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Recent literature has introduced and validated a signed real measure of regular languages for

quantitative analysis and synthesis of discrete-event supervisory (DES) control systems, where

all events are assumed to be observable. This paper presents a modification of the language

measure for supervisory control under partial observation and shows how to generalize the

analysis when some of the events may not be observable at the supervisory level. In the context

of DES control synthesis, the language measure of partially observable discrete-event

processes is expressed in a closed form which is structurally similar to that of completely

observable discrete-event processes. Examples are provided to elucidate the concept of DES

control under partial observation.

1. Introduction

According to the paradigm of discrete event supervisory
(DES) control (Ramadge and Wonham 1987), the
automaton model of a physical plant is a language
generator whose behaviour is constrained by a super-
visor to meet a given specification. The (controlled)
sublanguage of plant behaviour could be different under
different supervisors that satisfy their own respective
specifications. Such a partially ordered set of sub-
languages requires a quantitative measure for total
ordering of their respective performance. To address this
issue, a signed real measure of regular languages has
been reported in recent literature (Ray 2005) to provide
a mathematical framework for quantitative comparison
of regular languages. This measure formalizes synthesis
of DES control systems for finite state automaton
plants, as an alternative to the procedure of Ramadge
and Wonham (1987). Another recent paper (Ray et al.
2004) has reported optimal supervisory control of finite
state automata based on the language measure to
formalize quantitative analysis and synthesis of DES
control laws. The approach is state-based and the
language measure parameters are identified from

experiments on the physical process or from simulation

experiments on a deterministic finite state automaton

(DFSA) model of the plant. However, the language

measure used in the optimal control synthesis has not

addressed the issue of unobservable events at the

supervisory level. This problem is of significant practical

importance because the model of a given physical

process may have inherently unobservable transitions.

Furthermore, in complex engineering systems, events

may become unobservable due to failures of sensors or

communication links in one or more locations.
This paper extends the concept of language measure

(Ray 2005) to more general scenarios, where the set of

unobservable events (at the supervisor) is allowed to be

non-empty. The main idea behind this generalization is

to realize the fact that the observed initiation and/or

termination state of a given string may not be the true

initiation and/or termination state due to the presence of

unobservable transitions. Although partial observability

with respect to the supervisory control theory of

Ramadge and Wonham (1987) have been widely

studied (Lin and Wonham 1988b, Wong 1997, Wong

and Wonham 2004), such generalizations for the

measure theoretic approach (Ray 2005) has not been

reported in literature. The results presented in this paper

lay the foundation for extending the existing theory*Corresponding author. Email: axr2@psu.edu
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(Ray et al. 2004) of optimal control synthesis under full
observation to that under partial observation.
This paper is organized in five sections, including the

present section, and two appendices. Section 2 presents
the proposed generalization of the measure to automata
with a (possibly) non-empty set of unobservable events.
An analysis of the worst case effect of unobservability
is presented in x 3 through the introduction of the
unobservability index. Section 4 presents three examples
to elucidate the concept of DES control under partial
observability. The paper is summarized and concluded
in x 5 along with recommendations for future research.
Appendix A briefly describes the notations and back-
ground materials for deriving a signed real measure of
regular languages (Ray 2005) and Appendix B derives
necessary relations for the analysis in x 2.

2. Unobservability in discrete event systems

The generated language L(Gi) for a DFSA Gi� (Q, �, �,
qi, Qm), defined in Appendix A, is the set of all event
strings, accepted by the DFSA Gi with Qm¼Q and the
initial state Qi 2 Q. Since L(Gi) is a prefix-closed
language (Ramadge and Wonham 1987) for every
i 2 IQ, a change in the initial state from qi to qj with
i 6¼ j, leads to a different generated language L(Gj).
Thus, it is possible to define different prefix closed
languages L(Gi), one for each initial state qi. In the union
of these languages [i2 IQLðGiÞ, it may become impossible
to distinguish between identical symbol sequences
generated from different initial states. This difficulty is
alleviated by labelling each string with the index
(or colour) of its initial state. Note that the empty
string " has no colour.

Definition 1: For a given DFSA having the state set Q
and symbol alphabet �, the colour alphabet is defined
to be the state index set IQ. Then, the unique label j
associated with the initial state qj of a string
t2 [i2 IQ LðGiÞ is called the colour of the string t.
The properties of the colour alphabet IQ are

summarized below:

. There exists a bijective mapping between IQ and Q.

. IQ \� ¼ ;:

. j" ¼ j 8j2 IQ.

. Each symbol in IQ has zero string length, i.e.,
j jj ¼ 0, 8j2 IQ.

Definition 2: For a given DFSA Gi with the initial state
qi 2 Q, the ith colour language associated with the
colour alphabet IQ is defined to be

Lc
i ¼ iLðGiÞ

[
f"g and Lc ¼

[
i2 IQ

Lc
i ð1Þ

and the ith total colour language is defined to be

L
c
i ¼ i��

[
f"g and L

c
¼

[
i2 IQ

L
c
i : ð2Þ

The ith colour language is obtained from the generated
language L(Gi) by prefixing all non-null strings with the
colour of the starting state of the strings, namely i. Note
that string lengths do not change due to the presence
of the zero-length colour. Furthermore, if the state
transition function � in the DFSA Gi� (Q, �, �, qi, Qm)
is a total function, then Lc

i ¼ L
c
i .

The complete colour language Lc is the union of
(disjoint) colour languages and hence the problem of
distinguishing identical symbol sequences starting from
different states is alleviated. In general, Lc � L

c with the
equality holding if and only if LðGiÞ ¼ ��8 i2 IQ.

Remark 1: For every non-empty (coloured) string
s 2 Lc, there exists j2 IQ, t2�� such that s¼ jt.

Definition 3: The (possibly non-commutative) binary
operation �: Lc � Lc ! L

c is defined as

8s2Lc, s � " ¼ " � s ¼ s

and 8s, ~s2Lc � ;, s � ~s ¼ ðitÞ � ð~i ~t Þ � it ~t

for some t, ~t2��:

9>=
>; ð3Þ

In general, � is not a closed operation. That is, for some
s, ~s2Lc, s � ~s may not be an element of Lc. If s � ~s2Lc,
then s and ~s are said to be compatible. It should be noted
that compatibility of s and ~s implies the colour of the
terminating state of s is the same as the colour of
the starting state of ~s. That is, if s2Lc

i and ~s2Lc
i ,

compatibility of s with ~s implies s � ~s2Lc
j .

