

A language measure for partially observed discrete event systems

I. CHATTOPADHYAY and A. RAY*

Mechanical Engineering Department, The Pennsylvania State University, University Park, PA 16802, USA

(Received 14 November 2005; in final form 12 April 2006)

Recent literature has introduced and validated a signed real measure of regular languages for quantitative analysis and synthesis of discrete-event supervisory (DES) control systems, where all events are assumed to be observable. This paper presents a modification of the language measure for supervisory control under partial observation and shows how to generalize the analysis when some of the events may not be observable at the supervisory level. In the context of DES control synthesis, the language measure of partially observable discrete-event processes is expressed in a closed form which is structurally similar to that of completely observable discrete-event processes. Examples are provided to elucidate the concept of DES control under partial observation.

1. Introduction

According to the paradigm of discrete event supervisory (DES) control (Ramadge and Wonham 1987), the automaton model of a physical plant is a language generator whose behaviour is constrained by a supervisor to meet a given specification. The (controlled) sublanguage of plant behaviour could be different under different supervisors that satisfy their own respective specifications. Such a partially ordered set of sublanguages requires a quantitative measure for total ordering of their respective performance. To address this issue, a signed real measure of regular languages has been reported in recent literature (Ray 2005) to provide a mathematical framework for quantitative comparison of regular languages. This measure formalizes synthesis of DES control systems for finite state automaton plants, as an alternative to the procedure of Ramadge and Wonham (1987). Another recent paper (Ray et al. 2004) has reported optimal supervisory control of finite state automata based on the language measure to formalize quantitative analysis and synthesis of DES control laws. The approach is state-based and the language measure parameters are identified from

experiments on the physical process or from simulation experiments on a deterministic finite state automaton (DFSA) model of the plant. However, the language measure used in the optimal control synthesis has not addressed the issue of unobservable events at the supervisory level. This problem is of significant practical importance because the model of a given physical process may have inherently unobservable transitions. Furthermore, in complex engineering systems, events may become unobservable due to failures of sensors or communication links in one or more locations.

This paper extends the concept of language measure (Ray 2005) to more general scenarios, where the set of unobservable events (at the supervisor) is allowed to be non-empty. The main idea behind this generalization is to realize the fact that the observed initiation and/or termination state of a given string may not be the true initiation and/or termination state due to the presence of unobservable transitions. Although partial observability with respect to the supervisory control theory of Ramadge and Wonham (1987) have been widely studied (Lin and Wonham 1988b, Wong 1997, Wong and Wonham 2004), such generalizations for the measure theoretic approach (Ray 2005) has not been reported in literature. The results presented in this paper lay the foundation for extending the existing theory

^{*}Corresponding author. Email: axr2@psu.edu

International Journal of Control ISSN 0020–7179 print/ISSN 1366–5820 online © 2006 Taylor & Francis http://www.tandf.co.uk/journals DOI: 10.1080/00207170600752473

(Ray *et al.* 2004) of optimal control synthesis under full observation to that under partial observation.

This paper is organized in five sections, including the present section, and two appendices. Section 2 presents the proposed generalization of the measure to automata with a (possibly) non-empty set of unobservable events. An analysis of the worst case effect of unobservability is presented in §3 through the introduction of the unobservability index. Section 4 presents three examples to elucidate the concept of DES control under partial observability. The paper is summarized and concluded in §5 along with recommendations for future research. Appendix A briefly describes the notations and background materials for deriving a signed real measure of regular languages (Ray 2005) and Appendix B derives necessary relations for the analysis in §2.

2. Unobservability in discrete event systems

The generated language $L(G_i)$ for a *DFSA* $G_i \equiv (Q, \Sigma, \delta, q_i, Q_m)$, defined in Appendix A, is the set of all event strings, accepted by the *DFSA* G_i with $Q_m = Q$ and the initial state $Q_i \in Q$. Since $L(G_i)$ is a prefix-closed language (Ramadge and Wonham 1987) for every $i \in I_Q$, a change in the initial state from q_i to q_j with $i \neq j$, leads to a different generated language $L(G_i)$. Thus, it is possible to define different prefix closed languages $L(G_i)$, one for each initial state q_i . In the union of these languages $\bigcup_{i \in I_Q} L(G_i)$, it may become impossible to distinguish between identical symbol sequences generated from different initial states. This difficulty is alleviated by labelling each string with the index (or *colour*) of its initial state. Note that the empty string ε has no colour.

Definition 1: For a given DFSA having the state set Q and symbol alphabet Σ , the colour alphabet is defined to be the state index set I_Q . Then, the unique label j associated with the initial state q_j of a string $t \in \bigcup_{i \in I_Q} L(G_i)$ is called the colour of the string t.

The properties of the colour alphabet I_Q are summarized below:

- There exists a bijective mapping between I_Q and Q.
- $I_Q \cap \Sigma = \emptyset$.
- $j\varepsilon = j \ \forall j \in I_Q$.
- Each symbol in I_Q has zero string length, i.e., $|j| = 0, \forall j \in I_Q$.

Definition 2: For a given DFSA G_i with the initial state $q_i \in Q$, the *i*th colour language associated with the colour alphabet I_O is defined to be

$$L_i^c = iL(G_i) \bigcup \{\varepsilon\}$$
 and $L^c = \bigcup_{i \in I_Q} L_i^c$ (1)

and the *i*th total colour language is defined to be

$$\mathcal{L}_{i}^{c} = i\Sigma^{*} \bigcup \{\varepsilon\} \text{ and } \mathcal{L}^{c} = \bigcup_{i \in I_{Q}} \mathcal{L}_{i}^{c}.$$
 (2)

The *i*th colour language is obtained from the generated language $L(G_i)$ by prefixing all non-null strings with the colour of the starting state of the strings, namely *i*. Note that string lengths do not change due to the presence of the zero-length colour. Furthermore, if the state transition function δ in the DFSA $G_i \equiv (Q, \Sigma, \delta, q_i, Q_m)$ is a total function, then $L_i^c = \mathcal{L}_i^c$.

The complete colour language L^c is the union of (disjoint) colour languages and hence the problem of distinguishing identical symbol sequences starting from different states is alleviated. In general, $L^c \subseteq \mathcal{L}^c$ with the equality holding if and only if $L(G_i) = \Sigma^* \forall i \in I_O$.

Remark 1: For every non-empty (coloured) string $s \in L^c$, there exists $j \in I_Q$, $t \in \Sigma^*$ such that s = jt.

Definition 3: The (possibly non-commutative) binary operation $\circ: L^c \times L^c \to \mathcal{L}^c$ is defined as

$$\begin{cases} \forall s \in L^c, \ s \circ \varepsilon = \varepsilon \circ s = s \\ \text{and } \forall s, \ \tilde{s} \in L^c - \emptyset, \ s \circ \tilde{s} = (it) \circ (\tilde{i} \ \tilde{t}) \equiv it \tilde{t} \\ \text{for some } t, \ \tilde{t} \in \Sigma^*. \end{cases}$$
(3)

In general, \circ is not a closed operation. That is, for some $s, \tilde{s} \in L^c, s \circ \tilde{s}$ may not be an element of L^c . If $s \circ \tilde{s} \in L^c$, then s and \tilde{s} are said to be compatible. It should be noted that compatibility of s and \tilde{s} implies the colour of the terminating state of s is the same as the colour of the starting state of \tilde{s} . That is, if $s \in L_i^c$ and $\tilde{s} \in L_i^c$, compatibility of s with \tilde{s} implies $s \circ \tilde{s} \in L_j^c$. In Definition 3, the operation \circ can be viewed as a special concatenation. The following extension is introduced by analogy to extension of string concatenation to language concatenation.

