
Optimal control of robot behaviour using language
measure1

Xi Wang, Asok Ray*, Peter Lee and Jinbo Fu

The Pennsylvania State University, University Park,
PA 16802, USA
E-mail: xxw117@psu.edu E-mail: axr2@psu.edu
E-mail: cfl106@psu.edu E-mail: jbfu@psu.edu
*Corresponding author

Abstract: This paper presents optimal control of robot behaviour in the
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robot behaviour serves as the performance index for synthesis of the
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polynomial in the number of states of the deterministic finite state
automaton model that is generated from the regular language of the
unsupervised robot behaviour. The results of simulation experiments on a
robotic test bed are presented to demonstrate the efficacy of the proposed
optimal control policy.
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1 Introduction

In the discrete event setting, the behaviour of physical plants, such as a robot, is often
modelled as regular languages that can be realised by deterministic finite state
automata (DFSA) in the discrete event setting (Ramadge and Wonham, 1987). This
paper introduces and validates a novel approach for robot behaviour selection based
on discrete event supervisory control in terms of the language measure � (Ray and
Phoha, 2003; Surana and Ray, 2004; Wang and Ray, 2004). The controlled
sublanguage of a DFSA plant model could be different under different supervisors
that are constrained to satisfy different specifications. Such a partially ordered set of
sublanguages requires a quantitative measure for total ordering of their respective
performance. The language measure serves as a common quantitative tool to
compare the performance of different supervisors and is assigned an event cost
matrix and a state characteristic vector.

This paper presents discrete event optimal supervisory control of mobile robot
operations, where the control policy is synthesised by maximising the language
measure of robot behaviour. This novel approach is called �-optimal in the sequel. In
contrast to the Q-learning reinforcement (Watkins, 1989; Watkins and Dayan, 1992)
that has been widely used in robotics, computational complexity of �-optimal control
is polynomial in the number of states of the deterministic finite state automaton
(DFSA) model of unsupervised robot behaviour. The results of simulation experiments
on a robotic test bed are presented for typical scenarios to demonstrate the efficacy of
the �-optimal control policy.

The paper is organised in six sections including the present section. The language
measure is briefly reviewed in Section 2 including introduction of the notations.
Section 3 presents the parameter identification algorithm and the associated stopping
rules. Section 4 proposes a discrete event supervisory (DES) control synthesis
strategy. Section 5 validates the synthesis algorithm through simulation on a mobile
robotic system. The paper is summarised and concluded in Section 6.
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2 Quantitative measure of regular languages for supervisory control

This section introduces the notion of language measure (Ray and Phoha, 2003;
Surana and Ray, 2004; Wang and Ray, 2004) that assigns an event cost matrix,
denoted as the ~�-matrix, and a state characteristic vector, denoted as the X-vector.
Event costs (i.e. elements of the ~�-matrix) are based on plant states, where they are
generated, are physical phenomena dependent on the plant behaviour, and are
conceptually similar to the conditional probabilities of the respective events. On the
other hand, the characteristic vector, denoted as the X-vector, is chosen based on the
designer's perception of the individual state's impact on the system performance. In
the performance evaluation of both the unsupervised and supervised plant
behaviour, the critical parameter is the event cost ~�-matrix. Since the plant
behaviour is often slowly time-varying, there is a need for online parameter
identification to generate up-to-date values of the ~�-matrix within allowable bounds
of errors.

Let Gi � Q;�; �; qi;Qmh i be a trim (i.e. accessible and co-accessible) finite-state
automaton model that represents the discrete event dynamics of a physical plant
where Q � fqk : k 2 IQg, where IQ � f1; 2; . . . ; ng, is the set of states with qi, where
i 2 IQ, being the initial state; � � f�k : k 2 I�g, where I� � f1; 2; . . . ;mg, is the
alphabet of events; � : Q��! Q is the (possibly partial) function of state
transitions; and Qm � fqm1

; qm2
; . . . qml

g � Q is the set of marked (i.e. accepted)
states qmk

� qj for some j 2 IQ.
Let �� be the Kleene closure of �, i.e. the set of all finite-length strings made of

the events belonging to � as well as the empty string � that is viewed as the identity of
the monoid �� under the operation of string concatenation, i.e. �s � s � s�. The
extension �� : Q��� ! Q is defined recursively in the usual sense (Ramadge and
Wonham, 1987).

Definition 2.1

The language L�Gi� generated by a DFSA G initialised at the state qi 2 Q is defined
as:

L�Gi� � s 2 ��j���qi; s� 2 Qf g: �1�
The language Lm�Gi� marked by the DFSA G initialised at the state qi 2 Q is defined
as:

Lm�Gi� � s 2 ��j���qi; s� 2 Qmf g: �2�

Definition 2.2

For every qj � Q, let L�qi; qj� denote the set of all strings that, starting from the state
qi, terminate at the state qj, i.e.

L�qi; qj� � s 2 ��j���qi; s� � qj 2 Q
� 	

: �3�

The set Qm of marked states is partitioned into Q�m and Qÿm, i.e. Qm � Q�m [Qÿm and
Q�m \Qÿm � ;, where Q�m contains all good marked states that we desire to reach, and
Qÿm contains all bad marked states that we want to avoid, although it may not always
be possible to completely avoid the bad states while attempting to reach the good
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states. To characterise this, each marked state is assigned a real value based on the
designer's perception of its impact on the system performance.

