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Abstract

Recent literature has reported a novel method for anomaly detection in complex dynamical systems, which relies on

symbolic time series analysis and is built upon the principles of automata theory and pattern recognition. This paper

compares the performance of this symbolic-dynamics-based method with that of other existing pattern recognition

techniques from the perspectives of early detection of small anomalies. Time series data of observed process variables

on the fast time-scale of dynamical systems are analyzed at slow time-scale epochs of (possible) anomalies. The results

are derived from experiments on a nonlinear electronic system with a slowly varying dissipation parameter.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Anomaly in a dynamical system is defined as a
deviation from its nominal behavior and can be
associated with parametric or non-parametric
changes that may gradually evolve in the system.
Along this line, Ray [1] reported a novel concept of
anomaly detection in complex dynamical systems
via symbolic time series analysis. The concept is
e front matter r 2005 Elsevier B.V. All rights reserve
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built upon a fixed-structure, fixed-order Markov
chain and is called the D-Markov machine in the
sequel. The D-Markov machine makes use of
symbolic time series analysis [2] as a means to
capture the coarse-grained dynamical behavior in
terms of symbol sequences [3]. Deviation from the
nominal behavior is represented by a change in the
pattern of symbol sequences, which is detectable at
an early stage.
The objective of this paper, which is an

extension of the previous paper [1], is to assess
the performance and efficacy of the D-Markov
machine method for anomaly detection [4] by
comparison with other existing pattern recognition
techniques, such as principal component analysis,
d.
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mutilayer perceptron neural networks, and radial
basis function neural networks [5,6]. Time series
data, generated from laboratory experiments on a
nonlinear electronic system, are analyzed to this
effect.
2. Existing pattern recognition techniques

This section briefly describes three major classes
of pattern recognition techniques, which are based
on time series data, for comparison with the D-

Markov machine [1]:
�
 Syntactic or structural matching

�
 Statistical pattern recognition

�
 Neural networks
The above classes of pattern recognition techni-
ques may not be mutually non-overlapping. It
is possible that the same pattern recognition
method can be interpreted to belong to more than
one class.

2.1. Syntactic methods

The syntactic approach adopts a hierarchical
perspective, where a pattern is viewed to be
composed of simple subpatterns that are them-
selves built from yet simpler subpatterns. The
underlying concept of pattern matching in the
syntactic approach is similar to the comparison of
the probability vectors under nominal and anom-
alous cases in the proposed D-Markov machine
[1]. One of the major shortcomings of conven-
tional syntactic pattern recognition [5] is utiliza-
tion of noisy patterns for detection of the
primitives and making the associated inference of
the grammar from the time series data. In contrast,
the D-Markov machine is significantly robust to
measurement noise because it extracts the aver-
aged features of signal dynamics from repeated
transitions among the finitely many states.

2.2. Statistical methods

In the statistical approach, each pattern is
represented in terms of d features or measurements
and is viewed as a point in a d-dimensional space.
The goal is to choose those features that allow
pattern vectors belonging to different categories
to occupy compact and disjoint regions in the
d-dimensional feature space.
Feature extraction methods in statistical pattern

recognition determine an appropriate subspace of
dimension q 2 N, where N is the set of positive
integers, using either linear or nonlinear methods
in the original feature space of dimension n (qpn).
The best known linear feature extractor relies
on the principal component analysis (PCA) or
Karhunen–Loève expansion [5,7]. The eigenvec-
tors of the (n� n positive semi-definite) covariance
matrix of the time series data, corresponding to
the q largest eigenvalues, form the n-dimensional
patterns.
If the time response of an appropriate process

variable yðtÞ is sampled to generate a time series
sequence yk, then data samples of large enough
length (‘ ¼ dn) can be used to capture the
dynamical characteristics of the observed process.
The length ‘ of time series data is partitioned into
d subsections, each being of length n ¼ ‘=d. The
resulting (d � n) data matrix is processed to
generate the (n� n) covariance matrix that is
positive-definite or positive-semidefinite real-sym-
metric. The next step is to compute the orthonor-
mal eigenvectors v1; v2; . . . ; vn and the
corresponding eigenvalues l1; l2; . . . ; ln that are
arranged in decreasing orders of magnitude.
Dimensionality of the model, formulated from

time series data, is reduced for feature extraction.
The eigenvectors associated with the first (i.e.,
largest) q eigenvalues are chosen as the feature
vectors such thatPn

i¼qþ1 liPn
i¼1 li

oZ, (1)

where the threshold Z51 is a positive real close to
0. The resulting pattern is the matrix, consisting of
the feature vectors as columns,

eM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1Pn

k¼1 lk

s
v1 . . .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lqPn

k¼1 lk

s
vq

 !
. (2)

