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Abstract

This paper presents a novel analytical tool for early detection of fatigue damage in polycrystalline alloys that are

commonly used in mechanical structures. Time series data of ultrasonic sensors have been used for anomaly detection in

the statistical behaviour of structural materials, where the analysis is based on the principles of symbolic dynamics and

automata theory. The performance of the proposed method has been evaluated relative to existing pattern recognition tools,

such as neural networks and principal component analysis, for detection of small changes in the statistical characteristics of

the observed data sequences. This concept is experimentally validated on a special-purpose test apparatus for 7075-T6

aluminium alloy specimens, where the anomalies accrue from small fatigue crack growth.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Gradually evolving changes in the structural parameters of a mechanical system over its service life may
generate uncertainties in both dynamic and stationary behaviour. This problem is often addressed by overly
conservative estimates of the critical design parameters due to lack of available information. Consequently,
the engineering design of mechanical systems suffers from enforcement of large safety factors and results in
manufacture of cumbersome and unnecessarily expensive machinery.

Material irregularities, uncertain usage patterns (e.g. random overloads and sudden jerks) and
environmental conditions (e.g. fluctuations in temperature and humidity) may adversely affect the service
life of mechanical systems to cause performance degradation and unanticipated failures. Damage due to
fatigue crack is one of the most commonly encountered sources of structural degradation during both nominal
and off-nominal operations in mechanical systems [1]. If not detected at an early stage, the accumulated
fatigue damage could potentially cause catastrophic failures in the system, leading to loss of human life and
expensive equipment. Therefore, for reliable operation and enhanced availability, it is necessary to develop
e front matter r 2005 Elsevier Ltd. All rights reserved.
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capabilities for prognosis of impending failures, such as the onset of wide-spread crack damage in critical
structures. In the current state-of-the-art, direct measurements of fatigue damage at an early stage (e.g. crack
initiation) are not feasible due to lack of appropriate sensing devices and analytical models. This paper
attempts to address this inadequacy by taking advantage of advanced signal processing and pattern
recognition tools. Since a vast majority of structural components that are prone to fatigue damage are made of
polycrystalline alloys [1], the paper focuses on fatigue damage sensing and prediction for such materials.

Sole reliance on model-based analysis for structural damage monitoring is infeasible because of the
difficulty in achieving requisite accuracy in modelling of fatigue damage evolution. For example, no existing
model can capture the dynamical behaviour of fatigue damage at the grain level based on the basic
fundamentals of molecular physics. In general, these models are critically dependent on the initial defects in
the materials, which may randomly form crack nucleation sites. Small deviations in the distribution of initial
defects may produce large variations in the evolution of fatigue damage for (apparently) identical specimens
under the same loading and environmental conditions [2]. The stochastic nature of fatigue damage stresses the
need for online updating of information using various sensing devices which can provide useful estimate of
fatigue damage and are capable of issuing early warnings. Consequently, the analysis of time series data [3]
from the available sensors mounted on the critical machinery components, is essential for tracking the
behaviour pattern of the evolving fatigue damage in real time. Recent literature has demonstrated fatigue
crack monitoring using sensor-based information [4,5]. Ultrasonic sensing techniques were applied for fatigue
crack detection but they lacked precise signal processing capabilities for small change detection. Information
from multiple (e.g. ultrasonic and acoustic emission) sensors was used for fatigue crack monitoring [6] and the
results were shown to be in good agreement. However, the issues of early detection and real-time continuous
health monitoring were not addressed.

Various signal processing applications deal with the analysis of time series data and attempts have been
made to extract maximum useful information from the ensemble of sensor data. The problem of feature
extraction from time series data for structural health monitoring has been recently addressed by many
researchers [7–9]. The tools of statistical pattern recognition, auto-regressive model analysis, and wavelet
analysis were applied to classify faults by different data patterns. However, the critical issue of detecting
gradually evolving faults in real time were not addressed. Moreover, no quantifying measure was provided for
damage accumulation and growth rate based on statistical information. Recently, techniques of non-linear
dynamics have been applied for structural health monitoring [10–12] based on the concepts of attractor-based
cross-prediction error between the measured signal and its predicted value. However, since dimension of the
phase space may grow unbounded for noisy data, the analysis could be computationally expensive and
infeasible for real-time applications. Furthermore, dealing with high dimensions might lead to spurious results
and dimension reduction may lead to loss of vital information. To alleviate these difficulties, this paper has
adopted a novel method of wavelet-based partitioning [13,14]. Based on this partitioning, the pertinent
information is extracted from time series data sets in the form of probability distributions. Slight deviations in
these distributions from that under the nominal condition is captured to identify the damage pattern.