Definition 2.3

The characteristic function � : Q! �ÿ1; 1� that assigns a signed real weight to
state-based sublanguages L�qi; q� is defined as

8q 2 Q; ��q� 2
�ÿ1; 0� q 2 Qÿm
f0g q =2Qm

�0; 1� q 2 Q�m

8><>: : �4�

The state weighing vector, denoted by X � ��1�2 � � ��n�T, where �j � ��qj�8k, is
called the X-vector. The j-th element �j of X-vector is the weight assigned to the
corresponding terminal state qj.

In general, the marked language Lm�Gi� consists of both good and bad event
strings that, starting from the initial state qi, lead to Q�m and Qÿm respectively. Any
event string belonging to the language L0 � l�Gi� ÿ Lm�Gi� leads to one of the
non-marked states belonging to QÿQm and L0 does not contain any one of the good
or bad strings. Based on the equivalence classes defined in the Myhill±Nerode
Theorem, the regular languages L�Gi� and Lm�Gi� can be expressed as:

L�Gi� �
[

qk2Qm

L�qi; qk� �
[n
k�1

L�qi; qk� �5�

Lm�Gi� �
[

qk2Qm

L�qi; qk� � L�m [ Lÿm �6�

where the sublanguage L�qi; qk� � Gi having the initial state qi is uniquely labelled
by the terminal state qk; k 2 I and L�qi; qj� \ L�qi; qk� � ;8j 6� k; and L�m �S

q2Q�m L�qi; q� and Lÿm �
S

q2Qÿm L�qi; q� are good and bad sublanguages of Lm�Gi�,
respectively. Then, L0 � Sq=2Qm

L�qi; q� and L�Gi� � L0 [ L�mj [ Lÿm.
Now we construct a signed real measure � : 2L�Gi� ! R � �ÿ1;�1� on the

�-algebra K � 2L�Gi�. Interested readers are referred to Wang and Ray (2004) for the
details of measure±theoretic definitions and results. With the choice of �-algebra,
every singleton set made of an event string ! 2 L�Gi� is a measurable set, which
qualifies itself to have a numerical quantity based on the above state-based
decomposition of L�Gi� into L0(null), L�(positive), and Lÿ(negative) sublanguages.

Conceptually similar to the conditional transition probability, each event is
assigned a state-dependent cost.

Definition 2.4

The event cost of the DFSA Gi is defined as a (possibly partial) function
~� : Q��� ! �0; 1� such that 8qi 2 Q; 8�j 2 �; 8s 2 ��,

1 ~��qi; �j� � ~�ij 2 �0; 1�;
P

j ~�ij < 1;

2 ~��qi;�j� � 0 if ��qi; �j� is undefined; ~��qi; �� � 1;

3 ~��qi; �js� � ~��qi; �j� ~����qi; �j�; s�.
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Definition 2.5

The state transition cost of the DFSA Gi is defined as a function � : Q�Q! �0; 1�
such that 8qi; qj 2 Q; ��qi; qj� �

P
�2�:��qi;���qj ~��qi; �� � �ij and �ij � 0 if f� 2 � :

��qi; �� � qjg � ;. The n� n state transition cost �-matrix is defined as:

� �
�11 �12 � � � �1n
�21 �22 � � � �2n
..
. ..

. . .
. ..

.

�n1 �n2 � � � �nn

26664
37775:

Definition 2.6

The real signed measure � of every singleton string set 
 � f!g 2 2L�Gi� where
! 2 L�qi; q� is defined as ��
� � ~��qi; !���q�. It follows that the signed real measure
of the sublanguage L�qi; q� � L�Gi� is defined as

� L�qi; q�
ÿ � � X

!2L�qi;q�
~��qi; !�

0@ 1A��q�: �7�

And the signed real measure of the language of a DFSA Gi initialised at a state
qi 2 Q, is defined as:

�i � � L�Gi�
ÿ � �X

q2Q
��L�q; qi��: �8�

The language measure vector, denoted as l � ��1 �2 . . . �n�T, is called the l-vector.
It is shown in Surana and Ray (2004) and Wang and Ray (2004) that the signed

real measure �i can be written as:

�i �
X
j

�ij �j � �i: �9�

In vector form, l � �l� X whose solution is given by

l � �Iÿ��ÿ1X: �10�
The inverse in Equation (10) exists because � is a contraction operator (Surana and
Ray, 2004; Wang and Ray, 2004).

2.1 Probabilistic interpretation

Since the plant model is an inexact representation of the physical plant, there exist
unmodelled dynamics to be accounted for. This can manifest itself either as
unmodelled events that may occur at each state or as unaccounted states in the
model. Let �u

k denote the set of all unmodelled events at state k of the DFSA
Gi � hQ;�; �; qi;Qmi. Let us create a new unmarked absorbing state qn�1, called the
dump state (Ramadge and Wonham, 1987), and extend the transition function � to
�e : �Q [ fqn�1g� � �� [ �[k�u

k�� ! �Q [ fqn�1g� as follows:

Optimal control of robot behaviour using language measure 151



�e�qk; �� �
��qk; �� if qk 2 Q and � 2 �
qn�1 if qk 2 Q and � 2 �u

k

qn�1 if k � n� 1 and � 2 � [�u
k

8<: :

Therefore the residue �k � 1ÿPj ~�kj denotes the probability of the set of
unmodelled events �u

k conditioned on the state qk. The �-matrix is accordingly
augmented to obtain a stochastic matrix �aug as follows:

�aug �

�11 �12 � � � �1n �1
�21 �22 � � � �2n �2
..
. ..