The above steps are executed for time series data
under the nominal (stationary) condition to obtain
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eMnom. Then, these steps are repeated at subse-
quent observations at slow-time epochs,
ft1; t2; . . .g, as the (possible) anomaly progresses
using the same values of parameters, ‘, d, n and q,
used under the nominal condition, to obtain the
respective pattern matrices eM1; eM2; . . . : The
anomaly measures at slow-time epochs ft1; t2; . . .g
are obtained as

Mk 
 dð eMk; eMnomÞ, (3)

where the dð�; �Þ is an appropriately defined
distance function.
It should be noted that different metrics may be

used as anomaly measures as stated in [1]. One
may choose the metric that yields the most
satisfactory result for the specified purpose.

2.3. Neural network methods

The most commonly used family of feed-
forward neural networks for pattern classification
tasks include the following [5]:
�
 Multilayer perceptron neural networks
(MLPNN)

�
 Radial basis Function neural networks
(RBFNN)

2.3.1. MLPNN for anomaly detection

The simplest implementation of back-propaga-
tion learning in MLPNN updates the network
weights and biases in the direction in which the
performance function decreases most rapidly. The
mean-square error criterion is adopted in the
recursive algorithm to update the weight matrix
wkðnÞ at the kth layer of the network in the nth
iteration [8] as follows:

wkðnþ 1Þ ¼ wkðnÞ � akgkðnÞ, (4)

where gkðnÞ is the gradient of the (averaged)
functional of the output error vectors (i.e., the
difference between the target vector and the output
vector) with respect to wkðnÞ; and ak is the learning
rate parameter at the kth layer of the network.
Different layers of a given MLPNN may

contain different numbers of neurons. Time series
signals enter into the input layer nodes, progress
forward through the hidden layers, and finally
emerge from the output layer. Each node i at a
given layer k receives a signal from all nodes j in its
preceding layer ðk � 1Þ through a synapsis of
weight wk

ij and the process is carried onto the
nodes in the following layer ðk þ 1Þ. The weighted
sum of signals xk�1

j from all nodes j of the layer
ðk � 1Þ together with a bias wk

i0 produces the
excitation zk

i that, in turn, is passed through a
nonlinear activation function f to generate the
output xk

i from the node i at the layer k. That is,

zk
i ¼

X
j

wk
ijx

k�1
j þ wk

i0, ð5Þ

xk
i ¼ f k

ðzk
i Þ. ð6Þ

Various choices for the activation function f k are
possible; the hyperbolic tangent function,
f k
ðxÞ ¼ tanhðxÞ 8k, has been adopted in this

paper.
For anomaly detection, the MLPNN is trained

by setting a set of N input vectors, each of
dimension ‘, and a specified target output vector
t of dimension q, which is set to be the zero vector.
This implies that the input layer has ‘ neurons and
the output layer has q neurons. If the time series
data is obtained from an ergodic process, then a
data set of length N‘ can be segmented into N

vectors of length ‘ to construct the input pattern
matrix P 2 R‘�N that is obtained from the N input
vectors as

P 
 ½p1 p2 � � � pN �, (7)

where pk 
 ½yðk�1Þ‘þ1 yðk�1Þ‘þ2 � � � yk‘�
T; and each

yk is a sample from the ensemble of the time series
data. The corresponding output matrix O is the
output of the trained MLPNN (under the nominal
condition) under the input pattern P.