Definition 4: The extended binary operation $\circ \times 2^{L^c} \times 2^{L^c} \to 2^{L^c}$ is defined as

$$\forall L \subseteq L^c, \ L \circ \varepsilon = \varepsilon \circ L = L and \forall L, \ \tilde{L} \subseteq L^c, \ L \circ \tilde{L} = \bigcup_{s \in L} \bigcup_{\tilde{s} \in \tilde{L}} \{s \circ \tilde{s}\}.$$

$$(4)$$

Remark 2: For any $s \in L^c$ with $|s| = k \in \{1, 2, 3, ...\}$, there exist unique coloured strings $s_1, s_2, ..., s_k$ with $s_j \in L^c$ such that $s_1 \circ s_2 \circ \cdots \circ s_k = s$. To see this, let $s = i_1 \sigma_1 \cdots \sigma_k$ with $i_1 \in I_Q, \sigma_j \in \Sigma$. This implies that $s \in L^c(G_{i_1})$ and

$$q_{i_1} \xrightarrow{\sigma_1} q_{i_2} \xrightarrow{\sigma_2} \cdots \xrightarrow{\sigma_{k-1}} q_{i_k} \xrightarrow{\sigma_k} q_{i_{k+1}}.$$
 (5)

Hence, by defining $s_k \equiv i_k \sigma_k$, one can construct $s_k \in L_{i_k}^c$. It also follows from Definition 3 that $s_1 \circ s_2 \circ \cdots \circ s_k = s$, which is unique because of the deterministic property of the language $L(G_i)$. Furthermore, for any given nonempty $s \in L^c$, there are unique $j \in I_Q$, $\sigma \in \Sigma$ and $\tilde{s} \in L^c$ such that $s = (j\sigma) \circ \tilde{s}$.

Definition 5: The colour map $c: \mathcal{L}^c \to I_Q \cup \{\varepsilon\}$ is defined as

$$\forall s \in \mathcal{L}^{c}, \quad c(s) = \begin{cases} \varepsilon & \text{if } s = \varepsilon \\ i & \text{if } s = i\sigma \text{ for some } i \in I_{Q}, \sigma \in \Sigma^{*} \end{cases}$$
(6)

and c(s) denotes the colour of the string s.

Definition 6: The observation map $p: L^c \to \mathcal{L}^c$ is defined as follows:

$$p(\varepsilon) = \varepsilon,$$

$$\forall s \in L^{c} - \{\varepsilon\} \text{ such that } s = s_{1} \circ \dots \circ s_{k},$$

$$p(s) = s_{i_{1}} \circ \dots \circ s_{i_{j}} \circ \dots \circ s_{i_{r}},$$
(7)

where $i_j \in \{1, ..., k\} \forall j \in \{1, ..., r\}$ and p(s) denotes the observed string for any given string $s \in L^c$.

Remark 3: The following facts hold in view of Definitions 5 and 6:

- The observed starting state of a string *s* ∈ *L^c* has the colour *c*(*p*(*s*)).
- Since s_{ij} , s_{ij+1} in Definition 6 are, in general, not compatible, it is possible that $p(s) \notin L^c$ for a given string $s \in L^c$.

Definition 7: A string $s \in L^c$ is said to be completely unobservable if $p(s) = \varepsilon$.

Definition 8: The observed language \mathcal{O}_p for a DFSA with respect to a given observation map $p(\cdot)$, is defined to be the image Im(p) of the observation map p, i.e.,

$$\mathcal{O}_p = p(L^c). \tag{8}$$

It follows from Definition 8 that the observed language $\mathcal{O}_p \subseteq \mathcal{L}^c$ and is not necessarily a subset of L^c . The observation map completely specifies unobservability of the plant automaton. The two simple cases of unobservability are presented below.

Definition 9: A DFSA plant is said to have statedependent regular unobservability if

$$\begin{cases} \forall s \equiv s_1 \circ s_2 \circ \dots \circ s_k \in L^c, \\ p(s) = p(s_1) \circ p(s_2) \circ \dots \circ p(s_k). \end{cases}$$

$$(9)$$

A plant is said to have state-independent regular unobservability if, in addition,

$$p(i\sigma) = p(j\sigma) \quad \forall \sigma \in \Sigma, \ \forall i, j \in I_O.$$
(10)

Remark 4: Regular state-dependent unobservability in Definition 9 can be specified by marking certain

transitions in the graph of the DFSA as unobservable. Note that, in general, the same event may be observable at one state and unobservable at another state. When this possibility is precluded, the situation is state-independent regular unobservability. The stateindependent regular unobservability is a special case of state-dependent regular unobservability; both cases have been jointly referred to as regular unobservability in the sequel. For regular unobservability, the observation map is completely specified by defining an event string in terms of unit-length strings $\sigma \in L^c$. However, the map $p(\cdot)$ can be more complicated. For example, consider a single state DFSA with its language $L(G_1) = \Sigma^*$, where $\Sigma^* = \{\sigma\}$, and the observation map is defined by the condition that the symbols in the odd number positions of any string are not observed. Then,

$$\begin{array}{c} 1\sigma \mapsto \varepsilon \\ 1\sigma\sigma \mapsto 1\sigma \\ 1\sigma\sigma\sigma \mapsto 1\sigma \\ 1\sigma\sigma\sigma\sigma \mapsto 1\sigma\sigma \\ 1\sigma\sigma\sigma\sigma\sigma \mapsto 1\sigma\sigma \\ 1\sigma\sigma\sigma\sigma\sigma\sigma \mapsto 1\sigma\sigma\sigma \\ nd \text{ so on.} \end{array}$$

Therefore, $p(\cdot)$ cannot be defined by specifying its value on the unit length string σ . Interestingly, in this particular example, \mathcal{O}_p is still a regular language, namely Σ^* , which may not be the case in general.

Remark 5: In case of state-independent regular unobservability, the observation map p is a natural projection (Lin and Wonham 1988a,b, Wong 1997) and for state-dependent regular unobservability p has the more general structure of a causal reporter map (Wong and Wonham 1996, Wong 1997) (since the event alphabet can no longer be partitioned into observable and unobservable events). Note, in both cases of regular unobservability, the observation maps are prefix-preserving (Wong 1997). Specifically, if *s* is a prefix of *s'*, then p(s) is a prefix of p(s') for an unobservability map *p*.

Definition 10: The phantom language \mathfrak{U}_p of a DFSA plant with respect to a given observation map p is defined to be the kernel ker(p), i.e.,

$$\mathfrak{U}_p = \{ s \in L^c \mid p(s) = \varepsilon \}.$$
(11)

It follows from Definition 10 that the phantom language is a sublanguage of L^c , but need not be a regular sublanguage. However, for regular unobservability, it will be shown that the phantom language is indeed a regular sublanguage of L^c .

Definition 11: Given a DFSA G_i and an observation map p, the phantom automaton $\mathcal{P}(G_i)$ is defined to be a subautomaton of G_i such that the language $L_i^{\varrho} \subseteq L(G_i)$, generated by $\mathcal{P}(G_i)$, consists of completely

unobservable strings, i.e., $p(s) = \epsilon$ for every $s \in iL_i^{\varrho}$ (see Definition 7). Therefore,

$$L_i^{\varrho} = \bigcup_{j \in I_{\varrho}} L_{i,j}^{\varrho}, \tag{12}$$

where $L_{i,j}^{\varrho} \equiv \{s \in L_i^{\varrho} | s \text{ terminates on state } q_j\}.$

For regular unobservability, the phantom automaton denoted by $\mathcal{P}(G_i)$ of a DFSA G_i is given by Algorithm 1.