Anomaly detection using symbolic time series analysis (STSA) [15] is a pattern recognition method that has
been recently developed based upon a fixed-structure, fixed-order Markov chain, called the D-Markov machine

[13]. This paper presents and experimentally validates this novel concept of fatigue damage prediction for early
detection of anomalous patterns in the sensor data. The proposed STSA-based technique is evaluated relative
to existing pattern recognition tools, such as neural networks and principal component analysis, for detection of
statistical behaviour changes in the observed data sequence. The experimental platform is a fatigue testing
apparatus, where possible anomalies accrue from the growth of small fatigue damage in 7075-T6 aluminium
alloy specimens.

The paper is organised in seven sections. Section 2 formulates the problem of anomaly detection and
summarises the concept of anomaly detection via symbolic time series analysis [13]. Section 3 describes the
details of the experimental apparatus and outlines the basic features of optical microscopy and ultrasonic
sensing. Brief descriptions of existing pattern recognition techniques are given in Section 4 and the algorithm
of D-Markov machine construction is presented in Section 5. The details of data collection and analysis, as
needed for experimental validation of the proposed concept, is described in Section 6. The results, derived
from the test data, are presented to make a comparative evaluation of the proposed method with other pattern
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recognition techniques from the perspectives of early detection of fatigue damage. Section 7 summarises and
concludes the paper with recommendations for future work.

2. Problem formulation

Behaviour identification in mechanical systems can be formulated as a two-time-scale problem if the
physical process is assumed to have stationary dynamics on the fast time scale and any observable non-
stationary behaviour is associated with changes occurring on the slow-time scale. In other words, the
variations in the internal dynamics of the system are assumed to be negligible on the fast time scale, while
pattern changes may become significant on the slow-time scale. In general, a long time span in the fast time
scale is a tiny (i.e. several order of magnitude smaller) interval in the slow-time scale, over which the system
dynamics are assumed to have stationary behaviour. For example, in the context of early detection of fatigue
damage in structural materials, small load fluctuations may take place on the fast time scale but the resulting
damage evolution and anomaly growth (causing a detectable change in the dynamics of the system) occurs on
the slow-time scale; the fatigue damage behaviour is essentially invariant on the fast time scale. Nevertheless,
the notion of fast and slow-time scales is dependent on the specific application and operating environment.

From the above perspectives, the problem of anomaly detection is categorised into two subsets: (i) the
forward problem and (ii) the inverse problem.

2.1. Forward problem

The primary objective of the forward (or analysis) problem is to characterise the patterns followed by the
process dynamics as its behaviour changes on the slow-time scale. The forward problem is executed with an
ensemble of collected data and its solution using STSA approach requires the following steps:
�
 Collection of sensor time series data to construct a pattern set spanning the system behaviour under
different operational conditions.

�
 Generation of symbolic sequences (on the fast time scale) from observed time series data at different epochs
of the slow-time scale.

�
 D-Markov machine construction from the generated symbol sequences and computation of the respective
state probability vectors.

�
 Detection of behaviour changes by observing the deviations of the state probability vectors at various slow-
time epochs from the one at the nominal condition.

2.2. Inverse problem

The inverse (or synthesis) problem concentrates on inferring the anomalies based on the observed time series
data and system response for the purpose of triggering control actions for behaviour control. This problem
may not always be well-posed, i.e. there might be no unique solution. Therefore, analysis of time series data
sets under various excitations might be necessary for solving the inverse problem.

This paper focuses on analytical formulation and experimental validation of the forward problem, where
the source of possible anomalies is fatigue crack initiation and small crack growth.

3. Description of the experimental apparatus

The experimental apparatus, shown in Fig. 1, is a special-purpose uniaxial fatigue testing machine, which is
operated under load control or strain control at speeds up to 12.5Hz; a detailed description of the apparatus
and its design specifications are reported in [16]. The apparatus loads the test specimens by a hydraulic
cylinder under the regulation of computer-controlled electro-hydraulic servovalves. The feedback signals are
generated from either a load cell or an extensometer and are processed by signal conditioners that include
standard amplifiers and signal processing units. The damage estimation and life prediction subsystem consists
of damage analysis software and the associated computer hardware. The damage analysis software receives
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Fig. 1. Special-purpose fatigue test apparatus.