O 
 ½o1 o2 � � � oN �, (8)

where oi 2 Rq is the output of the trained MLPNN
under the input pk 2 R‘. The performance vector
n 2 Rq is obtained as the average of the N outputs.

n 

1

N

XN

k¼1

ok. (9)

The time series data under the nominal condi-
tion generates the input pattern matrix Pnom. Each
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column of Pnom is used to train the MLPNN with
respect to the given target output vector t that is
set to be the zero vector. The output of the trained
MLPNN is Onom with Pnom as the input; and the
resulting performance vector is nnom. Subse-
quently, input pattern matrices fP1;P2; . . .g are
obtained at slow-time epochs ft1; t2; . . .g and
corresponding output matrices of the trained
MLPNN are fO1;O2; . . .g, which yield the respec-
tive performance vectors fn1; n2; . . .g. The anomaly
measures at slow-time epochs ft1; t2; . . .g are
obtained as

Mk 
 dðnk; nnomÞ, (10)

where the dð�; �Þ is an appropriately defined
distance function.
2.3.2. RBF for anomaly detection

The radial basis function [6] in RBFNN is
introduced as

f ðyÞ ¼ exp �

P
k jyk � mja

Nya

� 	
, (11)

where the exponent parameter a 2 ð0;1Þ; and m
and ya are the center and ath central moment of
the data set, respectively. For a ¼ 2, f ð�Þ becomes
Gaussian, which is the typical radial basis function
used in the neural network literature. To perform
anomaly detection, the first task is to obtain the
sampled time series data when the dynamical
system is in the nominal condition and then the
mean m and the central moment ya are calculated
as

m ¼
1

N

XN

k¼1

yk and ya ¼
1

N

XN

k¼1

jyk � mja. (12)

The distance between any vector y and the
center m is obtained as dðy;mÞ 

ð
P

n jyðnÞ � mjaÞ1=a. Following Eq. (11), the radial
basis function at the nominal condition is:
f nom ¼ f ðyÞ. Under all conditions including anom-
alous ones, the parameters m and y are kept fixed.
However, at slow time epochs ft1; t2; . . .g, the
radial basis functions ff 1; f 2; . . .g are evaluated
from the data sets under the (possibly anomalous)
conditions. The anomaly measure at the epoch tk

in the slow time scale is obtained as a distance
from the nominal condition and is given by

Mk ¼ dðf nom; f kÞ, (13)

where the dð�; �Þ is an appropriately defined
distance function.
3. Symbolic time series analysis

The concept of symbolic time series analysis is
built upon phase-space partitioning for encoding
nonlinear system dynamics from observed time
series data, followed by construction of a finite-
state machine model from a symbol sequence
under the nominal condition. These issues have
been described in detail in the previous paper [1].
This paper has adopted two alternative parti-

tioning approaches for construction of symbol
sequences from time series data. The first one is the
symbolic false nearest neighbors (SFNN) ap-
proach [9] that optimizes the generating partition
by avoiding topological degeneracies. The criter-
ion is that short sequences of consecutive symbols
ought to localize the corresponding state space
point as closely as possible. This is achieved by
forming a particular geometrical embedding of the
symbolic sequence under the candidate partition
and minimizing the apparent errors in localizing
state space points. In a good partition, nearby
points in the embedding remain close when
mapped back into the state space. In contrast,
bad partitions induce topological degeneracies
where symbolic words map back to globally
distinct regions of state space. The nearest neighbor

to each point in the embedding is found in terms of
Euclidean distance of symbolic neighbors and
better partitions yield a smaller proportion of
symbolic false nearest neighbors. For convenience
of implementation, the partitions are parameter-
ized with a relatively small number of free
parameters. This is accomplished by defining the
partitions with respect to a set of radial-basis
‘‘influence’’ functions. The statistic for symbolic
false nearest neighbors is minimized over the free
parameters using ‘‘differential evolution’’, which is
a genetic algorithm suitable for continuous para-
meter spaces [9].
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The second approach [1] used in this paper is
called the wavelet space (WS) method that is built
upon time-frequency analysis of the time series
data to generate the symbol sequence. A proper
choice of scales and the mother wavelet is
important in this approach. The large scales
represent averaging effects, while the small scales
show the details. The power spectrum of the time-
localized signal is first analyzed to approximately
identify the locally dominant frequencies in the
signal. This is followed by generation of wavelet
coefficients at the set of scales corresponding to
these frequencies. The objective is to extract
relevant information in the particular frequency
spectrum. The mother wavelet needs to be selected
based on the dynamical behavior of the specific
application. (Note that the choice of mother
wavelet is an open research issue in wavelet
literature.)
The graphs of wavelet coefficients versus scale at

selected time shifts are stacked starting with the
smallest value of scale and ending with its largest
value and then back from the largest value to the
smallest value of the scale at the next instant of
time shift. Then, the wavelet space is partitioned
into segments of coefficients on the ordinate
separated by horizontal lines. The number of
segments in a partition is equal to the size of the
alphabet and each segment is associated with a
symbol in the alphabet.