. . .
. ..

. ..
.

�n1 �n2 � � � �nn �n
0 0 � � � 0 1

2666664
3777775:

Since the dump state qn�1 is not marked, its characteristic value ��qn�1� � 0. The
characteristic vector then augments to Xaug � �XT 0�T. With these extensions the
language measure vector laug � ��1 �2 . . .�n �n�1�T � �lT �n�1�T of the augmented
DFSA Gaug

i � �Q [ fqn�1g;� [ �[k�u
k�; �e; qi;Qm� can be expressed as:

l
�n�1

� �
� �l� �n�1��1 . . . �n�T

�n�1

 !
� X

0

� �
: �11�

Since ��qn�1� � 0 and all transitions from the absorbing state qn�1 lead to itself,
�n�1 � ��Lm�Gn�1�� � 0. Hence, Equation (11) reduces to that for the original plant
DFSA Gi. Thus, the event cost can be interpreted as the conditional probability,
where the residue �k � �1ÿ

P
j ~�kj� 2 �0; 1� accounts for the probability of all

unmodelled events emanating from the state qk.

3 Estimation of language measure parameters

This section presents a recursive algorithm for identification of the language measure
parameters (i.e. elements of the event cost matrix ~�) (see Definition 2.4) which, in
turn, allows computation of the state transition cost matrix � (see Definition 2.5)
and the language measure l-vector (see Definition 2.6). It is assumed that the
underlying physical process evolves at two different time scales. In the fast-time
scale, i.e. over a short time period, the system is assumed to be an ergodic, discrete
Markov process. In the slowly-varying time scale, i.e. over a long period, the system
(possibly) behaves as a non-stationary stochastic process. For such a slowly-varying
non-stationary process, it might be necessary to redesign the supervisory control policy
in real time. In that case, the ~�-matrix parameters should be periodically updated.

3.1 A recursive parameter estimation scheme

Let pij be the transition probability of the event �j at the state qi, i.e.

pij � P��jjqi�; if 9 q 2 Q; s:t: q � ��qi; �j�
0; otherwise

(
�12�
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and its estimate be denoted by the parameter p̂ij that is to be identified from the
ensemble of simulation and/or experimental data.

Let a strictly increasing sequence of time epochs of consecutive event occurrence
be denoted as:

T � ftk : k 2 N0g �13�
where N0 is the set of non-negative integers. Let the indicator  : N0 � IQ�
I� ! f0; 1g represent the incident of occurrence of an event. For example, if the
DFSA was in state qi at time epoch tkÿ1, then

 ij�k� � 1; if �j occurs at time epoch tk 2 T
0; otherwise

(
: �14�

Consequently, the number of occurrences of any event in the alphabet � is
represented by 	 : N0 � IQ ! f0; 1g. For example, if the DFSA was in state qi at the
time epoch tkÿ1, then

	i�k� �
X
j2I�

 ij�k�: �15�

Let n : N0 � IQ � I� ! N0 represent the cumulative number of occurrences of an
event at a state up to a given time epoch. That is, nij�k� denotes the number of
occurrences of the event �j at the state qi up to the time epoch tk 2 T . Similarly, let
N : N0 � IQ ! N0 represent the cumulative number of occurrences of any event in
the alphabet � at a state up to a given time epoch. Consequently,

Ni�k� �
X
j2I�

nij�k�: �16�

A frequency estimator, p̂ij�k�, for probability pij�k� of the event �j occurring at the
state qi at the time epoch tk, is obtained as:

p̂ij�k� � nij�k�
Ni�k�

lim
k!1

p̂ij�k� � pij

: �17�

A recursive algorithm of learning pij is formulated as a stochastic approximation
scheme, starting at the time epoch t0 with the initial conditions: p̂ij�0� � 0 and
nij�0� � 0 for all i 2 IQ; j 2 I�; and 	i�0� � 0 for all i 2 IQ. Starting at k � 0, the
recursive algorithm runs for ftk : k � 1g. For example, upon occurrence of an event
�j at a state qi, the algorithm is recursively incremented as:

nij�k� � nij�kÿ 1� �  ij�k�
Ni�k� � Ni�kÿ 1� �	i�k�

: �18�

Next it is demonstrated how the estimates of the language parameters (i.e. the
elements of event cost matrix ~�) are determined from the probability estimates. As
stated earlier in Section 2.1, the set of unmodelled events at state qi, denoted by
�u

i 8i 2 IQ, accounts for the row-sum inequality:
P

j ~�ij < 1 (see Definition 2.4).
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Then, P��u
i � � �i 2 �0; 1� and

P
i ~�ij � 1ÿ �i. An estimate of the (i, j)th element of

the ~�-matrix, denoted by ~̂�ij, is approximated as:

~̂�ij�k� � p̂ij�k��1ÿ �i� 8j 2 I�: �19�
Additional experiments on a more detailed automaton model would be necessary to
identify the parameters �i 8i 2 IQ. Given that �i � 1, the problem of conducting
additional experimentation can be circumvented by the following approximation:

A single parameter � � �i 8i 2 IQ; i 2 IQ, such that 0 < �� 1, could be selected
for convenience of implementation. From the numerical perspective, this option is
meaningful because it sets an upper bound on the language measure based on the fact
that the sup-norm k � k1� �ÿ1. Note that each row sum in the ~�-matrix being
strictly less than 1, i.e.