Algorithm 1: Derivation of phantom automation $\mathcal{P}(G_i)$ input: DFSA G_i , \mathcal{I}_Q , poutput: DFSA $\mathcal{P}(G_i)$ begin for $i \in \mathcal{I}_Q$ do for $i \in \Sigma$ do if $p(i\sigma_j)$ is defined AND $(i\sigma_j) \neq \varepsilon$ then Delete transition σ_j from state q_i end end Set the initial state of the automaton to q_i end

Algorithm 1 gives an automaton with initial state q_i . Denote it by A_i and the language generated by it by $L(A_i)$. Obviously, $L(A_i) \subseteq \Sigma^*$. If $s \in L(A_i)$, then

$$p(is) = p(i_1\sigma_1) \circ p(i_2\sigma_2) \circ \cdots p(i_k\sigma_k) \quad \text{(Definition 9)}$$
$$= \varepsilon \circ \cdots \circ \varepsilon$$
$$= \varepsilon$$

which implies $s \in L_i^{\varrho}$. Conversely, if $s \in L_i^{\varrho}$, then

$$p(is) = \varepsilon = p(i_1\sigma_1) \circ p(i_2\sigma_2) \circ \cdots p(i_k\sigma_k)$$

$$\Rightarrow p(i_j\sigma_j) = \varepsilon \,\forall j \in \{1, \dots, k\} \Rightarrow s \in L(A_i).$$

Remark 6: Algorithm 1 holds only for regular unobservability. It follows that L_i^{ϱ} is a regular sublanguage of $L(G_i)$. Thus, $\mathfrak{U}_p = \bigcup_{i \in I_{\varrho}} i L_i^{\varrho}$ is a regular sublanguage of L_c .

Next the measure of the language generated by the *i*th phantom automaton is defined in the sense of the measure construction presented in Appendix A. Denoting the measure of L_i^{ϱ} as μ_i^{ϱ} , the equivalent matrix form is

$$\mu^{\varrho} = (\mathbf{I} - \mathcal{P}(\Pi))^{-1} \chi, \tag{13}$$

where $\mu^{\varrho} \equiv [\mu_1^{\varrho} \mu_2^{\varrho} \cdots \mu_n^{\varrho}]^T$; and the phantom transition cost matrix $\mathcal{P}(\Pi)$ is defined to be the transition cost matrix of the DFSA $\mathcal{P}(G_i)$ (see Definition A.5 in Appendix A). The inverse $[I - \mathcal{P}(\Pi)]^{-1}$ exists because $\mathcal{P}(\Pi)$ is elementwise non-negative and bounded by Π , and Π is a contraction implying that $\mathcal{P}(\Pi)$ is a contraction as well. **Definition 12:** The *i*th colour component $z_i: 2^{L^c - \{\varepsilon\}} \rightarrow 2^{L(G_i)}$ is defined as: $\forall L \equiv \{s_1, s_2, \dots, s_k, \dots\} \subseteq L^c - \{\varepsilon\},$

$$z_i(L) = z_i(\{s_1, s_2, \dots, s_k, \dots\})$$

= { $z_i(\{s_1\}), z_i(\{s_2\}), \dots, z_i(\{s_k\}), \dots$ }, (14)

where

$$z_i(jt\}) = \begin{cases} \{\varepsilon\} & \text{if } i \neq j \\ \{t\} & \text{if } i = j \end{cases} \text{ and } z_i(\emptyset) = \emptyset.$$

Now a signed real measure $\vartheta : 2^{L^c} \to \mathbb{R} \equiv (-\infty, +\infty)$ is constructed on the σ -algebra 2^{L^c} , similar to the construction of language measure in Appendix A. With the choice of this σ -algebra, every singleton set made of a string $s \in L^c$ is a measurable set, which qualifies itself to have a numerical quantity based on the following construction

$$\forall L \subseteq L^{c}, \quad \vartheta(L) = \sum_{i \in I_{Q}} \mu^{i}(z_{i}(L - \{\varepsilon\})). \tag{15}$$

The set function ϑ is a well-defined signed measure that satisfies the following conditions:

• $\vartheta(\emptyset) = 0.$

- Finiteness and countable additivity of ϑ inherited from the language measure μ (see Appendix A).
- $\vartheta(iL) = \mu'(L) \ \forall L \subseteq L(G_i).$
- $\vartheta(\{\varepsilon\}) = \sum_{i \in I_0} \mu^i(\overline{z}_i(\emptyset)) = \sum_{i \in I_0} \mu^i(\emptyset) = 0.$

Construction of the language measure in Appendix A facilitates computation of a quantitative measure of the language $L(G_i)$ for all $i \in I_Q$. This measure is adequate under complete observability and has been successfully used for optimal control under full observation (Lin and Wonham 1988a,b, Wong 1997). However, in the generalized case of partial observability, event strings that are observed to initiate from a given state may actually start from a different one. A control policy that does not take this effect into consideration may cause colossal errors. For example, the supervisor may enable a controllable event leading to a state of negative weight based on its observation which erroneously indicated that the particular transition will terminate at a state of positive weight. Two sublanguages of L^c , denoted by L_i^1 and L_i^{11} , are introduced next to address these issues.

Definition 13: The language L_i^1 is the set of all strings which pass through the state q_i with the restriction that the prefix of each string leading to the state q_i is completely unobservable. Formally,

$$L_i^1 = \{ s \in L^c | s = s_1 \circ s_2 \text{ where } p(s_1) = \varepsilon \text{ and } s_2 \in L_i^c \}$$

$$(16)$$

Figure 1 illustrates the situation.

Figure 1. Schematic interpretation of L_i^1 .

By Definition 13, $(s \in L_i^1) \Rightarrow (s = s_1 \circ s_2)$ and $(s_2 \in L_i^c) \Rightarrow (s_1 \text{ terminates on state } q_i)$, which follows from the fact that s_1, s_2 has to be compatible since $s_1 \circ s_2 \in L^c$. Hence, s_1 initiates from a state $q_k \in Q$, terminates on state q_i , and is completely unobservable by definition. Hence from Definition 10, it follows that $s_1 \in kL_{k,i}^{\varrho}$. Hence, $s \in L_i^1 \Rightarrow s \in \bigcup_{k \in I_Q} kL_{k,i}^{\varrho} \circ L_i^c$. The converse follows with a similar reasoning. Therefore,

$$L_i^1 = \bigcup_{k \in I_Q} k L_{k,i}^{\varrho} \circ L_i^c \tag{17}$$

Remark 7: It is important to note that L_i^1 is, in general, a superset of the set of strings which are observed to initiate at state q_i . For example, if $(s \in L_i^1) \Rightarrow (s = s_1 \circ s_2 \text{ and } s_2 = i\sigma \circ rs_r$, where $\sigma \in \Sigma$, $r \in I_Q$, $s_r \in L_r^c$ and $p(i\sigma) = \varepsilon$), then the string is observed to have initiated from state q_r , as seen in figure 1. The string that takes the dotted path after state q_i is not observed to initiate from q_i , i.e., both q_i and its prefix are missed. A solution to this problem is to consider the particular subset of L_i^1 having only those strings for which at least the first transition after q_i is observable.

Definition 14: The language L_i^{11} is defined to be the subset of L_i^1 such that, for any string in L_i^{11} , the first transition after q_i is unobservable. Formally,

$$L_i^{11} = \left\{ s \in L_i^1 : s = (s_1 \circ s_2) \Rightarrow (s = s_1 \circ i\sigma \circ s_r) \quad (18) \right\}$$

where $s_1 \in L_{k,i}^{\varrho}$; $\sigma \in \Sigma$; $s_r \in L^{\varrho}(G_r)$ for some $r, k \in I_{\varrho}$; and $p(i\sigma) = \varepsilon$.

It follows from figure 2 and Definition 14 that $p(i\sigma_r) = \varepsilon$ if and only if $\sigma_r \in \Sigma_i^{\varrho} \subseteq \Sigma$.

Hence,

$$s \in L_i^{11} \Rightarrow s \in \left(\bigcup_{k \in I_Q} k L_{k,i}^{\varrho}\right) \circ \left(\bigcup_{\sigma_i \in \Sigma_i^{\varrho}} i\sigma_r^j L(G_j)\right)$$

and vice versa. Therefore,

$$L_i^{11} = \left(\bigcup_{k \in I_Q} k L_{k,i}^{\varrho}\right) \circ \left(\bigcup_{\sigma_r^{\varrho} \in \Sigma_i^{\varrho}} i\sigma_r^j L(G_j)\right)$$
(19)

where Σ_i^{ϱ} is the set of unobservable events in Σ , occurring at state q_i ; and $\sigma_r^j \in \Sigma_i^{\varrho}$ such that there exists a transition σ_r^j in the phantom automaton $\mathcal{P}(G_i)$, with $\delta(q_i, \sigma_r^j) = q_j$.