In Definition 3, the operation � can be viewed as a
special concatenation. The following extension is intro-
duced by analogy to extension of string concatenation to
language concatenation.

Definition 4: The extended binary operation
� � 2L

c

� 2L
c

! 2L
c

is defined as

8L�Lc, L � " ¼ " � L ¼ L

and 8L, ~L�Lc, L � ~L ¼
[
s2L

[
~s2 ~L

fs � ~sg:

9>=
>; ð4Þ

Remark 2: For any s 2 Lc with jsj ¼ k2 f1, 2, 3, . . .g,
there exist unique coloured strings s1, s2, . . . , sk with
sj 2Lc such that s1 � s2 � � � � � sk ¼ s. To see this,
let s¼ i1�1 � � � �k with i1 2 IQ, �j 2�. This implies that
s2LcðGi1 Þ and

qi1 !
�1

qi2 !
�2

� � � !
�k�1

qik !
�k

qikþ1
: ð5Þ

Hence, by defining sk� ik�k, one can construct sk 2Lc
ik
.

It also follows from Definition 3 that s1 � s2� � � � � sk ¼ s,
which is unique because of the deterministic property
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of the language L(Gi). Furthermore, for any given non-
empty s 2 Lc, there are unique j2 IQ, � 2� and ~s2Lc

such that s ¼ ð j�Þ � ~s.

Definition 5: The colour map c : Lc
! IQ [ f"g is

defined as

8s2L
c, cðsÞ ¼

" if s ¼ "

i if s ¼ i� for some i2 IQ, � 2��

�
ð6Þ

and c(s) denotes the colour of the string s.

Definition 6: The observation map p : Lc ! L
c is

defined as follows:

pð"Þ ¼ ",

8s2Lc � f"g such that s ¼ s1 � � � � � sk,

pðsÞ ¼ si1 � � � � � sij � � � � � sir ,

9>=
>;
ð7Þ

where ij 2 f1, . . . , kg 8j2 f1, . . . , rg and p(s) denotes the
observed string for any given string s 2 Lc.

Remark 3: The following facts hold in view of
Definitions 5 and 6:

. The observed starting state of a string s 2 Lc has the
colour c(p(s)).

. Since sij , sijþ1
in Definition 6 are, in general, not

compatible, it is possible that pðsÞ =2 Lc for a given
string s 2 Lc.

Definition 7: A string s 2 Lc is said to be completely
unobservable if p(s)¼ ".

Definition 8: The observed language Op for a DFSA
with respect to a given observation map p(�), is defined
to be the image Im(p) of the observation map p, i.e.,

Op ¼ pðLcÞ: ð8Þ

It follows from Definition 8 that the observed language
Op �L

c and is not necessarily a subset of Lc. The
observation map completely specifies unobservability
of the plant automaton. The two simple cases of
unobservability are presented below.

Definition 9: A DFSA plant is said to have state-
dependent regular unobservability if

8s � s1 � s2 � � � � � sk 2Lc,

pðsÞ ¼ p s1ð Þ � p s2ð Þ � � � � p skð Þ:

)
ð9Þ

A plant is said to have state-independent regular
unobservability if, in addition,

pði�Þ ¼ pð j�Þ 8� 2�, 8i, j2 IQ: ð10Þ

Remark 4: Regular state-dependent unobservability
in Definition 9 can be specified by marking certain

transitions in the graph of the DFSA as unobservable.
Note that, in general, the same event may be observable
at one state and unobservable at another state.
When this possibility is precluded, the situation is
state-independent regular unobservability. The state-
independent regular unobservability is a special case of
state-dependent regular unobservability; both cases have
been jointly referred to as regular unobservability in
the sequel. For regular unobservability, the observation
map is completely specified by defining an event string
in terms of unit-length strings � 2 Lc. However, the map
p(�) can be more complicated. For example, consider a
single state DFSA with its language L(G1)¼�*, where
�*¼ {�}, and the observation map is defined by the
condition that the symbols in the odd number positions
of any string are not observed. Then,

1� 7! "
1�� 7! 1�

1��� 7! 1�
1���� 7! 1��

1����� 7! 1��
1������ 7! 1���

and so on:

Therefore, p(�) cannot be defined by specifying its value
on the unit length string �. Interestingly, in this
particular example, Op is still a regular language,
namely �*, which may not be the case in general.

Remark 5: In case of state-independent regular
unobservability, the observation map p is a natural
projection (Lin and Wonham 1988a,b, Wong 1997) and
for state-dependent regular unobservability p has the
more general structure of a causal reporter map (Wong
andWonham 1996,Wong 1997) (since the event alphabet
can no longer be partitioned into observable and
unobservable events). Note, in both cases of regular
unobservability, the observation maps are prefix-
preserving (Wong 1997). Specifically, if s is a prefix of s0,
then p(s) is a prefix of p(s0) for an unobservability map p.

Definition 10: The phantom language Up of a DFSA
plant with respect to a given observation map p is
defined to be the kernel ker(p), i.e.,

Up ¼ fs2Lc j pðsÞ ¼ "g: ð11Þ

It follows from Definition 10 that the phantom language
is a sublanguage of Lc, but need not be a regular
sublanguage. However, for regular unobservability,
it will be shown that the phantom language is indeed
a regular sublanguage of Lc.

Definition 11: Given a DFSA Gi and an observation
map p, the phantom automaton P(Gi) is defined to be
a subautomaton of Gi such that the language
L
%
i � LðGiÞ, generated by PðGiÞ, consists of completely
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unobservable strings, i.e., p(s)¼ � for every s2 iL
%
i

(see Definition 7). Therefore,

L
%
i ¼

[
j2 IQ

L
%
i, j, ð12Þ

where L
%
i, j � fs2L

%
i js terminates on state qjg.

For regular unobservability, the phantom automaton
denoted by PðGiÞ of a DFSA Gi is given by Algorithm 1.