P
j ~�ij < 1, is a sufficient condition for finiteness of the

language measure.
Theoretically, ~�ij is the asymptotic value of the estimated probabilities ~̂�ij�k� as if

the event �j occurs infinitely many times at the state qi. However, dealing with finite
amount of data, the objective is to obtain a good estimate p̂ij of pij from independent
Bernoulli trials of generating events. Critical issues in dealing with finite amount of
data are:

* how much data are needed

* when to stop if adequate data are available.

Section 3.2 addresses these issues.

3.2 A stopping rule for recursive learning

A stopping rule is proposed to find a lower bound on the number of experiments to
be conducted for the ~�-matrix parameter identification. This section presents such a
stopping rule for an inference approximation having a specified absolute error bound
" with a probability �. The objective is to achieve a trade-off between the number of
experimental observations and the estimation accuracy. A robust stopping rule is
presented below.

A bound on the required number of samples is estimated using the Gaussian
structure for binomial distribution that is an approximation of the sum of a large
number of independent and identically distributed (i.i.d.) Bernoulli trials of ~̂�ij�l�.
The central limit theorem yields ~̂�ij � N ~�ij;

~�ij�1ÿ ~�ij�
N

� �
, where N indicates normal

(or Gaussian) distribution with E� ~̂�ij� � ~�ij and Var� ~̂�ij� � �2 � ~�ij�1ÿ ~�ij�
N

, provided

that the number of samples N is sufficiently large. Let � � ~̂�ij ÿ ~�ij, then
�

�
� N�0; 1�.

Given 0 < "� 1 and 0 <� 1, the problem is to find a bound Nb on the number N of
experiments such that Pfj�j � "g � �. Equivalently,

P
j�j
�
� "

�

� �
� � �20�

that yields a bound Nb on N as:

X. Wang, A. Ray, P. Lee and J. Fu154



Nb � �ÿ1���
"

 !2

~�ij�1ÿ ~�ij� �21�

where ��x� � 1ÿ
���
2

�

r Z x

0

eÿ
t2

2 dt. Since the parameter ~�ij is unknown, one may use the

fact that ~�ij�1ÿ ~�ij� � 0:25 for every ~�ij 2 �0; 1� to (conservatively) obtain a bound on
N only in terms of the specified parameters " and � as:

Nb � �ÿ1���
2"

 !2

: �22�

The above estimate of the bound on the required number of samples is less
conservative than that obtained from the Chernoff bound and is significantly less
conservative than that obtained from Chebyshev bound (Pradham and Dagum,
1996) that does not require the assumption of any specific distribution of � except
for finiteness of the rth �r � 2� moment.

4 Discrete event supervisory control synthesis in l measure

In the conventional discrete event supervisory (DES) control synthesis (Ramadge
and Wonham, 1987), the qualitative measure of maximum permissiveness plays an
important role. For example, under full state observation, if a specification language
K is not controllable with respect to the plant automaton G and the set �u of
uncontrollable events, then a supremal controllable sublanguage SupC�K� � K yields
maximal permissiveness. However, increased permissiveness of the controlled
language L�S=G� may not generate better plant performance from the perspectives
of mission accomplishment. This section relies on the language measure � to
quantitatively synthesise a DES control policy. The objective is to design a supervisor
such that the controlled plant automaton S=G maximises the performance that is
chosen as the measure � of the controlled plant language L�S=G�. The pertinent
assumptions for the DES control synthesis are delineated below.

A1: (Cost redistribution) The probabilities of occurrence of controllable events in a
controlled sublanguage L�S=G� � L�G� are proportional to those in L�G�. For all
q 2 QS, where QS is the state space of the supervisor automaton S, and � 2 �S�q�,
where �S�q� is the set of events defined at q 2 QS.

~�S�q; �� � ~�G�q; ��P
�2�S�q� ~�G�q; �� : �23�

A2: (Event controllability) Any transition ��q; ��, defined in the plant automaton G
such that � 2 �uc�G� and q 2 Q, is kept enabled in a supervisor S.

Under assumption A1, the sum of event costs defined at the state q of a supervisor S
is equal to that of state q of the plant G, i.e.X

�2�S�q�
~�S�q; �� �

X
�2�G�q�

~�G�q; ��:
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Lemma 4.1 (Finiteness)

By disabling controllable events in a plant automaton G, there is only a finite number
of controllers Si; i 2 I c, where I c is the set of controllers with cardinality jI cj � nc,
such that for every i 2 I c; L�Si� � L�Si=G� � L�G�.