It follows from Remark 7 that $L_i^1 - L_i^{11}$ is the set of all event strings in L_i^1 for which the first transition after the state q_i is observable; that is, these strings are observed to have initiated from state q_i . Figures 1 and 2 clarify the idea. Therefore, following Definitions 13 and 14, the set difference $L_i^1 - L_i^{11}$ is the collection of all strings in L^c that are observed to have initiated from state q_i .

2.1 Computation of the language measure

This section presents the computation of the measures of L_i^1 , L_i^{11} and $L_i^1 - L_i^{11}$ from the closed form expressions that are presented as the following theorem.

Theorem 1: The closed form expression for the language measure under partial observation is obtained as follows:

$$\vartheta \left(L^{1} - L^{11} \right) = \mathbb{D} \left(\left[1 - \mathcal{P}(\Pi)^{-T} \left\{ \begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right\} \right) \times \left[\mathbf{I} - \mathcal{P}(\Pi) \right] \left[\mathbf{I} - \Pi \right]^{-1} \chi, \quad (20)$$

where \mathbb{D} is the diagonalization map as defined in Appendix B.

Proof: Two lemmas that are necessary to prove the theorem are presented below.

Lemma 1: The measure ϑ of the language L^1 is expressed in closed form as

$$\vartheta(L^1) = \mathbb{D}\left([\mathbf{I} - \mathcal{P}(\Pi)]^{-T} \begin{cases} 1\\ \vdots\\ 1 \end{cases} \right) [\mathbf{I} - \Pi]^{-1} \chi.$$
(21)

Proof:

$$\begin{split} \vartheta(L_i^1) &= \vartheta\left(\bigcup_{k \in I_Q} kL_{k,i}^{\varrho} \circ L^c(G_i)\right) \\ &= \sum_{k \in I_Q} \vartheta\left(kL_{k,i}^{\varrho} \circ L^c(G_i)\right) \\ &= \sum_{k \in I_Q} \mu^k \left(L_{k,i}^{\varrho} L(G_i)\right) \\ &= \sum_{k \in I_Q} \left\{\sum_{\omega \in L_{k,i}^{\varrho}} \tilde{\pi}^{\varrho}[\omega, q_k]\right\} \mu^i(L(G_i)) \\ &= \sum_{k \in I_Q} \left\{\sum_{\omega \in L_{k,i}^{\varrho}} \tilde{\pi}^{\varrho}[\omega, q_k]\right\} \mu^i \\ &= \left\{\mathbb{D}\left(\left[I - \mathcal{P}(\Pi]^{-T} \left\{\begin{matrix} 1\\ \vdots\\ 1\end{matrix}\right\}\right) \right) \mu\right\}_i \text{ (See Appendix B)} \\ &= \left\{\mathbb{D}\left(\left[I - \mathcal{P}(\Pi]^{-T} \left\{\begin{matrix} 1\\ \vdots\\ 1\end{matrix}\right\}\right) \left[I - \Pi]^{-1}\chi\right\}_i \right\} \right\} \end{split}$$

Lemma 2: The closed form expression for $\vartheta(L_i^{11})$ is given as

$$\vartheta(L^{11}) = \mathbb{D}\left(\left[\mathbf{I} - \mathcal{P}(\Pi)\right]^{-T} \left\{ \begin{array}{c} 1\\ \vdots\\ 1 \end{array} \right\} \right) \mathcal{P}(\Pi)\left[\mathbf{I} - \Pi\right]^{-1} \chi \quad (22)$$

Proof:

$$\vartheta(L_i^{11}) = \vartheta\left(\left(\bigcup_{k \in I_Q} kL_{k,i}^{\varrho}\right) \circ \left(\bigcup_{\substack{\sigma_r^j \in \Sigma_i^{\varrho} \\ \delta(q_i, \sigma_r^j) = q_j}} \sigma_r^j L(G_j)\right)\right)$$
$$= \sum_{k \in I_Q} \vartheta\left(\left(kL_{k,i}^{\varrho}\right) \circ \left(\bigcup_{\substack{\sigma_r^j \in \Sigma_i^{\varrho} \\ \delta(q_i, \sigma_r^j) = q_j}} i\sigma_r^j L(G_j)\right)\right)$$

$$\begin{split} &= \sum_{k \in I_{Q}} \mu^{k} \Biggl(\left(L_{k,i}^{\varrho} \right) \Biggl(\bigcup_{\sigma_{r}^{j} \in \Sigma_{i}^{\varrho} \\ \delta(q_{i},\sigma_{r}^{j}) = q_{j}} i \sigma_{r}^{j} L(G_{j}) \Biggr) \Biggr) \\ &= \sum_{k \in I_{Q}} \Biggl\{ \sum_{\omega \times L_{k,i}^{\varrho}} \tilde{\pi}^{\varrho} [\omega, q_{k}] \Biggr\} \mu^{i} \Biggl(\bigcup_{\sigma_{r}^{j} \in \Sigma_{i}^{\varrho} \\ \delta(q_{i},\sigma_{r}^{j}) = q_{j}} \sigma_{r}^{j} L(G_{j}) \Biggr) \\ &= \sum_{k \in I_{Q}} \Biggl\{ \sum_{\omega \times L_{k,i}^{\varrho}} \tilde{\pi}^{\varrho} [\omega, q_{k}] \Biggr\} \sum_{j \in I_{Q}} \Biggl\{ \sum_{\sigma \in \Sigma_{i}^{\varrho} \\ \delta(q_{i},\sigma) = q_{j}} \tilde{\pi}^{\varrho} [\sigma, q_{i}] \Biggr\} \mu_{j} \\ &= \sum_{k \in I_{Q}} \Biggl\{ \sum_{\omega \in L_{k,i}^{\varrho}} \tilde{\pi}^{\varrho} [\omega, q_{k}] \Biggr\} \sum_{j \in I_{Q}} \mathcal{P}(\Pi)_{ij} \mu_{j} \\ &= \sum_{k \in I_{Q}} \Biggl\{ \sum_{\omega \in L_{k,i}^{\varrho}} \tilde{\pi}^{\varrho} [\omega, q_{k}] \Biggr\} (\mathcal{P}(\Pi) \mu)_{i} \\ &= \Biggl\{ \mathbb{D} \Biggl([I - \mathcal{P}(\Pi)]^{-T} \Biggl\{ \begin{array}{c} 1 \\ \vdots \\ 1 \end{aligned} \Biggr) \mathcal{P}(\Pi) [I - \Pi]^{-1} \chi \Biggr\}_{i} . \end{split}$$

The proof of the theorem follows directly from Lemmas 1 and 2.

Remark 8: Under complete observability, $\mathcal{P}(\Pi) = 0$ and therefore, $\vartheta(L_i^{11}) = \mu^i(L(G_i)) = \mu_i$. Then, the set of strings observed to initiate from any given state q_i is the set of strings that do actually start from q_i . That is, under complete observability, $L^1 = L(G_i)$ and $L^{11} = \emptyset$. Theorem 1 is consistent with this observation because the condition, $\mathcal{P}(\Pi) = 0$, holds under complete observability, and hence $\vartheta(L^1 - L^{11}) = \mu^i(L(G_i))$.