3.1. The D-Markov machine

The finite-state machine is constructed as a Dth
order Markov chain, called the D-Markov ma-
chine [1], for identifying patterns based on time
series analysis of the observed data. The core
concept of the D-Markov machine is succinctly
presented below.
Let the symbolic representation of a discrete-

time, discrete-valued stochastic process be denoted
by: S 
 � � �S�2S�1S0S1S2 � � �. At any instant t,
this sequence of random variables can be split into

a sequence S
 

t of the past and a sequence S
!

t of
the future. Assuming conditional stationarity of

the symbolic process S (i.e., P½ S
!

tj S
 

t ¼ s � being
independent of t), the subscript t can be dropped
to denote the past and future sequences as S
 
and

S
!
, respectively. A symbol string, made of the first

L symbols of S
!
, is denoted by S

!L

. Similarly, a

symbol string, made of the last L symbols of S
 
, is

denoted by S
 L

.
For D 2 N, the set of positive integers, a

stochastic symbolic stationary process is called
Dth order Markov process if the probability of the
next symbol depends only on the previous D

symbols, i.e. the following condition holds:

Pðsijsi�1si�2 � � �Þ ¼ Pðsijsi�1 � � � si�DÞ. (14)

Alternatively, symbol strings S
 

; S
 0
2 S
 
become

indistinguishable whenever the respective sub-

strings S
 D

and S
 0D

, made of the most recent D

symbols, are identical. Thus, a set f S
 L

: LXDg of
symbol strings can be partitioned into a maximum

of jAjD equivalence classes [1], where A is the
symbol alphabet. Each symbol string in

f S
 L

: LXD}, derived from a stationary process,

belongs to exactly one of the jAjD equivalence

classes. Given D 2 N and a symbol string s with

j s j ¼ D, the effective state q D; s 

 �

is the

equivalence class of symbol strings as defined
below:

qðD; s Þ ¼ f S
 
2 S
 

: S
 D

¼ s g (15)

and the set QðDÞ of effective states of the symbolic
process is the collection of all such equivalence
classes. That is,

QðDÞ ¼ fqðD; s Þ : s 2 S
 D

g (16)

and hence jQðDÞj ¼ jAjD. A random variable for a
state in the above set Q of states is denoted by Q
and the jth state as qj . The probability of

transitions from state qj to state qk is defined as

pjk ¼ Pðs 2 S
!1

j qj 2 Q; ðs; qjÞ ! qkÞ;X
k

pjk ¼ 1.

ð17Þ
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Given an initial state and the next symbol from the
original process, only certain successor states are
accessible. This is represented as the allowed state
transitions resulting from a single symbol. Note
that pij ¼ 0 if s2s3 � � � sDas01 � � � s

0
D�1 whenever qi 


s1s2 � � � sD and qj 
 s01s
0
2 � � � s

0
D. Thus, for a D-

Markov machine, the stochastic matrix P 
 ½pij �

becomes a branded matrix with at most jAjDþ1

non-zero entries. The left eigenvector p corre-
sponding to the unit eigenvalue of P is the state
probability vector under the (fast time scale)
stationary condition of the dynamical system.
Since P is an irreducible stochastic matrix under
a stationary condition, there exists a unique unit
eigenvalue by the Perron–Frobenius theorem [10].
The construction of a D-Markov machine is

fairly straightforward. Given D 2 N, the states are
as defined in Eqs. (15) and (16). On a given symbol
sequence S, a window of length (Dþ 1) is slided
by keeping a count of occurrences of sequences
si1 � � � siD

siDþ1
and si1 � � � siD

which are respectively,
denoted by Nðsi1 � � � siD siDþ1

Þ and Nðsi1 � � � siD
Þ. Note

that if Nðsi1 � � � siD
Þ ¼ 0, then the state q 


si1 � � � siD
2 Q has zero probability of occurrence.