Proof

Under assumption A2, it suffices to show that the number of all possible permutations
of disabling controllable events defined on all states in G is finite. The worst case is
that:

* for every state q 2 G and every controllable event � 2 �c, the transition ��q; ��
is defined

* every state q in G does not depend on any other state to be accessible from initial
state q0. Then, the number of all possible transitions nt is given by:

nt � jQj � j�cj � nm �25�
where jQj � n is the number of states and j�cj � m is the number of controllable
events in G. And the number of all possible supervisors is given by

nc � nt
0

� �
� nt

1

� �
� nt

2

� �
� � � � � nt

nt

� �
�
Xnt
i�0

nt
i

� �
<1: �26�

Lemma 4.1 shows that there are finitely many supervisors whose generating language
is a subset of L�G� given the fact that both the state space and event alphabet are
finite. Next we present pertinent results in the form of two theorems. Theorem 4.1
states that out of all possible supervisors constructed from G, there exists a
supervisor that maximises the language measure � with respect to ��; X�. Theorem
4.2 describes a general transition structure of the �-optimal supervisor S�. In
particular, at every state in q 2 Qc�S�� in S�, there is one and only one controllable
event defined.

Theorem 4.1 (Existence) (Fu et al., 2004)

Given a DFSA plant G � �Q; �; �; q0; Qm�; �-matrix, and X-vector, there exist an
optimal supervisor S� such that ��L�S�=G�� � maxi2I c ��L�Si=G��.

Theorem 4.2

Given a DFSA plant G � �Q; �; �; q0; Qm�, �-matrix, and X-vector, the event set
�c�G; q� and the plant set Qc�G� are defined as follows:

�c�G; q� � f� 2 �c j ��q; �� is defined in Gg �27�

Qc�G� � fq 2 Q j�c�G; q� 6� ;g: �28�
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For every state q 2 Qc�G�, there is one and only one controllable event left enabled in
the �-optimal supervisor S�, i.e.

8q 2 Qc�S��; j�c�S�; q�j � 1: �29�

Proof

Let us assume that there exists a supervisor Sl such that ��L�Sl=G�� > ��L�S�=G��
and j�c�Sl; q�j > 1 for some q 2 Qc�Sl�.

�l �� li ÿ l�

� l�L�Sl=G�� ÿ l�L�S�=G��
� �Iÿ��Sl��ÿ1Xÿ �Iÿ��S���ÿ1X
� �Iÿ��Sl��ÿ1 �Iÿ��S��� ÿ �Iÿ��Sl��� 	
�Iÿ��S���ÿ1X

� �Iÿ��Sl��ÿ1���Sl� ÿ��S���l�

1 �Iÿ��Sl��ÿ1 � 0. By Taylor series expansion,

�Iÿ��Sl��ÿ1 �
X1
n�0
���Sl��n: �30�

Since each element of ��Sl� is non-negative, so is each element of (��Sl��n.
Therefore, �Iÿ��Sl��ÿ1 � 0 elementwise.

2 Let us suppose �c�Sl; qj� � f�m; �ng and �c�S�; qj� � f�lg, for some j 2 I then
the j-th element of (��Sl� ÿ��S���l� is given by

�j � �0 . . . ~�jm . . . ~�jn . . . 0� ÿ �0 . . . ~�jl . . . 0�ÿ �
�. . .��m . . .��l . . .��n . . .�T

� ~�jm �m � ~�jn �n ÿ ~�jl �l
� � ~�jm � ~�jn��� ÿ ~�jl �l ��� � maxf�m; �ng�
< � ~�jm � ~�jn ÿ ~�jl��l �, �m < �l�
< 0 �, ~�jm � ~�jn � ~�jl�:

Since �j < 0 for every j 2 I , �l < 0. This contradicts the original hypothesis
that the supervisor S� is optimal, i.e. ��L�S=G�� � ��L�S�=G�� for all
supervisors S.

Intuitively, at a given state, a control synthesis algorithm should attempt to enable
only the controllable event that leads to the next state with highest performance
measure �, equivalently, disabling the rest of controllable events defined at that state,
if any. A recursive synthesis algorithm is first presented and then it is shown that l is
monotonically increasing elementwise on every iteration.
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1 Initialisation. Set �0 � �p, then compute l0 � �Iÿ�0�ÿ1X.

2 Recursion. At k-th iteration, where k � 1,

a � maximisation. For every q 2 Qc�G�, identify the event �� 2 �c�G; q� such
that q� � ��q; ��� and

� L�Sk�~�k�; q��
� �

� max
�2�c�G;q�
q0���q;��

� L�Sk�~�k�; q0�
� �

�31�

where Sk�~�k� is the intermediate supervisor at k-th iteration whose
transition is determined by ~�

k
. Let r� � ���1 ��2 . . .��n�T, where the i-th

element in r� is the controllable event left-enabled at state qi of the plant
G according to Equation (31).

3 Event Disabling. Disable the event set �c�G; q� ÿ fr��q�g for every q 2 Qc�G�
and redistribute event cost according to Equation (23). This results in a new
~�

k�1
-matrix which consequently produces a new �k�1-matrix.

�k�1 � �k ��k �32�
where �k records the difference between �k�1 and �k�1, consisting positive and
negative event costs corresponding to those kept and disabled controllable
events, respectively. The resulting supervisor Sk�1�~�k�1�.

4 Measure Computation. Compute lk�1 � �Iÿ�k�1�ÿ1X
5 Termination. If ~�

k�1 � ~�
k
, then stop.

At each iteration of the recursive algorithm, neither the number of states is increased,
nor any additional transition is added in the supervisor Sk�~�k� with respect to the
plant automaton G. Therefore, L�Sk� ~�k�� � L�G�.

Theorem 4.3 (Monotonicity)

The sequence lk, k � 1; 2; . . . ; generated recursively by the above algorithm is
monotonically increasing.