3. Quantification of unobservability

Given a plant model, described by the regular language $L(G_i)$, this section quantifies the effects of event unobservability at the supervisory level in terms of the following exact short sequence of monoids (Rotman 2002).

$$0 \to \mathfrak{U}_p \xrightarrow{t} L^c \xrightarrow{p} \mathcal{O}_p \to 0, \qquad (23)$$

、、

where t is the inclusion map and p is the natural projection onto \mathcal{O}_p . Exactness of the sequence results from the facts that t is injective, p is surjective and the kernel of p is the image under t, i.e., ker p = Im t. If this exact sequence is split, unobservability has no effect because each observed string would have a unique mapping back to an element of L^c . In general, the projection map p can be used to define an equivalence relation on L^c as follows:

$$\forall s_i, \ s_j \in L^c, \ \left((p(s_i) = p(s_j)) \Rightarrow (s_i \sim s_j) \right).$$
(24)

This induces a partition \mathcal{P} on L^c with at most countable number of equivalence classes, and each equivalence class of \mathcal{P} has the property that every string in the equivalence class maps to the same element of \mathcal{O}_p . The cardinality bound on the number of equivalence classes is due to the fact that the number of strings in L^c itself is at most countable. Moreover, it follows that $\forall s_j \in \mathcal{O}_p, \ p^{-1}(s_j) = \mathcal{P}_k$ for some k.

Theorem 2: If the phantom language \mathfrak{U}_p (see Definition 10) is a context free language (CFL), then $\forall s_i \in \mathcal{O}_p, p^{-1}(s_i)$ is a context free sublanguage of L^c .

Proof: Let $s_j = j\sigma_1\sigma_2\cdots\sigma_N$ for some $j \in I_Q$. Then, $p^{-1}(s_j) = (\mathfrak{U}_p\sigma_1 \circ \mathfrak{U}_p\sigma_2 \circ \cdots \circ \mathfrak{U}_p\sigma_N \circ \mathfrak{U}_P) \bigcap L^c$. Closure of context free languages under concatenation implies $(\mathfrak{U}_p\sigma_1 \circ \mathfrak{U}_p\sigma_2 \circ \cdots \circ \mathfrak{U}_p\sigma_N \circ \mathfrak{U}_p)$ is a context free language. Then, closure under intersection implies $p^{-1}(s_j)$ is context free as well. Detailed proofs of the closure properties are given in Hopcroft *et al.* (2001).

Corollary 1: In case of regular unobservability, $\forall s_j \in \mathcal{O}_p$, the inverse image $p^{-1}(s_j)$ is a regular sublanguage of L^c .

Definition 15: The cumulative unobservability index β_{cum} for a given discrete event plant model under a specified unobservability situation is defined as follows:

$$\beta_{\text{cum}} = \sum_{s \in \mathcal{O}_p}^{\beta_{\text{cum}} \in \mathbb{R} \text{ such that}} \left| \sup_{\tau \in p^{-1}(s)} \vartheta(\tau) - \inf_{\tau \in p^{-1}(s)} \vartheta(\tau) \right|.$$

The cumulative unobservability index β_{cum} quantifies the maximum cumulative error one may incur from the viewpoint of language measure due to the presence of unobservable transitions.

The salient properties of β_{cum} are delineated below.

- $\beta_{\text{cum}} \in [0, \infty)$. A specific upper bound is determined from the bounded total variation property of the language measure (Ray 2005).
- If the observation map p is injective, then $\forall s \in \mathcal{O}_p, p^{-1}(s)$ is a singleton set and hence $\beta_{\text{cum}} = 0$. This is expected because it follows, from the short exact sequence, that an injective p implies Im t is trivial, i.e., the only unobservable string is the empty string ε .

• $\beta = 0 \Rightarrow \forall s \in \mathcal{O}_p$, $\sup_{\tau \in p^{-1}(s)} \vartheta(\tau) = \inf_{\tau \in p^{-1}(s)} \vartheta(\tau)$. From the bounded total variation of the language measure, it follows that, for $\beta_{\text{cum}} = 0$, if $\operatorname{Card}(p^{-1}(s))$ is countably infinite, then $\vartheta(\tau) = 0 \ \forall \tau \in p^{-1}(s)$, i.e., $p^{-1}(s)$ is a set of strings of zero measure. However, it is possible that $\vartheta(\tau)$ has a non-zero value $\forall \tau \in p^{-1}(s)$ if $p^{-1}(s)$ is a finite set.

4. Application examples

This section presents three examples to elucidate the concept of discrete event supervisory (DES) control under partial observation. These examples show how the theories, developed in §§ 2 and 3, can be applied to problems in different disciplines.

4.1 Example 1: Language measure under partial observability

This example illustrates how the language measure under full observability (Ray 2005) is altered under partial observability. Figure 3 shows a deterministic finite state automaton (DFSA) with three states and an alphabet $\Sigma = \{\alpha, \sigma\}$, where the event α is unobservable. The state transition cost matrix is as follows.

$$\Pi = \begin{bmatrix} 0 & 0.8 & 0.1 \\ 0.1 & 0 & 0.8 \\ 0.8 & 0.1 & 0 \end{bmatrix} \text{ and } \mathcal{P}(\Pi) = \begin{bmatrix} 0 & 0 & 0.1 \\ 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \end{bmatrix};$$

and assuming $\chi = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$, the language measures are given by

$$\mu = \begin{bmatrix} 0.7287 \\ -0.2834 \\ -0.4453 \end{bmatrix}; \quad \vartheta(L^1) = \begin{bmatrix} 0.8097 \\ -0.3149 \\ -0.4948 \end{bmatrix};$$
$$\vartheta(L^1 - L^{11}) = \begin{bmatrix} 0.8592 \\ -0.3959 \\ -0.4633 \end{bmatrix}.$$

The observed language O_p has the regular expression $I_Q \sigma^*$, where the superscript * indicates Kleene closure.

Figure 3. Finite state model with unobservable transitions.

Now, the unobservability index β_{cum} is calculated summing the unobservability β_i of individual subsets.

Considering the set of strings in $p^{-1}(1\varepsilon)$, the maximum possible measure of a string is $(0.2)^3 = 0.008$ achieved by the string $\alpha\alpha\alpha$, and the minimum possible measure is -0.2 achieved by the singleton string α and it weight $\chi = -1$. In the calculations that follow, β_i denotes the unobservability calculated from a subset $\mathcal{O}_i \subseteq \mathcal{O}_p$ such that $\forall s \in \mathcal{O}_i$, c(s) = i (see Definition 5). Continuation of this process yields

$$\beta_1 = (0.1 + 0.1^2) \times (0.8 + 0.8^4 + 0.8^7 + \cdots) + (1 + 0.1^2) \times (0.8^2 + 0.8^5 + 0.8^8 + \cdots) + (1 + 0.1) \times (1 + 0.8^3 + 0.8^6 + 0.8^9 + \cdots) = 3.744.$$

Similarly, $\beta_2 = 3.771$ and $\beta_3 = 3.421$; and sum of the three components together yields the unobservability index

$$\beta_{\rm cum} = 3.744 + 3.771 + 3.421 \\= 10.936.$$

Calculations of the unobservability index for a general situation could be numerically cumbersome mainly due to computational complexity, which is a topic of future research.

4.2 Example 2: Control of aircraft under partial observability

This example shows an engineering application on discrete event control of aircraft under partial loss of sensor information. It follows from the physics of flight mechanics that an aerofoil has a critical angle of attack at which the lift coefficient abruptly drops to zero as illustrated in figure 4. This is known as the stall

Figure 4. Profile of lift coefficient.

phenomenon that is, in general, a function of aerodynamic parameters. Hence, there is a limit to the steepness of the climb that a given aircraft can execute. A sensor malfunction may cause delay in recognition of an obstacle in the flight path. Consequently, it may become impossible for the pilot to avoid the obstacle without going into an accelerated stall, which may lead to rapid altitude loss and possible crash of the aircraft as displayed in figure 5.

Figure 6 depicts a finite state model of aircraft operation for obstacle avoidance, whose states and χ -values, and events are listed in table 1 and table 2, respectively. The good marked states that have positive χ -values are q_1 and q_7 ; the bad marked states that have negative χ -values are q_5 and q_6 ; and the remaining states are unmarked and have zero χ -values, implying that

Figure 5. Obstacle avoidance failure caused by loss of observation.