Algorithm 1: Derivation of phantom automation PðGiÞ

input: DFSA Gi, IQ, p
output: DFSA PðGiÞ

begin

for i2IQ do

for i 2� do

if p(i�j) is defined AND (i�j) 6¼ " then

Delete transition �j from state qi
end

end

end

Set the initial state of the automaton to qi
end

Algorithm 1 gives an automaton with initial state qi.
Denote it by Ai and the language generated by it
by L(Ai). Obviously, LðAiÞ � ��. If s2LðAiÞ, then

pðisÞ ¼ pði1�1Þ � pði2�2Þ � � � � pðik�kÞ ðDefinition 9Þ

¼ " � � � � � "

¼ "

which implies s2L
%
i . Conversely, if s2L

%
i , then

pðisÞ ¼ " ¼ pði1�1Þ � pði2�2Þ � � � � pðik�kÞ

) p ij�j
� �

¼ " 8j2 f1, . . . , kg ) s2LðAiÞ:

Remark 6: Algorithm 1 holds only for regular
unobservability. It follows that L

%
i is a regular sub-

language of L(Gi). Thus, Up ¼ [i2 IQ iL
%
i is a regular

sublanguage of Lc.
Next the measure of the language generated by the ith

phantom automaton is defined in the sense of the
measure construction presented in Appendix A.
Denoting the measure of L

%
i as �%

i , the equivalent
matrix form is

�% ¼ ðI� Pð�ÞÞ
�1�, ð13Þ

where �% � ½�%
1�

%
2 � � ��

%
n�
T; and the phantom transition

cost matrix Pð�Þ is defined to be the transition cost
matrix of the DFSA PðGiÞ (see Definition A.5 in
Appendix A). The inverse ½I� Pð�Þ�

�1 exists because
Pð�Þ is elementwise non-negative and bounded by �,
and � is a contraction implying that Pð�Þ is a
contraction as well.

Definition 12: The ith colour component zi: 2
Lc�f"g !

2LðGiÞ is defined as: 8L � fs1, s2, . . . , sk, . . .g�Lc � f"g,

ziðLÞ ¼ ziðfs1, s2, . . . , sk, . . .gÞ

¼ fziðfs1gÞ, ziðfs2gÞ, . . . , ziðfskgÞ, . . .g, ð14Þ

where

zið jtgÞ ¼
f"g if i 6¼ j

ftg if i ¼ j

�
and zið;Þ ¼ ;:

Now a signed real measure # : 2L
c

! R � ð�1, þ1Þ is
constructed on the �-algebra 2L

c

, similar to the
construction of language measure in Appendix A.
With the choice of this �-algebra, every singleton set
made of a string s 2 Lc is a measurable set, which
qualifies itself to have a numerical quantity based on the
following construction

8L�Lc, #ðLÞ ¼
X
i2 IQ

�iðziðL� f"gÞÞ: ð15Þ

The set function # is a well-defined signed measure that
satisfies the following conditions:

. #ð;Þ ¼ 0:

. Finiteness and countable additivity of # inherited
from the language measure � (see Appendix A).

. #ðiLÞ ¼ �0ðLÞ 8L�LðGiÞ.

. #ðf"gÞ ¼
P

i2 IQ
�iðzið;ÞÞ ¼

P
i2 IQ

�ið;Þ ¼ 0.

Construction of the language measure in Appendix A
facilitates computation of a quantitative measure of the
language L(Gi) for all i 2 IQ. This measure is adequate
under complete observability and has been successfully
used for optimal control under full observation (Lin and
Wonham 1988a,b, Wong 1997). However, in the
generalized case of partial observability, event strings
that are observed to initiate from a given state may
actually start from a different one. A control policy that
does not take this effect into consideration may cause
colossal errors. For example, the supervisor may enable
a controllable event leading to a state of negative weight
based on its observation which erroneously indicated
that the particular transition will terminate at a state
of positive weight. Two sublanguages of Lc, denoted
by L1

i and L11
i , are introduced next to address these

issues.

Definition 13: The language L1
i is the set of all strings

which pass through the state qi with the restriction
that the prefix of each string leading to the state qi is
completely unobservable. Formally,

L1
i ¼

�
s2Lcjs ¼ s1 � s2 where pðs1Þ ¼ " and s2 2Lc

i g

ð16Þ

Figure 1 illustrates the situation.

Language measure for discrete event systems 1077



By Definition 13, ðs2L1
i Þ ) ðs ¼ s1 � s2Þ and

ðs2 2Lc
i Þ ) (s1 terminates on state qi), which follows

from the fact that s1, s2 has to be compatible since
s1 � s2 2Lc. Hence, s1 initiates from a state qk 2Q,
terminates on state qi, and is completely unobservable
by definition. Hence from Definition 10, it follows that
s1 2 kL

%
k, i. Hence, s2L1

i ) s2 [k2 IQ kL
%
k, i � L

c
i . The

converse follows with a similar reasoning. Therefore,

L1
i ¼

[
k2 IQ

kL
%
k, i � L

c
i ð17Þ

Remark 7: It is important to note that L1
i is, in general,

a superset of the set of strings which are observed
to initiate at state qi. For example, if ðs2L1

i Þ ) ðs ¼
s1 � s2 and s2 ¼ i� � rsr, where � 2�, r2 IQ, sr 2Lc

r and
pði�Þ ¼ "Þ, then the string is observed to have initiated
from state qr, as seen in figure 1. The string that takes
the dotted path after state qi is not observed to initiate
from qi, i.e., both qi and its prefix are missed. A solution
to this problem is to consider the particular subset of L1

i

having only those strings for which at least the first
transition after qi is observable.

Definition 14: The language L11
i is defined to be the

subset of L1
i such that, for any string in L11

i , the first
transition after qi is unobservable. Formally,

L11
i ¼ s2L1

i : s ¼ s1 � s2ð Þ ) s ¼ s1 � i� � srð Þ
�

ð18Þ

where s1 2L
%
k, i; � 2�; sr 2LcðGrÞ for some r, k2 IQ;

and p(i�)¼ ".
It follows from figure 2 and Definition 14 that

pði�rÞ ¼ " if and only if �r 2�
%
i ��.