Proof

To show that flk; k 2 g is a monotonic sequence, it suffices to show that
�lk � lk�1 ÿ lk � 0 for every k 2 .

�lk � �Iÿ�k�1�ÿ1Xÿ �Iÿ�k�ÿ1X
� �Iÿ�k�1�ÿ1 �Iÿ�k� ÿ Iÿ�k�1�� �
�Iÿ�k�ÿ1X

� �Iÿ�k�1�ÿ1��k�1 ÿ�k�lk

� �Iÿ�k�1�ÿ1�klk:
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1 �Iÿ�k�1�ÿ1 � 0. By Taylor series expansion,

�Iÿ�k�1�ÿ1 �
X1
n�0
��k�1�n: �33�

Since each element of �k�1 is non-negative, so is each element of ��k�1�n.
Therefore, �Iÿ�k�1�ÿ1 � 0 elementwise.

2 �klk�1 > 0. For k � 1, by the recursive algorithm, for any state q 2 Qc�G�, there
is one and only one left enabled in Sk�~�k�. Let �m and �n be the only controllable
event left enabled on some state ql 2 Qc�G� at the k-th and k� 1-th iteration,
respectively. Then, only the m-th element and the n-th element of the l-th row are
non-zero in �k and �k�1, respectively. So the l-th element of �klk�1 is given by:

�klk�1�l� �

0
..
.P

j ~�k�1ij

..

.

0
..
.

2666666664

3777777775
ÿ

0
..
.

0
..
.P
j ~�kij

..

.

2666666664

3777777775

0BBBBBBBBB@

1CCCCCCCCCA

T

�k1 � � ��kn � � ��km � � �
� �T

� P
j

~�ij �
k
n ÿ �km

ÿ �
> 0

: �24�

The last inequality holds because �m is disabled and �n is enabled in the (k� 1)-th
iteration only if �n is greater than �m, according to the recursive algorithm.

Given that every iteration in the above recursive synthesis algorithm generates an
intermediate supervisor Sk in the form of ~�

k
at the kth iteration and its measure �k is

monotonically increasing with k, the algorithm converges in a finite number of
iterations to yield the �-optimal supervisor S�. It has been shown by Fu et al. (2004)
that the complexity of the above optimal algorithm is polynomial in number of the
plant automaton states.

5 Validation of the supervisory control algorithm

This section validates the supervisory control algorithm on a robotic test bed; the
control system architecture is shown in Figure 1. The test bed makes use of the
Player/Stage.2 Player is a device server that manages the robot's sensors and
actuators, whereas Stage can stimulate a population of mobile robots, sensors and
objects in a two-dimensional bitmapped environment. In the simulation experiments,
a Pioneer 2 AT robot is equipped with sonar, laser range finder, vision camera,
gripper, battery. The DES control module (DCM) communicates with the existing
continuous varying control module (CVCM) of the robot by sending and receiving a
set of discrete events, listed in Table 1. The DCM is designed to be independent of the
underlying physical process such that it provides a mechanism to interact with the
CVCM. A DES controller is allowed to plug and play in DCM where the DES
controller is loaded in a special format. The CVCM consists of three blocks:
continuous-to-discrete (C/D), discrete-to-continuous (D/C), and the CVCM. The

Optimal control of robot behaviour using language measure 159



CVCM is connected to the Player via a standard TCP socket for sending and
receiving formatted messages that encode up-to-date sensor readings and
continuously varying commands of reference signals, respectively, at 10Hz. The
control strategy is event-driven, in which the CVCM generates discrete events based
on the continuous sensor data received from the Player. The discrete events are
transmitted to DCM in a symbolic form. For example, if the robot is in search mode
and the incoming vision data indicate the presence of a red unit in its view, the
CVCM generates a `find red unit' event. In response, DCM reacts immediately by
sending out a discrete event command back to the CVCM according to the currently
loaded supervisor; in this case, the commands are either `ignore unit' or `proceed to
supply'. After receiving a particular event from the DES controller, the CVCM sends
out a set of continuous reference signals to Player for completion of this behaviour of
accordingly manoeuvring the robot. The robot continues executing this behaviour
until the sensor readings trigger the occurrence of a new event.

Figure 1 Pioneer 2 AT DES simulation block diagram

Table 1 List of discrete events

� Description � Description

�1 start mission �12 win the fight

�2 search �13 loose the fight

�3 find blue unit �14 battery power medium

�4 find pink unit �15 battery power low

�5 find enemy �16 battery power dead

�6 proceed to supply �17 detected gripper fault

�7 ignore unit �18 abort mission

�8 fight enemy �19 return

�9 avoid enemy �20 ignore anomaly

�10 finish supply �21 return successfully

�11 fail supply
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The experimental scenario consists of a single robot performing logistic supply and
combat operation in a simulated battle field. There are two friendly units (represented
by red and green coloured circles) and one enemy (represented by blue circle), which
are at stationary locations in the field. The robot does not have prior knowledge of the
environment. When a `start mission' signal is received, the robot randomly searches
for a red or green unit. When finding a unit, the robot can either proceed to supply or
ignore the unit and keep on searching. It may also encounter an enemy during the
course of searching. The robot may decide either to avoid or to fight the enemy. In
both cases, there are chances that the robot may fail to supply or lose the fight.