Figure 6. Finite state model of obstacle avoidance.

Table 1. List of plant states and corresponding χ -values.

State	Description	χ
q_1	Normal flight	0.2
q_2	Obstacle avoidance	0.0
q_3	Obstacle recognition	0.0
q_4	Obstacle too close	0.0
q_5	Aircraft destroyed	-1.0
q_6	Aircraft in accelerated stall	-0.9
q_7	Successful recovery from stall	0.05

termination on these states has no bearing on the flight performance. The event *w* from state q_3 to q_4 is unobservable (shown by a dashed line in figure 6), which relates to the physical situation of a delay in obstacle recognition or a sensor malfunction leading to incorrect obstacle distance reading. The event cost matrix $\tilde{\Pi}$ is given in table 3. The state transition matrix and the language measures under complete and partial observability are computed based on the theories developed in §§ 2 and 3 and are shown in tables 4 and 5 respectively.

A comparison of the measures under perfect observation and partial observation reveals that the language of a plant operating mode may have a positive measure under loss of observability although the measure is actually negative. For example, the measure, with q_3 (i.e., obstacle recognition) as the initial state, of the language under perfect observation is $\mu_3 = -0.3006$ and, under loss of sensor information, it changes to $\vartheta_3 = 0.0482$. This is a false good representation of a truly bad scenario. Thus, a language-theoretic supervisory control under the assumption of perfect observation (Ray *et al.* 2004) may fail to take into account the effects of possible partial observation and thus make serious errors in decision making.

The cumulative unobservability index β_{cum} (see Definition 15) can be calculated from the following fact. An observed string *s* that has more than one point in its inverse image $p^{-1}(s)$ must be of the form $s = s_1 f$, where s_1 does not contain the event *f*. It is also noted

Table 2. List of events.

Event	Physical interpretation
n v w f r	Normal flight pattern recovered Obstacle appeared ahead Obstacle appeared close ahead Initiating ascent to avoid obstacle Recovery maneuvers initiated
d	Aircraft crashes

Table 3. Event cost matrix $\tilde{\Pi}$ for obstacle avoidance.

Π	п	v	W	f	r	d
q_1	0.7	0.2	0.0	0.0	0.0	0.0
q_2	0.7	0.1	0.0	0.0	0.0	0.0
q_3	0.0	0.0	0.5	0.1	0.0	0.3
q_4	0.7	0.2	0.8	0.0	0.0	0.0
q_5	0.0	0.0	0.0	0.0	0.0	0.0
q_6	0.0	0.0	0.0	0.5	0.4	0.0
q_7	0.3	0.3	0.0	0.0	0.0	0.2

that $p^{-1}(3f) = \{3f, 3wf\}$. Hence, the cumulative unobservability index is

$$\beta_{\text{cum}} = \left\{ \sum_{i=1}^{7} \mu^{i} (L(q_{i}, q_{3})) \middle|_{\substack{\text{setting } \chi(q_{i}) = 1 \\ \text{and deleting unobservable } w}} \right\} |\mu^{3}(wf)|$$

= {4.3983} × |(0.3 × 0.8 × -0.9)|
= 0.95. (25)

4.3 Example 3: Pathogenic control under partial observability

This example presents a simplified version of population control of pathogen within a living body. There are two antipathogens available, P_1 for control of strain A and P_2 for control of strain B. However, P_1 acts as an accelerant for growth of strain B and similarly P_2 acts as an accelerant for growth of strain A. Furthermore, the strains can mutate from one type to the other. Under these circumstances, it becomes critical to observe the specific mutations. A finite state model of pathogen population growth is given in figure 7 along with the lists of states and their respective χ -values, and events in tables 6 and 7, respectively. The mutation events u are unobservable as shown by dashed arcs in figure 7. The event cost matrix and the state transition cost matrix for this specific case of pathogenic population control is given in tables 8 and 9 respectively. The language measures, μ and $\vartheta(L^1 - L^{11})$, under complete

Table 4. State transition matrix Π for obstacle avoidance.

П	q_1	q_2	q_3	q_4	q_5	q_6	q_7
q_1	0.7	0.0	0.2	0.0	0.0	0.0	0.0
q_2	0.7	0.0	0.1	0.0	0.0	0.0	0.0
q_3	0.0	0.5	0.0	0.3	0.1	0.0	0.0
q_4	0.0	0.0	0.0	0.0	0.0	0.8	0.0
q_5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<i>q</i> ₆	0.0	0.0	0.0	0.0	0.5	0.0	0.4
q_7	0.3	0.0	0.3	0.2	0.0	0.0	0.0

Table 5. Computed measures for obstacle
avoidance.

States	μ	$\vartheta(L^1 - L^{11})$
q_1	0.4663	0.4663
q_2	0.2963	0.2963
q_3	-0.3006	0.0482
q_4	-1.1625	-1.5112
q_5	-1.0000	-1.0000
q_6	-1.4531	-1.4531
q_7	-0.1328	-0.1328

Figure 7. Finite state model for pathogen control.

Table 6. List of plant states and corresponding χ -values.

State	Pathogen description	χ
q_1	Stable population with strain A dominant	0.01
q_2	Stable population with strain B dominant	0.13
q_3	Population increasing at geometric rate	-1

F - 1, 1 -	7	T 1.4		
lable	1.	List	of	events.

Description
Anti-pathogen P_1 administered
Anti-pathogen P_2 administered Pathogen mutation

Table 8. Event cost matrix $\tilde{\Pi}$ for pathogen control.

Π	m_1	<i>m</i> ₂	и
q_1	0.60	0.01	0.30
q_2	0.02	0.40	0.40
q_3	0.40	0.40	0.00

Table 9. State transition matrix Π for pathogen control.

П	q_1	q_2	q_3
q_1	0.60	0.30	0.01
q_2	0.40	0.40	0.02
q_3	0.00	0.00	0.80

observability and loss of observability, respectively, are shown in table 10.

Following the rationale in Example 2 (see §4.1), the measure with q_2 (i.e., stable population with strain *B*) as the initial state, of the language under perfect observation is $\mu_2 = -0.0333$ and, under loss of sensor information, it changes to $\vartheta_2 = 0.0338$. Hence, a DES control algorithm that does not take the effects of information loss into account may fail.

Table 10. Computed measures for pathogen control.

States	μ	$\vartheta(L^1 - L^{11})$
q_1	-0.1250	-0.1921
q_2	-0.0333	0.0338
q_3	-5.0000	-5.0000

5. Summary and conclusions

Performance of DES control systems could be seriously affected by loss of information (e.g., due to sensor malfunctions or communication link failures). Ignoring the effects of unobservable transitions does not only affect the control system performance, but also may result in controller actions that are in direct contradiction to control objectives.

This paper addresses the problem by extending the signed real measure for regular languages, which has been developed under perfect observation (Ray 2005), i.e., if the supervisor receives the complete information on occurrence of events in the plant. The language measure under partial observability, reported in this paper, accounts for partial observability due to loss of information. Specifically, the language measure is modified to circumvent the detrimental effects resulting from loss of observability. The unobservability of events is statebased, implying that a given event may be observable at one state and unobservable at another state. The significant differences in language measures, under full observability and partial observability, are illustrated by physical examples.

Future work in this direction may involve research on modification of the existing theory of optimal control policies under full observation (Ray *et al.* 2004) to accommodate loss of observability and numerical computation of the unobservability index. The functional relationships of language measure with the amount of available information should also be investigated.

Acknowledgements

This work has been supported in part by the US Army Research laboratory and the US Army Research Office under Grant No. DAAD19-01-1-0646.

The authors are grateful to the anonymous reviewers for their thoughtful comments suggesting critical changes that have certainly improved the quality of the paper.

Appendix A

Brief review of language measure

This section summarizes the signed real measure of regular languages; the details are reported in Ray (2005).