Hence,

s2L11
i ) s2

[
k2 IQ

kL
%
k, i

0
@

1
A �

[
�i 2�

%
i

i�j
rL Gj

� �0
@

1
A

and vice versa. Therefore,

L11
i ¼

[
k2 IQ

kL
%
k, i

0
@

1
A �

[
�%r 2�

%
i

i�j
rL Gj

� �0
@

1
A ð19Þ

where �
%
i is the set of unobservable events in �,

occurring at state qi; and �j
r 2�

%
i such that there exists

a transition �j
r in the phantom automaton PðGiÞ, with

�ðqi, �
j
rÞ ¼ qj.

It follows from Remark 7 that L1
i � L11

i is the set of all
event strings in L1

i for which the first transition after
the state qi is observable; that is, these strings are observed
to have initiated from state qi. Figures 1 and 2 clarify
the idea. Therefore, following Definitions 13 and 14, the
set difference L1

i � L11
i is the collection of all strings in Lc

that are observed to have initiated from state qi.

2.1 Computation of the language measure

This section presents the computation of the measures of
L1
i , L11

i and L1
i � L11

i from the closed form expressions
that are presented as the following theorem.

Theorem 1: The closed form expression for the language
measure under partial observation is obtained as follows:

# L1 � L11
� �

¼ D ½1� Pð�Þ
�T

1

..

.

1

8><
>:

9>=
>;

0
B@

1
CA

� ½I� Pð�Þ�½I���
�1�, ð20Þ

where D is the diagonalization map as defined in
Appendix B.

Proof: Two lemmas that are necessary to prove the
theorem are presented below.

Figure 1. Schematic interpretation of L1
i .

Figure 2. Schematic interpretation of L11
i .
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Lemma 1: The measure # of the language L1 is
expressed in closed form as

#ðL1Þ ¼ D ½I� Pð�Þ�
�T

1
..
.

1

8<
:

9=
;

0
@

1
A½I���

�1�: ð21Þ

Proof:

#ðL1
i Þ ¼ #

[
k2 IQ

kL
%
k, i �L

cðGiÞ

0
@

1
A

¼
X
k2 IQ

# kL
%
k, i �L

cðGiÞ

� �

¼
X
k2 IQ

�k L
%
k, iLðGiÞ

� �

¼
X
k2 IQ

X
!2L

%
k, i

~�%½!,qk�

8<
:

9=
;�iðLðGiÞÞ

¼
X
k2 IQ

X
!2L

%
k, i

~�%½!,qk�

8<
:

9=
;�i

¼ D ½I�Pð��
�T

1

..

.

1

8>><
>>:

9>>=
>>;

0
BB@

1
CCA�

8>><
>>:

9>>=
>>;

i

ðSee Appendix BÞ

¼ D ½I�Pð��
�T

1

..

.

1

8>><
>>:

9>>=
>>;

0
BB@

1
CCA½I���

�1�

8>><
>>:

9>>=
>>;

i

: &

Lemma 2: The closed form expression for #ðL11
i Þ is

given as

#ðL11Þ¼D ½I�Pð�Þ�
�T

1

..

.

1

8><
>:

9>=
>;

0
B@

1
CAPð�Þ½I���

�1� ð22Þ

Proof:

#ðL11
i Þ ¼#

[
k2IQ

kL
%
k, i

0
@

1
A�

[
�jr2�

%
i

�ðqi,�
j
rÞ¼qj

�j
rLðGjÞ

0
BBB@

1
CCCA

0
BBB@

1
CCCA

¼
X
k2IQ

# kL
%
k, i

� �
�

[
�j
r2�

%
i

�ðqi,�
j
rÞ¼qj

i�j
rLðGjÞ

0
BBB@

1
CCCA

0
BBB@

1
CCCA

¼
X
k2IQ

�k L
%
k, i

� � [
�jr2�

%
i

�ðqi,�
j
rÞ¼qj

i�j
rLðGjÞ

0
BBB@

1
CCCA

0
BBB@

1
CCCA

¼
X
k2IQ

X
!�L%

k, i

~�%½!,qk�

8<
:

9=
;�i

[
�jr2�

%
i

�ðqi,�
j
rÞ¼qj

�j
rLðGjÞ

0
BBB@

1
CCCA

¼
X
k2IQ

X
!�L

%
k, i

~�%½!,qk�

8<
:

9=
;
X
j2IQ

X
�2�%

i

�ðqi,�Þ¼qj

~�%½�,qi�

8>><
>>:

9>>=
>>;�j

¼
X
k2IQ

X
!2L%

k, i

~�%½!,qk�

8<
:

9=
;
X
j2IQ

Pð�Þij�j

¼
X
k2IQ

X
!2L%

k, i

~�%½!,qk�

8<
:

9=
; Pð�Þ�ð Þi

¼ D ½I�Pð�Þ�
�T

1

..

.

1

8><
>:

9>=
>;

0
B@

1
CAPð�Þ�

8><
>:

9>=
>;

i

ðSeeAppendix BÞ

¼ D ½I�Pð�Þ�
�T

1

..

.

1

8><
>:

9>=
>;

0
B@

1
CAPð�Þ½I���

�1�

8><
>:

9>=
>;

i

: &

The proof of the theorem follows directly from
Lemmas 1 and 2. œ

Remark 8: Under complete observability, Pð�Þ ¼ 0
and therefore, #ðL11

i Þ ¼ �iðLðGiÞÞ ¼ �i. Then, the set of
strings observed to initiate from any given state qi is
the set of strings that do actually start from qi. That is,
under complete observability, L1 ¼ LðGiÞ and L11 ¼ ;.
Theorem 1 is consistent with this observation because
the condition, Pð�Þ ¼ 0, holds under complete
observability, and hence #ðL1 � L11Þ ¼ �iðLðGiÞÞ.

3. Quantification of unobservability

Given a plant model, described by the regular language
L(Gi), this section quantifies the effects of event
unobservability at the supervisory level in terms
of the following exact short sequence of monoids
(Rotman 2002).