A gripper failure is modelled to signify the robot's failure to complete the task of
supplying units. However, fighting with the enemy is still possible. In addition,
during the mission, the battery consumption rate changes according to the robot's
current actions. For example, the robot's power consumption is higher during the
fight with the enemy than supplying the units. The robot needs to return to its base
(represented by a large pink circle) to be recharged before the battery voltage drops
below a certain level, or the robot is considered to be lost. After each successful
return to the base, the robot is reset to normal conditions including full battery
charge and normal gripper status. If the robot is incapacitated either due to battery
over-drainage or damage in a battle, the `death toll' is increased by one. In both
cases, the mission is automatically restarted with a new robot.

Due to the independence of the robot operation, battery consumption, and
occurrence of gripper failures, the entire interaction between robot and environment
is modelled by three different submodels, as shown in Figure 2(a) and (b). The
blue-coloured and red-coloured states are good marked states in Q�m and bad marked
states in Qÿm, respectively. Then the models are composed by synchronous composition
operator defined below to generate the integrated plant model G � G1 k G2 k G3.

Figure 2 Finite state models of robot operation
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Definition 5.1

Given G1 � �Q1;�1; �1; q0;1;Qm;1�; G2 � �Q2;�2; �2; q0;2;Qm;2�, synchronous composition
of G1 and G2, denoted G1 k G2 � �Q;�; �; q0;Qm�, is defined as Q � Q1 �Q2;
���1[�2; q0��q0;1; q0;2�; Qm�Qm;1 �Qm;2 and for every q��q1; q2� 2 Q; � 2 �

��q; �� �
�1�q1; ��; �2�q2; ��� � � 2 �1 \�2

�1�q1; ��; q2� � � 2 �1 ÿ�2

q1; �2�q2; ��� � � 2 �2 ÿ�1

undefined otherwise

8>>><>>>: : �34�

After eliminating the inaccessible states, the discrete-event model of the plant
automation G consists of 139 states; and there are 21 events as listed in Table 1. The
event cost matrix ~� is then identified by Monte Carlo simulation over 1200 missions
according to the parameter identification procedure; convergence of selected non-zero
elements in ~�-matrix is demonstrated in Figure 3. For those states that have more
than one controllable event defined, the probabilities of occurrence are assumed to be
equally distributed. A vast majority of the plant states are unmarked; consequently,
the corresponding elements, �i, of the characteristic vector are zero. Negative
characteristic values, �i are assigned to the bad marked states. For example, the
states in which the robot is dead due to either losing the battle to the enemy or
running out of battery is assigned the negative value of ÿ1. Similarly, positive values
are assigned to good states. For example, the state in which the robot wins a battle is
assigned 0.5 and the state of successfully providing supplies is assigned 0.3. Using the
recursive synthesis algorithm in Section 4, the �-optimal supervisor S� is then
synthesised. The optimal DES control algorithm converges at the fourth iteration, as
listed in Table 2. For the purpose of performance comparison, two additional
supervisors, S1 and S2 under the following specifications are designed.

Figure 3 Some non-zero elements of ~�-matrix
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Table 2 Iteration of � synthesis

k-th iteration lk

0 ÿ1.7834
1 2.8306

2 4.5655

3 4.5696

4 4.5696

The specifications of Controller S1 are as follows:

* avoid enemy when the battery power is not below medium

* abort all operation when the battery power is low

* if there is a gripper failure, do not supply a discovered unit or abort supply if the
supply is ongoing.

The specifications of Controller S2

* abort all operation if battery power is not below medium

* abort all operation if a gripper failure is detected.

The conventional DES controllers, S1 and S2, have 109 and 54 states, respectively,
and 400 missions were simulated for the open loop plant and each of the three DES
controllers: �-optimal supervisor S�, and the conventional S1 and S2. The statistics of
the simulation results are summarised in Table 3, where the supervised robot yields
higher performance under S� than under S1 and S2 or the null supervisor (i.e. the
unsupervised plant G). In the last row of Table 3, the cumulative performance of
robot operations, with the initial state q1, is obtained by summing the language
measure over 400 missions as:

P400
i�1 �1�i�.

Table 3 Simulation statistics of 400 missions

Items G S1 S2 S�

proceed to supply

# of units found

150

434

134

408

137

367

482

556

34.56% 32.84% 37.33% 86.69%

finish supply 112 88 97 362

win enemy

fight enemy

37

65

33

70

22

68

69

167

� ÿ1.7834 ÿ1.4428 ÿ1.8365 4.5696X400

i�1 �1�i� ÿ20.25 ÿ19.45 ÿ27.3 45.25
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During these 400 missions, S� decides to proceed to supply for 482 times, three times
more than S1 or S2. In addition, the probability of deciding to proceed to supply,
when the robot sees a unit, is much higher than S1 or S2. However, the price of this
decision is that the robot is likely to drain out the battery energy and therefore may
risk being immobile in the middle of the mission. The �-optimal supervisor S� also
decides to fight many more times (167) than any other supervisor since the reward to
win a battle is large �� � 0:5�. Certainly, the number of robots lost under S� is also
higher (48) than that under other supervisors because S� has to expose the robot
more often to the enemy attack to win the battles. On average, S� outperforms G, S1

and S2 in measure l � �Iÿ��ÿ1X. The cumulative performance of S� is found to be
superior to the cumulative performance of two supervisors and the null supervisor
(i.e. open loop or unsupervised robot) over 400 missions as seen in Figure 4. The
oscillations in the performance profile, as a function of the number of missions, are
attributed to unavailability of the robot resulting from drained battery or damage in
the battle.