Let $G_i \equiv \langle Q, \Sigma, \delta, q_i, Q_m \rangle$ be a trim (i.e., accessible and co-accessible) finite-state automaton model that represents the discrete-event dynamics of a physical plant, where $Q = \{q_k : k \in I_Q\}$ is the set of states and $I_Q \equiv \{1, 2, ..., n\}$ is the index set of states; the automaton starts with the initial state q_i ; the alphabet of events is $\Sigma = \{\sigma_k : k \in I_\Sigma\}$, having $\Sigma \cap I_Q = \emptyset$ and $I_\Sigma \equiv$ $\{1, 2, ..., \ell\}$ is the index set of events; $\delta: Q \times \Sigma \rightarrow Q$ is the (possibly partial) function of state transitions; and $Q_m \equiv \{q_{m_1}, q_{m_2}, ..., q_{m_l}\} \subseteq Q$ is the set of marked (i.e., accepted) states with $q_{m_k} = q_i$ for some $j \in I_Q$.

Let Σ^* be the Kleene closure of Σ , i.e., the set of all finite-length strings made of the events belonging to Σ as well as the empty string ε that is viewed as the identity of the monoid Σ^* under the operation of string concatenation, i.e., $\varepsilon s = s = s\varepsilon$. The extension $\delta^*: Q \times \Sigma^* \to Q$ is defined recursively in the usual sense (Ramadge and Wonham 1987).

Definition A.1: The language $L(G_i)$ generated by a DFSA *G* initialized at the state $q_i \in Q$ is defined as:

$$L(G_i) = \left\{ s \in \Sigma^* | \delta^*(q_i, s) \in Q \right\}.$$
 (26)

The language $L_m(G_i)$ marked by the DFSA G initialized at the state $q_i \in Q$ is defined as:

$$L_m(G_i) = \left\{ s \in \Sigma^* | \delta^*(q_i, s) \in Q_m \right\}.$$
(27)

Definition A.2: For every $q_j \in Q$, let $L(q_i, q_j)$ denote the set of all strings that, starting from the state q_i , terminate at the state q_j , i.e.,

$$L_{i,j} = \left\{ s \in \Sigma^* | \delta^*(q_i, s) = q_j \in Q \right\}.$$

$$(28)$$

The set Q_m of marked states is partitioned into Q_m^+ and Q_m^- , i.e., $Q_m = Q_m^+ \cup Q_m^-$ and $Q_m^+ \cap Q_m^- = \emptyset$, where Q_m^+ contains all good marked states that we desire to reach, and Q_m^- contains all bad marked states that we want to avoid, although it may not always be possible to completely avoid the bad states while attempting to reach the good states. To characterize this, each marked state is assigned a real value based on the designer's perception of its impact on the system performance.

Definition A.3: The characteristic function χ : $Q \rightarrow [-1, 1]$ that assigns a signed real weight to state-based sublanguages $L(q_i, q)$ is defined as:

$$\forall q \in Q, \quad \chi(q) \in \begin{cases} [-1,0), & q \in Q_m^- \\ -\{0\} & q \notin Q_m \\ (0,1], & q \in Q_m^+. \end{cases}$$
(29)

The state weighting vector, denoted by $\chi = [\chi_1 \ \chi_2 \ \cdots \ \chi_n]^T$, where $\chi_j \equiv \chi(q_j) \ \forall j \in I_Q$, is called the χ -vector. The *j*th element χ_j of χ -vector is the weight assigned to the corresponding terminal state q_j .

In general, the marked language $L_m(G_i)$ consists of both good and bad event strings that, starting from the initial state q_i , lead to Q_m^+ and Q_m^- respectively. Any event string belonging to the language $L^0 = L(G_i) - L_m(G_i)$ leads to one of the non-marked states belonging to $Q - Q_m$ and L^0 does not contain any one of the good or bad strings. Based on the equivalence classes defined in the Myhill– Nerode Theorem, the regular languages $L(G_i)$ and $L_m(G_i)$ can be expressed as:

$$L(G_i) = \bigcup_{q_k \in \mathcal{Q}} L_{i,k} \tag{30}$$

$$L_m(G_i) = \bigcup_{q_k \in \mathcal{Q}_m} L_{i,k} = L_m^+ \cup L_m^-$$
(31)

where the sublanguage $L_{i,k} \subseteq G_i$ having the initial state q_i is uniquely labelled by the terminal state $q_k, k \in I_Q$ and $L_{i,j} \cap L_{i,k} = \emptyset \; \forall j \neq k$; and $L_m^+ \equiv \bigcup_{q_k \in Q_m^+} L_{i,k}$ and $L_m^- \equiv \bigcup_{q_k \in Q_m^-} L_{i,k}$ are good and bad sublanguages of $L_m(G_i)$, respectively. Then, $L^0 = \bigcup_{q_k \notin Q_m} L_{i,k}$ and $L(G_i) = L^0 \cup L_m^+ \cup L_m^-$.

A signed real measure $\mu^i: 2^{L(G_i)} \to \mathbb{R} \equiv (-\infty, +\infty)$ is constructed on the σ -algebra $2^{L(G_i)}$ for any $i \in I_Q$; interested readers are referred to Ray (2005) for the details of measure-theoretic definitions and results. With the choice of this σ -algebra, every singleton set made of an event string $s \in L(G_i)$ is a measurable set. By the Hahn decomposition theorem (Rudin 1988), each of these measurable sets qualifies itself to have a numerical value based on the above state-based decomposition of $L(G_i)$ into L^0 (null), L^+ (positive), and L^- (negative) sublanguages.

In the following definition, each event is assigned a state-dependent cost that is conceptually similar to the conditional transition probability.

Definition A.4: The event cost of the DFSA G_i is defined as a (possibly partial) function $\tilde{\pi}: \Sigma^* \times Q \to [0, 1]$ such that $\forall q_i \in Q, \forall \sigma_j \in \Sigma, \forall s \in \Sigma^*$,

$$\begin{split} \tilde{\pi}[\sigma_j, q_i] &= 0 \text{ if } \delta(q_i, \sigma_j) \text{ is undefined; } \quad \tilde{\pi}[\varepsilon, q_i] = 1; \\ \tilde{\pi}[\sigma_j, q_i] &\equiv \tilde{\pi}_{ij} \in [0, 1); \quad \sum_{j \in I_{\Sigma}} \tilde{\pi}_{ij} < 1; \end{split}$$

$$\tilde{\pi}[\sigma_j s, q_i] = \tilde{\pi}[\sigma_j, q_i] \quad \tilde{\pi}[s, \delta(q_i, \sigma_j)].$$

Consequently, the $n \times \ell$ event cost matrix is defined as:

$$\tilde{\Pi} = \begin{bmatrix} \tilde{\pi}_{11} & \tilde{\pi}_{12} & \cdots & \tilde{\pi}_{1\ell} \\ \tilde{\pi}_{21} & \tilde{\pi}_{22} & \cdots & \tilde{\pi}_{2\ell} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{\pi}_{n1} & \tilde{\pi}_{n2} & \cdots & \tilde{\pi}_{n\ell} \end{bmatrix}$$
(32)

Definition A.5: The state transition cost, π : $Q \times Q \rightarrow [0, 1)$, of the DFSA G_i is defined as follows:

$$\forall q_i, \ q_j \in Q, \pi_{ij} = \begin{cases} \sum_{\sigma \in \Sigma} \tilde{\pi}[\sigma, q_i], & \text{if } \delta(q_i, \sigma) = q_j \\ 0 & \text{if } \{\delta(q_i, \sigma) = q_j\} = \emptyset \end{cases}$$
(33)

Consequently, the $n \times n$ state transition cost matrix is defined

$$\Pi = \begin{bmatrix} \pi_{11} & \pi_{12} & \cdots & \pi_{1n} \\ \pi_{21} & \pi_{22} & \cdots & \pi_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \pi_{n1} & \pi_{n2} & \cdots & \pi_{nn} \end{bmatrix}$$
(34)