For Nðsi1 � � � siD
Þa0, the transitions probabilities

are then obtained by these frequency counts as
follows:

pjk 
 P½qkjqj� ¼
P½qk; qj�

P½qj�
¼

Pðsi1 � � � siD
sÞ

Pðsi1 � � � siD
Þ

) pjk �
Nðsi1 � � � siD sÞ

Nðsi1 � � � siD Þ
, ð18Þ

where the corresponding states are denoted by:
qj 
 si1si2 � � � siD and qk 
 si2 � � � siD

s.
The time series data under the nominal condi-

tion generates the state transition matrix Pnom

that, in turn, is used to obtain the stationary
probability vector pnom. Subsequently, probability
vectors {p1; p2; . . .g are obtained at slow-time
epochs ft1; t2; . . .g based on the respective time
series data. The anomaly measures at slow-time
epochs ft1; t2; . . .g are obtained as

Mk 
 dðpk; pnomÞ, (19)

where the dð�; �Þ is an appropriately defined
distance function.
4. Application to a nonlinear electronic system

This section uses the application example of an
electronic system, presented in [1], to make a
comparative assessment of different pattern recog-
nition techniques for anomaly detection. Simula-
tion results were used to plan the experiments and
interpret the experimental observations. The non-
linear electronic circuit implements a second-order
non-autonomous, forced Duffing equation, repre-
sented as

d2yðtÞ

dt2
þ bðtsÞ

dyðtÞ

dt
þ yðtÞ þ y3ðtÞ ¼ A cosot. (20)

The dissipation parameter bðtsÞ, realized in form of
a resistance in the circuit, varies with the slow time
ts and is treated as a constant in the fast time scale
at which the dynamical system is excited.
Although the system dynamics is represented by
a low-order differential equation, it exhibits
chaotic behavior that is sufficiently complex from
thermodynamic perspectives [3] and is adequate
for illustration of the anomaly detection concept.
The goal here is to detect, at an early stage,
changes in bðtsÞ which are associated with the
anomaly.
Setting the stimulus with amplitude A ¼ 22:0

and o ¼ 5:0 rad=s, the stationary behavior of the
system response for this input stimulus is obtained
for several values of b in the range of 0.10–0.35.
Changes in the stationary behavior take place
starting from b � 0:15 with significant changes
occurring in the narrow range of 0:27obo0:29.
The four plates in Fig. 1 exhibit four phase-plane
plots for the values of the parameter b at 0.10
(nominal condition), 0.27, 0.28, and 0.29, respec-
tively. This observation reveals that the stimulus at
the excitation frequency of o ¼ 5:0 rad=s can be
effectively used for detection of small changes in b
in the range of 0:15obo0:35.
The following anomaly detection approaches

are investigated by using the same set of time series
data generated from the above experiment with the
nominal condition being at bðtsÞ ¼ 0:10:
�
 Principal component analysis (PCA)

�
 Multilayer perceptron neural network
(MLPNN)
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Fig. 1. Phase plots for electronic circuit experiment.
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�
 Radial basis function neural network (RBFNN)

�
 D-Markov machine with symbolic false nearest
neighbors (SFNN) partitioning

�
 D-Markov machine with wavelet space (WS)
partitioning

The next four paragraphs describe how anomaly
measures are calculated based on the above five
techniques of pattern recognition. The fourth
paragraph addresses both SFNN and WS methods
of partitioning in the D-Markov method.
Following the principal component analysis

(PCA) procedure described in Section 2.2, a block
of sampled time series data, having length
‘ ¼ 2700, is divided into d ¼ 270 segments, each
of which is of length n ¼ 10; these segments are
arranged to form a 270� 10 data matrix. The
resulting 10� 10 (symmetric positive-definite)
covariance matrix of the data matrix yields a
monotonically decreasing set of eigenvalues,
l1 . . . l10, and the associated orthonormal eigen-
vectors v1; . . . ; v10. At the nominal condition
b ¼ 0:10, the first two eigenvalues are dominant
(i.e., q ¼ 2) for a threshold of Z ¼ 5:0� 10�5 such
thatP10
i¼3 liP10
i¼1 li

� 3:0� 10�5oZ.