Figure 4 Cumulative performance comparison of all controllers

6 Related work on Q-learning

This section presents the concept of Q-learning (Watkins, 1989) that is widely used
for reinforcement learning in behaviour-based robotics (Arkin, 1998) for its
algorithmic simplicity and ease of transformation from a state function to an
optimal control policy. In addition, similar to the approach presented in this section,
it does not require a world model. It is well suited for use in stationary, single-agent,
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fully observable environments that are modelled by Markov Decision Processes
(MDPs). However, it often performs well in environments that violate these
assumptions. Mahadevan and Connell (1991) have used Q-learning to teach a
behaviour-based robot how to push boxes around a room without getting stuck. The
mission is heuristically divided into three behaviours: finding a box, pushing a box,
and recovering from stalled situations. The results show that the mission
decomposition method is capable of learning faster than a method that treats the
mission as a single behaviour. Martinson et al. (2002) demonstrated by both
simulation and robotic experiments that Q-learning can be used for robot
behavioural selection to optimise the overall mission in terms of Q-value. The
basic principles of Q-learning are briefly described below.

A Markov decision process is a tuple M � �S; A; P; R�, where S is the set of
states; A is the set of actions; P : S� A� S! �0; 1� the transition probability
function; and R : S� A! is an excepted reward function. Let � : S! A be a
mapping between what has happened in the past and what has to be done at the
current state. The value of the policy �, starting at state s, is evaluated as:

V��s� � E
X1
t�0

trt

 !
�35�

� R�s; a� � 
X
s02S

P�s; a; s0�V��s0� �36�

where the subscript or superscript t indicates a time epoch; r is the reward for taking
a transition;  2 �0; 1� is the discount factor; R�s; a� is the expected instantaneous
reward by action a at state s; and P�s; a; s0� is the probability of making a transition
from state s to state s0 by action a.

The objective is to find an optimal control policy �� that maximises the future
reward with a discount factor . One of the important results, used in the Q-learning,
is that there exists an optimal stationary policy �� that maximises V��s� for all states
s, where the optimal policy V�� is denoted by V�.

Let Q�s; a� denote the discounted reinforcement of taking action a at state s
following a policy �. Using the notation of Watkins (1989), Q��s; a� is the value of
Q�s; a�, starting at state s and taking action a and from there on following the
optimal policy ��. Therefore,

Q��s; a� � R�s; a� � 
X
s02S

P�s; a; s0�V��s� �37�

�� � arg max
a

Q��s; a�: �38�

At each state, the best policy �� is to take an action with the largest Q-value, i.e.
V��s� � maxa Q��s; a�. The basic idea of Q-learning is to maintain an estimate
Q̂�s; a� of Q��s; a�. The online Q-learning update rule is:

Q̂�s; a� � Q̂�s; a� � � r� max
a0

Q̂�s0; a0� ÿ Q̂�s; a�
� �

�39�
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where � is the learning rate. In Watkins (1989) and Watkins and Dayan (1992), it has
been shown that the Q values will converge with probability 1 to Q� if each action is
executed in each state an infinite number of times on an infinite run and � is decayed
appropriately. Table 4 lists a comparison of the salient features of the Q-learning and
language-based optimal methods.

Table 4 Comparison of Q-learning and �-optimal control methods

Items Q-learning �-optimal

Model structure M � �S; A; T; R� G � �Q; �; �; q0; Qm

Control policy Markov Decision Process Discrete Event supervisory

Cost functional arg maxa Q
��s; a� maxs2L�G� ��s�

Transition probability required P�s; a; s0� required ~���q; ��
Reward on transition R�s; a� on state ��q�
Discount factor  ad hoc none

Learning rate � ad hoc none

Online adaption to

dynamic environment

recursive recursive

��; ��-threshold redesign

Computational complexity exponential in S and A polynomial in Q

7 Summary and conclusions

This paper presents an optimal policy for discrete event supervisory (DES) control of
robot behaviour, called �-optimal, based on a real signed measure � of regular
languages (Ray and Phoha, 2003; Surana and Ray, 2004; Wang and Ray, 2004). The
recursive supervisor synthesis algorithm is formulated as an extension of the earlier
work of Fu et al. (2004). A robot simulation test bed has been developed for
validation of this new concept of DES control policy that maximises the performance
index � and yields better performance than two other supervisors (that are designed
in the conventional way; Ramadge and Wonham, 1987), and the null supervisor (i.e.
behaviour of the unsupervised robot).

Salient features of �-optimal control are compared with those of Q-learning
reinforcement (Watkins, 1989; Watkins and Dayan, 1992) that has been widely used
in robotics. The reward/penalty function R�s; a� in Q-learning is defined for every
transition at each state of the Markov decision process based on human perception,
largely similar to the characteristic value � defined for every state of the plant
automaton G in the formulation of the language measure �. That is, in �-optimal
control, a weight is assigned to each state of the automaton similar to what is done in
each transition of Q-learning reinforcement. However, while computational
complexity of �-optimal control is polynomial in number of plant automaton
states, that of Q-learning reinforcement increases exponentially with the number of
internal states and the number of actions (events).
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