Definition A.6: Let $\omega \in L(q_i, q_j) \subseteq 2^{L(G_i)}$. The signed real measure μ^i of every singleton string set $\{\omega\}$ is defined as:

$$\mu^{i}(\{\omega\}) \equiv \tilde{\pi}(\omega, q_{i})\chi(q_{j}).$$
(35)

The signed real measure of a sublanguage $L_{i,j} \subseteq L(G_i)$ is defined as:

$$\mu_{i,j} \equiv \mu^{i}(L(q_{i},q_{j})) = \left(\sum_{\omega \in L(q_{i},q_{j})} \tilde{\pi}[\omega,q_{i}]\right) \chi_{j}.$$
 (36)

Therefore, the signed real measure of the language of a DFSA G_i initialized at $q_i \in Q$, is defined as

$$\mu_{i} \equiv \mu^{i}(L(G_{i})) = \sum_{j \in I_{Q}} \mu^{i}(L_{i,j}).$$
(37)

It is shown in Ray (2005) that the language measure in equation (37) can be expressed as

$$\mu_i = \sum_{j \in I_Q} \pi_{ij} \mu_j + \chi_i \tag{38}$$

The language measure vector, denoted as $\mu = [\mu_1 \ \mu_2 \ \cdots \ \mu_n]^T$, is called the μ -vector. In vector form, equation (38) becomes

$$\mu = \Pi \mu + \chi \tag{39}$$

whose solution is given by

$$\mu = (\mathbf{I} - \Pi)^{-1} \chi \tag{40}$$

where the inverse in equation (40) exists because Π is a contraction operator (Ray 2005).

Appendix **B**

Measure of sets of strings terminating at a given state

The expression for the language measure in equation (40) can be restructured into the following form.

$$\begin{bmatrix} \mu_{1,1} & \mu_{1,2} & \cdots & \mu_{1,n} \\ \mu_{2,1} & \mu_{2,2} & \cdots & \mu_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n,1} & \mu_{n,2} & \cdots & \mu_{n,n} \end{bmatrix} = [\mathbf{I} - \Pi]^{-1} \begin{bmatrix} \chi_1 & 0 & \cdots & 0 \\ 0 & \chi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \chi_n \end{bmatrix}.$$
(41)

Hence the measure of the language $L_i \equiv L(G_i)$ is given by

$$\mu_{i} \equiv \sum_{j \in I_{Q}} \mu_{i,j} = \sum_{j \in I_{Q}} \left(\sum_{\omega \in L(q_{i},q_{j})} \tilde{\pi}[\omega, q_{i}] \right) \chi_{j}$$
$$= \left\{ [I - \Pi]^{-1} \chi \right\}_{i}.$$
(42)

Language measure, under partial observability, would require summation over the indices of initial states, in addition to summing over the indices of terminal states in equation (42).

Definition A.6 implies that μ_i is the measure of the set of all strings that initiate from the state q_i . That is, μ_i is obtained by summing up the *i*th row of the matrix on the left hand side of equation (41). However, the analysis developed in §2 also requires the computation of a closed form expression for the measure of the set of all strings terminating at a given state (say q_j). This would require summing up the *j*th column of the matrix on the left hand side of equation (41). While for the initiating case, the result can be expressed as the matrix product in equation (40), the terminating case requires definition of the diagonalization map \mathbb{D} : $\mathbb{R}^n \to \mathbb{R}^{n \times n}$ where

$$\mathbb{D}\left(\left\{\begin{array}{c} \xi_1\\ \vdots\\ \xi_n\end{array}\right\}\right) := \begin{bmatrix} \xi_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \xi_n \end{bmatrix} \forall \xi \in \mathbb{R}^n \qquad (43)$$

and we have

$$\sum_{i \in I_{\mathcal{Q}}} \mu_{i,j} = \sum_{i \in I_{\mathcal{Q}}} \left(\sum_{\omega \in L(q_i, q_j)} \tilde{\pi}[\omega, q_i] \right) \chi_j$$
$$= \left\{ \mathbb{D} \left([I - \Pi]^{-T} \left\{ \begin{array}{c} 1\\ \vdots\\ 1 \end{array} \right\} \right) \chi \right\}_j.$$
(44)

Equation (44) follows from the fact that each diagonal entry of

$$\mathbb{D}\left([\mathbf{I}-\boldsymbol{\Pi}]^{-T}\left\{\begin{array}{c}1\\\vdots\\1\end{array}\right\}\right)$$

is the corresponding column sum of $[I - \Pi]^{-1}$. A simple example will clarify the point.

Example B.1: Assume the set of states $Q = \{q_1, q_2\}$. Let the state transition matrix be given by Π with

$$[\mathbf{I} - \Pi]^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \text{ and } \chi = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}.$$
(45)

Then it follows from equation (41),

$$\begin{bmatrix} \mu_{1,1} & \mu_{1,2} \\ \mu_{2,1} & \mu_{2,2} \end{bmatrix} = \begin{bmatrix} a_{11}\chi_1 & a_{12}\chi_2 \\ a_{21}\chi_1 & a_{22}\chi_2 \end{bmatrix}$$
(46)

The measure of the set of all strings terminating on states q_1 and q_2 is given by $\mu_{1,1} + \mu_{2,1} = a_{11}\chi_1 + a_{21}\chi_1$ and $\mu_{1,2} + \mu_{2,2} = a_{12}\chi_2 + a_{22}\chi_2$ respectively. And using the diagonalization map, we obtain

$$\mathbb{D}\left(\begin{bmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{bmatrix}^T \begin{cases}1\\\vdots\\1\end{pmatrix}\right) = \begin{bmatrix}a_{11} + a_{21} & 0\\0 & a_{12} + a_{22}\end{bmatrix}$$
(47)

implying
$$\mathbb{D}\left([\mathbf{I}-\Pi]^{-T} \begin{cases} 1\\ \vdots\\ 1 \end{cases}\right) \chi = \begin{cases} a_{11}\chi_1 + a_{21}\chi_1\\ a_{12}\chi_2 + a_{22}\chi_2 \end{cases}$$
(48)

References

- J.E. Hopcroft, R. Motwani and J.D. Ullman, *Introduction to Automata Theory, Languages, and Computation*, 2nd ed., Boston, MA: Addison-Wesley, 2001.
- F. Lin and W.M. Wonham, "Decentralized control and coordination of discrete event systems with partial observation", *Inf. Sci.*, 44, pp. 199–224, 1988a.
- F. Lin and W.M. Wonham, "On observability of discrete-event systems", *Inf. Sci.*, 44, pp. 173–198, 1988b.
- P.J. Ramadge and W.M. Wonham, "Supervisory control of a class of discrete event processes", SIAM J. Control and Optimization, 25, pp. 206–230, 1987.
- A. Ray, "Signed real measure of regular languages for discrete-event supervisory control", Int. J. Control, 78, pp. 949–967, 2005.
- A. Ray, J. Fu and C.M. Lagoa, "Optimal supervisory control of finite state automata", *Int. J. Control*, 77, pp. 1083–1100, 2004.
- J.J. Rotman, *Advanced Modern Algebra*, 1st ed., Englewood Cliffs, NJ: Prentice Hall, 2002.
- W. Rudin, *Real and Complex Analysis*, 3rd ed., New York: McGraw Hill, 1988.
- K. Wong, "On the complexity of projections of discreteevent systems", Technical report 9705, Systems Control Group, Department of Electrical Engineering, University of Toronto, 1997.
- K. Wong and W. Wonham, "Hierarchical control of discrete-event systems", *Discrete Event Dynamic Systems*, 6, pp. 241–273, 1996.K. Wong and W. Wonham, "The computation of observers in
- K. Wong and W. Wonham, "The computation of observers in discrete-event systems", *Discrete Event Dynamic Systems*, 14, pp. 55–107, 2004.