The matrix eMnom in Eq. (2) is calculated from the
data set at bnom ¼ 0:10. Similarly, the matriceseM1; . . . ; eM13 are obtained corresponding to
b1 ¼ 0:15; . . . ;b13 ¼ 0:35, respectively. The anom-
aly measures at different values of b are deter-
mined according to Eq. (10) relative to nominal
matrix eMnom with the induced Euclidean norm as
the metric.
Following the multilayer perceptron neural

network (MLPNN) procedure, described in Sec-
tion 2.3.1, the resulting pattern matrix Pnom is
made of N ¼ 200 columns. Each column, having a
length ‘ ¼ 30, is generated from the time series
data at bnom ¼ 0:10 to train the MLPNN that is
chosen to have a input layer (with 30 neurons), 4
hidden layers (with 50 neurons in layer 1, 40
neurons in layer 2, 30 neurons in layer 3, and 40
neurons in layer 4), and the output layer (with 10
neurons): this structure of the MLPNN yields very
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good convergence for the data sets under con-
sideration. The target corresponding to each input
pattern vector is chosen to be 10� 1 zero vector.
The MLPNN is trained with the nominal data set
at bnom ¼ 0:10; the gradient descent back-propa-
gation algorithm has been used for network
training with an allowable performance mean-
square error of 1:0� 10�5. The input pattern
matrices, P1; . . . ;P13, each of dimension
ð30� 200Þ, are then generated from the anomalous
data sets at b1 ¼ 0:15; . . . ;b13 ¼ 0:35, respectively,
to excite the trained network. The resulting output
matrices of the trained MLPNN are O1; . . . ;O13,
which yield the respective performance vectors,
n1; . . . ; n13. Anomaly measures at different values
of b are determined according to Eq. (10).
Following the radial basis function neural net-

work (RBFNN) procedure, described in Section
2.3.2, the length of the sampled time series data is
chosen to be N ¼ 2701. In contrast to the standard
RBFNN, where the exponent a is usually chosen
to be 2, it was set to a ¼ 0:1 for improved anomaly
measure sensitivity. An estimate of the parameters,
m and ya, are obtained according to Eq. (12) based
on the data under the nominal condition, which
yields the requisite radial basis function f nom
following Eq. (11). The anomaly measures at
different values of b are determined according to
Eq. (13) with the induced Euclidean norm as the
metric.
Based on the time series data the nominal

condition at bnom ¼ 0:10, the first step in the D-
Markov machine method is to find a partition for
symbol sequence generation. The partitioning
methods, SFNN and WS, described in Section 3,
have been investigated for efficacy of anomaly
detection. (The mother wavelet db1 has been
selected for WS partitioning in this application.)
For the given stimulus of this experiment, parti-
tioning of the phase space/wavelet space must
remain invariant at all epochs of the slow time
scale. The value of D ¼ 1 was used for construc-
tion of the D-Markov machine for all values of b.
Following the procedure, described in Section 3.1,
the state machines are constructed and the
connection matrix P 
 ½pjk� and the state prob-
ability vector p for each set of time series data. The
state machines were constructed with the symbol
alphabet A ¼ f0; 1; 2; . . . ; 7g. The anomaly mea-
sures at different values of b are determined
according to Eq. (19) with the angle between the
vectors as the metric [1].

4.1. Comparison of anomaly detection methods

Fig. 2 shows a comparison of the anomaly
measureM for the five cases, described in previous
sections, where the same set of time series data has
been used in each case. Each anomaly measure
profile in Fig. 2 is normalized to unity with respect
to its own peak value. The efficacy of a specific
anomaly detection technique is largely determined
by its capability for accurate detection of small
anomalies as early as possible. From this perspec-
tive, the five normalized curves are examined to
determine how early a specific method is capable
of detecting anomalies. In each case, the reference
point of nominal condition is represented by the
parameter b ¼ 0:10. All five plots show gradual
increase in the anomaly measure M for b in the
approximate range of 0.10–0.25, followed by an
abrupt increase in the anomaly measure in the
vicinity of b � 0:29 when a (possible) bifurcation
takes place. As b increases further, the anomaly
curves remain fairly constant; this is analogous to
a phase transition in the thermodynamic sense.
A comparison of the normalized curves in Fig. 2