0 ! Up !
t
Lc !

p
Op ! 0, ð23Þ
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where t is the inclusion map and p is the natural
projection onto Op. Exactness of the sequence results
from the facts that t is injective, p is surjective and the
kernel of p is the image under t, i.e., ker p¼ Im t. If this
exact sequence is split, unobservability has no effect
because each observed string would have a unique
mapping back to an element of Lc. In general, the
projection map p can be used to define an equivalence
relation on Lc as follows:

8si, sj 2Lc, ð pðsiÞ ¼ pðsjÞÞ ) ðsi 	 sjÞ
� �

: ð24Þ

This induces a partition P on Lc with at most countable
number of equivalence classes, and each equivalence
class of P has the property that every string in the
equivalence class maps to the same element of Op. The
cardinality bound on the number of equivalence classes
is due to the fact that the number of strings in Lc itself
is at most countable. Moreover, it follows that
8sj 2Op, p�1ðsjÞ ¼ Pk for some k.

Theorem 2: If the phantom language Up (see
Definition 10) is a context free language (CFL), then
8sj 2Op, p

�1ðsjÞ is a context free sublanguage of Lc.

Proof: Let sj ¼ j�1�2 � � � �N for some j2 IQ. Then,
p�1ðsjÞ ¼ ðUp�1 � Up�2 � � � � � Up�N � UpÞ

T
Lc. Closure

of context free languages under concatenation implies
Up�1 � Up�2 � � � � � Up�N � Up

� �
is a context free

language. Then, closure under intersection implies
p�1(sj) is context free as well. Detailed proofs of the
closure properties are given in Hopcroft et al. (2001).

Corollary 1: In case of regular unobservability, 8sj 2Op,
the inverse image p�1(sj) is a regular sublanguage of Lc.

Definition 15: The cumulative unobservability index
�cum for a given discrete event plant model under a
specified unobservability situation is defined as follows:

�cum ¼
X�cum 2R such that

s2Op

sup
� 2 p�1ðsÞ

#ð�Þ � inf
� 2 p�1ðsÞ

#ð�Þ

�����
�����:

The cumulative unobservability index �cum quantifies
the maximum cumulative error one may incur from the
viewpoint of language measure due to the presence
of unobservable transitions.
The salient properties of �cum are delineated below.

. �cum 2 ½0,1Þ. A specific upper bound is determined
from the bounded total variation property of the
language measure (Ray 2005).

. If the observation map p is injective, then
8s2Op, p�1ðsÞ is a singleton set and hence �cum¼ 0.
This is expected because it follows, from the short
exact sequence, that an injective p implies Im t is trivial,
i.e., the only unobservable string is the empty string ".

. � ¼ 0 ) 8s2Op, sup� 2 p�1ðsÞ #ð�Þ ¼ inf� 2 p�1ðsÞ #ð�Þ.
From the bounded total variation of the language
measure, it follows that, for �cum¼ 0, if Card(p�1(s))
is countably infinite, then #ð�Þ ¼ 0 8� 2 p�1ðsÞ, i.e.,
p�1(s) is a set of strings of zero measure. However, it is
possible that #ð�Þ has a non-zero value 8� 2 p�1ðsÞ if
p�1(s) is a finite set.

4. Application examples

This section presents three examples to elucidate the
concept of discrete event supervisory (DES) control
under partial observation. These examples show how
the theories, developed in xx 2 and 3, can be applied to
problems in different disciplines.

4.1 Example 1: Language measure under
partial observability

This example illustrates how the language measure
under full observability (Ray 2005) is altered under
partial observability. Figure 3 shows a deterministic
finite state automaton (DFSA) with three states and an
alphabet �¼ {	, �}, where the event 	 is unobservable.
The state transition cost matrix is as follows.

� ¼

0 0:8 0:1

0:1 0 0:8

0:8 0:1 0

2
64

3
75 and Pð�Þ ¼

0 0 0:1

0:1 0 0

0 0:1 0

2
64

3
75;

and assuming � ¼ ½ 1 0 �1 �T, the language measures
are given by

� ¼

0:7287

�0:2834

�0:4453

2
64

3
75; #ðL1Þ ¼

0:8097

�0:3149

�0:4948

2
64

3
75;

#ðL1 � L11Þ ¼

0:8592

�0:3959

�0:4633

2
64

3
75:

The observed language Op has the regular expression
IQ�*, where the superscript * indicates Kleene closure.

q1

q2

q2a
a a

s

s s

Figure 3. Finite state model with unobservable transitions.
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Now, the unobservability index �cum is calculated
summing the unobservability �i of individual subsets.
Considering the set of strings in p�1(1"), the maximum

possible measure of a string is (0.2)3¼ 0.008 achieved
by the string 			, and the minimum possible measure is
�0.2 achieved by the singleton string 	 and it weight
�¼�1. In the calculations that follow, �i denotes the
unobservability calculated from a subset Oi � Op such
that 8s2Oi, cðsÞ ¼ i (see Definition 5). Continuation of
this process yields

�1 ¼ ð0:1þ 0:12Þ � ð0:8þ 0:84 þ 0:87 þ � � �Þ

þ ð1þ 0:12Þ � ð0:82 þ 0:85 þ 0:88 þ � � �Þ

þ ð1þ 0:1Þ � ð1þ 0:83 þ 0:86 þ 0:89 þ � � �Þ

¼ 3:744:

Similarly, �2¼ 3.771 and �3¼ 3.421; and sum of the
three components together yields the unobservability
index

�cum ¼ 3:744þ 3:771þ 3:421

¼ 10:936:

Calculations of the unobservability index for a general
situation could be numerically cumbersome mainly
due to computational complexity, which is a topic of
future research.

4.2 Example 2: Control of aircraft under
partial observability

This example shows an engineering application on
discrete event control of aircraft under partial loss
of sensor information. It follows from the physics of
flight mechanics that an aerofoil has a critical angle of
attack at which the lift coefficient abruptly drops to zero
as illustrated in figure 4. This is known as the stall

phenomenon that is, in general, a function of aero-
dynamic parameters. Hence, there is a limit to the
steepness of the climb that a given aircraft can execute.
A sensor malfunction may cause delay in recognition of
an obstacle in the flight path. Consequently, it may
become impossible for the pilot to avoid the obstacle
without going into an accelerated stall, which may lead
to rapid altitude loss and possible crash of the aircraft as
displayed in figure 5.

