2003 Am.
Control Conf., 2003.

[21] M. Pradhan and P. Dagum, “Optimal Monte Carlo Estimation of
Belief Network Inference,” Proc. 12th Conf. Uncertainty in Artificial
Intelligence, 1996.

Vir V. Phoha received the MS and PhD degrees
in computer science from Texas Tech Univer-
sity. He is an associate professor of computer
science at Louisiana Tech University in Ruston.
His research interests include control of software
systems, anomaly detection, Web mining, net-
work and Internet security, intelligent networks,
and nonlinear systems. He is a senior member
of the IEEE and a member of the ACM.

Amit Nadgar received the bachelor’s degree in
computer engineering from Pune University,
India, in 2000 and the master’s degree in
computer science fromLouisianaTechUniversity
in 2003. His research interests are in the applica-
tionof control theory for faultmitigation in software
systems,dynamicgoal switching inmobile robots,
and in the development of real-time operating
systems support for high speed networking
applications. He has worked in the area of

software design and development for embedded systems creating
systems software and firmware.

Asok Ray received the PhD degree in mechan-
ical engineering from Northeastern University,
Boston, in 1976 and also received graduate
degrees in each of the disciplines of electrical
engineering, computer science, and mathe-
matics. He joined the Pennsylvania State Uni-
versity in July 1985 and is currently a
Distinguished Professor of Mechanical Engineer-
ing, a Graduate Faculty of Electrical Engineering,
and a Graduate Faculty in the Inter-College

Program in Materials. His research experience and interests include
control and estimation of dynamical systems in both deterministic and
stochastic settings, intelligent instrumentation for real-time distributed
processes, health monitoring and fault-accommodating and robust
control as applied to aeronautics and astronautics, undersea vehicles
and surface ships, and power and processing plants. He is a fellow of the
IEEE, a fellow of the ASME, and an associate fellow of the AIAA.

Shashi Phoha received the PhD degree from
Michigan State University and the MS degree
from Cornell University. She is a director of the
Information Sciences and Technology Division
at the Applied Research Laboratory and a
professor of electrical and computer engineering
at the Pennsylvania State University. Her re-
search interests are in developing real-time data
driven cognitive control-actuation algorithms that
harness the capabilities of distributed devices for

executing dynamically adaptive dependable missions. Her current work
focuses on detection and mitigation of anomalous behavior in nonlinear
processes with phase transitions. She is a senior member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

PHOHA ET AL.: SUPERVISORY CONTROL OF SOFTWARE SYSTEMS 1199