shows that the D-Markov method, with SFNN
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partitioning and WS partitioning, detects the
presence of anomalies much earlier than the
PCA, MLPNN and RBFNN techniques. This is
evident from the larger slopes of the anomaly
measure curves at smaller values of b allows
anomaly detection long before the occurrence of
actual bifurcation. For WS partitioning, the
change in curvature of the anomaly curve in the
vicinity of b � 0:23 is an early warning of the
forthcoming bifurcation. While all five methods of
anomaly detection successfully detects the anom-
aly in the Duffing system as b increases to the
critical value of � 0:29, the performance of the D-
Markov method with both SFNN and WS
partitioning, and specifically WS partitioning, is
clearly superior to that of the remaining three
pattern recognition techniques from the perspec-
tives of early detection of anomalies.
5. Summary and conclusions

This paper elaborates a novel concept of
anomaly detection in complex systems, called the
D-Markov method [1], that relies on symbolic
time series analysis of process variable(s) and is
built upon the principles of symbolic dynamics,
automata theory, and pattern recognition. The
dynamical systems under consideration are
assumed to exhibit nonlinear behavior on two
time scales, where anomalies may occur on a slow
time scale that is several orders of magnitude
larger than the fast time scale of the system
dynamics. It is also assumed that the dynamical
systems in the absence of external stimuli are
stationary at the fast time scale and that any non-
stationary behavior is observable only on the slow
time scale.
The concept of the D-Markov method for small

change detection in dynamical systems is eluci-
dated on a nonlinear electronic system represent-
ing the forced Duffing equation with a slowly
varying dissipation parameter. Although the sys-
tem dynamics in this experiment is represented by
a low-order differential equation, it exhibits
chaotic behavior that is sufficiently complex for
illustration of the anomaly detection concept [3].
The time series data of quasi-stationary phase
trajectories are collected to create the respective
symbolic dynamics (i.e., strings of symbols) and
the probability vector of the finite state automaton
is considered as a representation of the phase
trajectory’s stationary behavior. The distance
between any two such vectors under the same
stimulus is the measure of anomaly that the system
has been subjected to.
The D-Markov method is compared with

existing techniques of pattern recognition for early
detection of anomalies in a nonlinear dynamical
system that exhibits complex phenomena such as
bifurcation and period doubling; the selected
techniques for this comparative evaluation belong
to the classes of statistical pattern recognition and
neural networks. The statistical pattern recogni-
tion method involves principal component analysis
(PCA) and the two neural network methods use
multilayer perceptron (MLP) and radial basis
function (RBF) techniques. The comparison is
based on the same sets of time series data
generated from the electronic system apparatus.
Following conclusions are made on early detection
capability.
�
 The performance of the D-Markov methods
with SFNN and WS partitioning is significantly
superior to that of the remaining three methods.

�
 The performance of the MLP and RBF neural
network methods is better than that of the PCA
method.

A major advantage of working with symbols is
that the efficiency of numerical computation is
significantly enhanced relative to what can be
achieved by direct analysis of the original time
series data [11]. This is of paramount importance
to real-time applications in mobile platforms,
where both computational speed and memory
requirements of instrumentation and control
computers are usually limited. Furthermore, ana-
lysis of symbolic data is, on the average, very
robust to measurement noise. Often symbolization
can be accomplished directly in the instrumenta-
tion software to yield inexpensive and relatively
simple devices.
The major conclusion based on this limited

experimental investigation is that symbolic
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dynamics along with the stimulus-response
methodology and having a vector repres-
entation of slowly varying dynamical beha-
vior is effective for early detection of small
anomalies.
Further theoretical and experimental research is

recommended in the following areas for an
application of this method to anomaly detection
in operating plants:
�
 Symbol sequence generation from time series
data using the WS partitioning method;

�
 Development of numerically efficient methods
for SFNN partitioning;

�
 Evaluation of the D-Markov machine algorithm
relative to other algorithms [1] for automata
construction;

�
 Robustness assessment under noise contamina-
tion of the time series data;

�
 Implementation of anomaly detection techni-
ques for real-time control to mitigate potential
failures and extend remaining life without any
significant loss of performance.
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