Figure 6 depicts a finite state model of aircraft
operation for obstacle avoidance, whose states and
�-values, and events are listed in table 1 and table 2,
respectively. The good marked states that have positive
�-values are q1 and q7; the bad marked states that have
negative �-values are q5 and q6; and the remaining states
are unmarked and have zero �-values, implying that

L
if

t c
oe

ff
ic

ie
nt

 C
L

Stall angle

Angle of attack

0° 10° 20°

3.0

2.0

1.0

Figure 4. Profile of lift coefficient.

Table 1. List of plant states and corresponding
�-values.

State Description �

q1 Normal flight 0.2
q2 Obstacle avoidance 0.0

q3 Obstacle recognition 0.0
q4 Obstacle too close 0.0
q5 Aircraft destroyed �1.0

q6 Aircraft in accelerated stall �0.9
q7 Successful recovery from stall 0.05

Stall

Obstacle

Figure 5. Obstacle avoidance failure caused by loss of
observation.

n
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v
v

v
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d

q1

q7

q5

q6

q2

q3

q4

Figure 6. Finite state model of obstacle avoidance.
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termination on these states has no bearing on the flight

performance. The event w from state q3 to q4 is

unobservable (shown by a dashed line in figure 6),

which relates to the physical situation of a delay in

obstacle recognition or a sensor malfunction leading to

incorrect obstacle distance reading. The event cost

matrix ~� is given in table 3. The state transition

matrix and the language measures under complete and

partial observability are computed based on the theories

developed in xx 2 and 3 and are shown in tables 4 and 5

respectively.
A comparison of the measures under perfect observa-

tion and partial observation reveals that the language

of a plant operating mode may have a positive measure

under loss of observability although the measure is

actually negative. For example, the measure, with q3
(i.e., obstacle recognition) as the initial state, of the

language under perfect observation is �3¼�0.3006 and,

under loss of sensor information, it changes to

#3 ¼ 0:0482. This is a false good representation of a

truly bad scenario. Thus, a language-theoretic super-

visory control under the assumption of perfect observa-

tion (Ray et al. 2004) may fail to take into account the

effects of possible partial observation and thus make

serious errors in decision making.
The cumulative unobservability index �cum (see

Definition 15) can be calculated from the following

fact. An observed string s that has more than one point

in its inverse image p�1(s) must be of the form s¼ s1 f,

where s1 does not contain the event f. It is also noted

that p�1(3f )¼ {3f, 3wf }. Hence, the cumulative
unobservability index is

�cum ¼
X7
i¼1

�i Lðqi, q3Þð Þ
setting �ðqiÞ¼1
and deleting unobservable w

������
8<
:

9=
;j�3ðwf Þj

¼ f4:3983g � jð0:3� 0:8��0:9Þj

¼ 0:95: ð25Þ

4.3 Example 3: Pathogenic control under
partial observability

This example presents a simplified version of population
control of pathogen within a living body. There are two
antipathogens available, P1 for control of strain A and
P2 for control of strain B. However, P1 acts as an
accelerant for growth of strain B and similarly P2 acts
as an accelerant for growth of strain A. Furthermore,
the strains can mutate from one type to the other. Under
these circumstances, it becomes critical to observe the
specific mutations. A finite state model of pathogen
population growth is given in figure 7 along with the
lists of states and their respective �-values, and events in
tables 6 and 7, respectively. The mutation events u are
unobservable as shown by dashed arcs in figure 7. The
event cost matrix and the state transition cost matrix for
this specific case of pathogenic population control is
given in tables 8 and 9 respectively. The language
measures, � and #ðL1 � L11Þ, under complete

Table 2. List of events.

Event Physical interpretation

n Normal flight pattern recovered
v Obstacle appeared ahead
w Obstacle appeared close ahead

f Initiating ascent to avoid obstacle
r Recovery maneuvers initiated
d Aircraft crashes

Table 3. Event cost matrix ~� for obstacle avoidance.

~� n v w f r d

q1 0.7 0.2 0.0 0.0 0.0 0.0
q2 0.7 0.1 0.0 0.0 0.0 0.0

q3 0.0 0.0 0.5 0.1 0.0 0.3
q4 0.7 0.2 0.8 0.0 0.0 0.0
q5 0.0 0.0 0.0 0.0 0.0 0.0

q6 0.0 0.0 0.0 0.5 0.4 0.0
q7 0.3 0.3 0.0 0.0 0.0 0.2

Table 4. State transition matrix � for obstacle avoidance.

� q1 q2 q3 q4 q5 q6 q7

q1 0.7 0.0 0.2 0.0 0.0 0.0 0.0

q2 0.7 0.0 0.1 0.0 0.0 0.0 0.0
q3 0.0 0.5 0.0 0.3 0.1 0.0 0.0
q4 0.0 0.0 0.0 0.0 0.0 0.8 0.0
q5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

q6 0.0 0.0 0.0 0.0 0.5 0.0 0.4
q7 0.3 0.0 0.3 0.2 0.0 0.0 0.0

Table 5. Computed measures for obstacle
avoidance.

States � #ðL1 � L11Þ

q1 0.4663 0.4663
q2 0.2963 0.2963

q3 �0.3006 0.0482
q4 �1.1625 �1.5112
q5 �1.0000 �1.0000

q6 �1.4531 �1.4531
q7 �0.1328 �0.1328
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observability and loss of observability, respectively, are
shown in table 10.
Following the rationale in Example 2 (see x 4.1), the

measure with q2 (i.e., stable population with strain B) as
the initial state, of the language under perfect observa-
tion is �2¼�0.0333 and, under loss of sensor informa-
tion, it changes to #2 ¼ 0:0338. Hence, a DES control
algorithm that does not take the effects of information
loss into account may fail.

5. Summary and conclusions

Performance of DES control systems could be seriously
affected by loss of information (e.g., due to sensor
malfunctions or communication link failures). Ignoring
the effects of unobservable transitions does not only
affect the control system performance, but also may
result in controller actions that are in direct contra-
diction to control objectives.

This paper addresses the problem by extending the
signed real measure for regular languages, which has
been developed under perfect observation (Ray 2005),
i.e., if the supervisor receives the complete information
on occurrence of events in the plant. The language
measure under partial observability, reported in this
paper, accounts for partial observability due to loss of
information. Specifically, the language measure is
modified to circumvent the detrimental effects resulting
from loss of observability. The unobservability of events
is statebased, implying that a given event may be
observable at one state and unobservable at another
state. The significant differences in language measures,
under full observability and partial observability, are
illustrated by physical examples.

Future work in this direction may involve research on
modification of the existing theory of optimal control
policies under full observation (Ray et al. 2004) to
accommodate loss of observability and numerical
computation of the unobservability index. The func-
tional relationships of languagemeasure with the amount
of available information should also be investigated.
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Appendix A

Brief review of language measure

This section summarizes the signed real measure of
regular languages; the details are reported in Ray (2005).

Table 6. List of plant states and corresponding �-values.

State Pathogen description �

q1 Stable population with strain A dominant 0.01
q2 Stable population with strain B dominant 0.13
q3 Population increasing at geometric rate �1

Table 7. List of events.

Event Description

m1 Anti-pathogen P1 administered
m2 Anti-pathogen P2 administered
u Pathogen mutation

u

u

m1

m1

m2

m2

m2,m1

q1 q2

q3

Figure 7. Finite state model for pathogen control.

Table 8. Event cost matrix ~� for
pathogen control.

~� m1 m2 u

q1 0.60 0.01 0.30

q2 0.02 0.40 0.40
q3 0.40 0.40 0.00

Table 9. State transition matrix � for
pathogen control.

� q1 q2 q3

q1 0.60 0.30 0.01
q2 0.40 0.40 0.02

q3 0.00 0.00 0.80

Table 10. Computed measures for
pathogen control.

States � #ðL1 � L11Þ

q1 �0.1250 �0.1921
q2 �0.0333 0.0338
q3 �5.0000 �5.0000
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Let Gi � Q,�, �, qi,Qm

� 	
be a trim (i.e., accessible and

co-accessible) finite-state automaton model that repre-
sents the discrete-event dynamics of a physical plant,
where Q ¼ fqk : k2 IQg is the set of states and
IQ� {1, 2, . . ., n} is the index set of states; the automaton
starts with the initial state qi; the alphabet of events
is � ¼ f�k : k2 I�g, having � \ IQ ¼ ; and I��

{1, 2, . . . , ‘} is the index set of events; �: Q��!Q is
the (possibly partial) function of state transitions; and
Qm � fqm1

, qm2
, . . . , qml

g � Q is the set of marked
(i.e., accepted) states with qmk

¼ qj for some j2 IQ.
Let �* be the Kleene closure of �, i.e., the set of all

finite-length strings made of the events belonging to � as
well as the empty string " that is viewed as the identity of
the monoid �* under the operation of string concatena-
tion, i.e., "s¼ s¼ s". The extension �*: Q��*!Q is
defined recursively in the usual sense (Ramadge and
Wonham 1987).

Definition A.1: The language L(Gi) generated by a
DFSA G initialized at the state qi 2Q is defined as:

LðGiÞ ¼ s2��j��ðqi, sÞ 2Q
� 


: ð26Þ

The language Lm(Gi) marked by the DFSA G initialized
at the state qi 2Q is defined as:

Lm Gið Þ ¼ s2��j�� qi, sð Þ 2Qm

� 

: ð27Þ

Definition A.2: For every qj 2Q, let L(qi, qj) denote the
set of all strings that, starting from the state qi, terminate
at the state qj, i.e.,

Li, j ¼ s2��j�� qi, sð Þ ¼ qj 2Q
� 


: ð28Þ

The set Qm of marked states is partitioned into Qþ
m and

Q�
m, i.e., Qm ¼ Qþ

m [Q�
m and Qþ

m \Q�
m ¼ ;, where

Qþ
m contains all good marked states that we desire to

reach, and Q�
m contains all bad marked states that we

want to avoid, although it may not always be possible to
completely avoid the bad states while attempting to
reach the good states. To characterize this, each marked
state is assigned a real value based on the designer’s
perception of its impact on the system performance.

Definition A.3: The characteristic function �:
Q! [�1, 1] that assigns a signed real weight to
state-based sublanguages L(qi, q) is defined as:

8q2Q, �ðqÞ 2

½�1, 0Þ, q2Q�
m

�f0g q =2Qm

ð0, 1�, q2Qþ
m:

8><
>: ð29Þ

The state weighting vector, denoted by � ¼

½�1 �2 � � � �n�
T, where �j � �ðqjÞ 8j2 IQ, is called the

�-vector. The jth element �j of �-vector is the weight
assigned to the corresponding terminal state qj.

In general, the marked language Lm(Gi) consists of both
good and bad event strings that, starting from the initial
state qi, lead to Qþ

m and Q�
m respectively. Any event string

belonging to the language L0 ¼ LðGiÞ � LmðGiÞ leads to
one of the non-marked states belonging to Q�Qm and
L0 does not contain any one of the good or bad strings.
Based on the equivalence classes defined in the Myhill–
Nerode Theorem, the regular languages L(Gi) and
Lm(Gi) can be expressed as:

LðGiÞ ¼
[
q
k 2Q

Li, k ð30Þ

LmðGiÞ ¼
[

q
k 2Qm

Li, k ¼ Lþ
m [ L�

m ð31Þ

where the sublanguage Li, k � Gi having the initial state
qi is uniquely labelled by the terminal state qk, k2 IQ
and Li, j \ Li, k ¼ ; 8j 6¼ k; and Lþ

m �
S

qk 2Qþ
m
Li, k and

L�
m �

S
qk 2Q�

m
Li, k are good and bad sublanguages

of Lm(Gi), respectively. Then, L0 ¼
S

qk=2Qm
Li, k and

LðGiÞ ¼ L0 [ Lþ
m [ L�

m.
A signed real measure �i: 2LðGiÞ ! R � ð�1, þ1Þ is

constructed on the �-algebra 2LðGiÞ for any i2 IQ;
interested readers are referred to Ray (2005) for the
details of measure-theoretic definitions and results. With
the choice of this �-algebra, every singleton set made of
an event string s2LðGiÞ is a measurable set. By the
Hahn decomposition theorem (Rudin 1988), each of
these measurable sets qualifies itself to have a numerical
value based on the above state-based decomposition of
L(Gi) into L0(null), Lþ(positive), and L�(negative)
sublanguages.

In the following definition, each event is assigned
a state-dependent cost that is conceptually similar to the
conditional transition probability.

Definition A.4: The event cost of the DFSA Gi is
defined as a (possibly partial) function
~� : �� �Q ! ½0, 1� such that 8qi 2Q, 8�j 2�, 8s2��,

~�½�j, qi� ¼ 0 if �ðqi, �jÞ is undefined; ~�½", qi� ¼ 1;

~�½�j, qi� � ~�ij 2 ½0, 1Þ;
X
j2 I�

~�ij < 1;

~�½�js, qi� ¼ ~�½�j, qi� ~�½s, �ðqi, �jÞ�:

Consequently, the n� ‘ event cost matrix is defined as:

~� ¼

~�11 ~�12 � � � ~�1‘

~�21 ~�22 � � � ~�2‘

..

. ..
. . .

. ..
.

~�n1 ~�n2 � � � ~�n‘

2
6666664

3
7777775

ð32Þ
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Definition A.5: The state transition cost, �:
Q�Q! [0, 1), of the DFSA Gi is defined as follows:

8qi, qj 2Q,�ij ¼

P
� 2� ~�½�, qi�, if �ðqi, �Þ ¼ qj

0 if f�ðqi, �Þ ¼ qjg ¼ ;

�
ð33Þ

Consequently, the n� n state transition cost matrix
is defined

� ¼

�11 �12 � � � �1n

�21 �22 � � � �2n

..

. ..
. . .

. ..
.

�n1 �n2 � � � �nn

2
664

3
775 ð34Þ

Definition A.6: Let !2Lðqi, qjÞ � 2LðGiÞ. The signed
real measure �i of every singleton string set {!} is
defined as:

�iðf!gÞ � ~�ð!, qiÞ�ðqjÞ: ð35Þ

The signed real measure of a sublanguage Li, j � LðGiÞ is
defined as:

�i, j � �iðLðqi, qjÞÞ ¼
X

!2Lðqi, qjÞ

~�½!, qi�

0
@

1
A�j: ð36Þ

Therefore, the signed real measure of the language of
a DFSA Gi initialized at qi 2Q, is defined as

�i � �iðLðGiÞÞ ¼
X
j2 IQ

�iðLi, jÞ: ð37Þ

It is shown in Ray (2005) that the language measure in
equation (37) can be expressed as

�i ¼
X
j2 IQ

�ij�j þ �i ð38Þ

The language measure vector, denoted as
� ¼ ½�1 �2 � � � �n �

T, is called the �-vector. In
vector form, equation (38) becomes

� ¼ ��þ � ð39Þ

whose solution is given by

� ¼ ðI��Þ
�1� ð40Þ

where the inverse in equation (40) exists because � is a
contraction operator (Ray 2005).

Appendix B

Measure of sets of strings terminating at a given state

The expression for the language measure in equation (40)
can be restructured into the following form.

�1, 1 �1, 2 � � � �1,n

�2, 1 �2, 2 � � � �2,n

..

. ..
. . .

. ..
.

�n, 1 �n, 2 � � � �n,n

2
66664

3
77775 ¼ ½I���

�1

�1 0 � � � 0

0 �2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �n

2
66664

3
77775:

ð41Þ

Hence the measure of the language Li�L(Gi) is given by

�i �
X
j2 IQ

�i, j ¼
X
j2 IQ

X
!2Lðqi:qjÞ

~�½!, qi�

0
@

1
A�j

¼ ½I���
�1�

� 

i
: ð42Þ

Language measure, under partial observability, would
require summation over the indices of initial states, in
addition to summing over the indices of terminal states
in equation (42).

Definition A.6 implies that �i is the measure of the set
of all strings that initiate from the state qi. That is, �i is
obtained by summing up the ith row of the matrix on the
left hand side of equation (41). However, the analysis
developed in x 2 also requires the computation of a
closed form expression for the measure of the set of all
strings terminating at a given state (say qj). This would
require summing up the jth column of the matrix on the
left hand side of equation (41). While for the initiating
case, the result can be expressed as the matrix product in
equation (40), the terminating case requires definition of
the diagonalization map D: Rn

! R
n�n where

D


1

..

.


n

8>><
>>:

9>>=
>>;

0
BB@

1
CCA :¼


1 � � � 0

..

. . .
. ..

.

0 � � � 
n

2
664

3
775 8
 2R

n
ð43Þ

and we have

X
i2 IQ

�i, j ¼
X
i2 IQ

X
!2Lðqi, qjÞ

~�½!, qi�

0
@

1
A�j

¼ D ½I���
�T

1

..

.

1

8><
>:

9>=
>;

0
B@

1
CA�

8><
>:

9>=
>;

j

: ð44Þ
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Equation (44) follows from the fact that each diagonal
entry of

D ½I���
�T

1
..
.

1

8<
:

9=
;

0
@

1
A

is the corresponding column sum of [I��]�1. A simple
example will clarify the point.

Example B.1: Assume the set of states Q¼ {q1, q2}. Let
the state transition matrix be given by � with

½I���
�1

¼
a11 a12

a21 a22

� �
and � ¼

�1

�2

� �
: ð45Þ

Then it follows from equation (41),

�1, 1 �1, 2

�2, 1 �2, 2

� �
¼

a11�1 a12�2

a21�1 a22�2

� �
ð46Þ

The measure of the set of all strings terminating on
states q1 and q2 is given by �1,1þ�2,1¼ a11�1þ a21�1
and �1,2þ�2,2¼ a12�2þ a22�2 respectively. And using
the diagonalization map, we obtain

D
a11 a12

a21 a22

� �T 1

..

.

1

8><
>:

9>=
>;

0
B@

1
CA ¼

a11 þ a21 0

0 a12 þ a22

� �

ð47Þ

implying D ½I���
�T

1

..

.

1

8><
>:

9>=
>;

0
B@

1
CA� ¼

a11�1 þ a21�1

a12�2 þ a22�2

� 
:

ð48Þ
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