Fig. 2. Cracked centre-notched specimen.
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real-time data from the heterogeneous measurement devices and operational data from the process
instrumentation and the control module of the fatigue test apparatus, which is briefly described below.
�
 Closed loop servo-hydraulic unit: The instrumentation and control of the computer-controlled uniaxial
fatigue test apparatus includes a load cell, actuator, hydraulic system, and controller. The servo-hydraulic
unit can provide either random loads or random strains to a specimen for both low- and high-cycle fatigue
tests at variable amplitude and multiple frequencies.

�
 Computers for data acquisition, signal processing, and engineering analysis: In addition to the computer
controlling the load frame, a second computer is used for data collection from the microscope and image
and signal processing. The ultrasonic flaw detection hardware is connected to the third computer. These
laboratory computers are interconnected by a local dedicated network for data acquisition, data
communications, and control.

3.1. Test specimen

A typical specimen, made of 7075-T6 aluminium alloy, is shown in Fig. 2. The specimen is 3mm thick and
50mm wide, and has a slot of 1:58mm� 4:5mm at the centre. The central notch is made to increase the stress
concentration factor that ensures crack initiation and propagation at the notch ends. The test specimens have
been subjected to sinusoidal loading under tension–tension mode (i.e. with a constant positive offset) at a
frequency of 12.5Hz. Since inclusions and flaws are randomly distributed across the material, small cracks
appear at these defects and propagate and join at the machined surface of the notch even before
microscopically visible cracks appear on the surface.
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Fig. 3. Ultrasonic flaw detection scheme.
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3.2. Sensors for damage detection

The fatigue test apparatus is equipped with a variety of damage sensors. Two types of sensors that have
been primarily used for damage detection are: travelling optical microscope and ultrasonic flaw detector. The
advantages of using ultrasonic transducers over microscope are the ease of installation at the desired damage
site and detection of early anomalies before the onset of widespread fatigue crack propagation.

(1) Travelling optical microscope: The travelling optical microscope, shown as part of the test apparatus in
Fig. 1, provides direct measurements of the visible part of a crack. The microscope shifts from left to right side
of the central notch and vice versa after every 200 cycles to track crack growth on both sides of the notch. The
crack length can be calculated automatically by moving a vertical line in the image to the tip of the crack with
the help of the keyboard and the travelled distance is the crack length measured from the notch end. The
resolution of the optical microscope is about 2mm at a working distance of 10–35 cm.

(2) Ultrasonic flaw detector: The ultrasonic flaw detector functions by emitting high frequency ultrasonic
pulses that travel through the specimen and return back through the receiver transducers. A piezoelectric
transducer is used to inject ultrasonic waves in the specimen and an array of receiver transducers is placed on
the other side of notch to measure the transmitted signal. In these experiments, an array of 2 receiver
transducers was placed below the notch to detect faults on both left and right side of the notch. The ultrasonic
waves produced were 5MHz sine wave signals and they were emitted during a very short portion of every load
cycle. In each cycle with sinusoidal loading at 12.5Hz, ultrasonic waves were triggered at the peak of the load
cycle for a very short instant of time. Ultrasonic measurements were taken at stress levels that exceeded the
crack opening stress. The crack is open when the specimen is under maximum stress at the peak of a load cycle
and this causes maximum attenuation of the ultrasonic waves. Note that if the crack closure occurs at low
loads, then an alternative method would be needed to detect anomalies.

The sender and receiver ultrasonic transducers are placed on two positions, above and below central
notch, so as to send the signal through the region of crack propagation and receive it on the other side, as seen
in Fig. 3. Since material characteristics (e.g. voids, dislocations and short cracks) influence the ultrasonic
impedance, a small fault in the specimen is likely to change the signature of the signal at the receiver end.
Therefore, the signal can be used to capture some of the minute details and small changes during the early
stages of fatigue damage, which may not be possible to detect by an optical microscope [17]. Prior to
appearance of a crack on the specimen surface as detected by the optical microscope, deformations (e.g.
dislocations and short cracks) inside the specimen may have already caused detectable attenuation and/or
distortion of the ultrasonic waves.

It is observed that crack always starts at the stress-concentrated region near the notch but the exact location
of the origin of crack can be treated as a random event. Formation of very small cracks is difficult to detect
and model due to large material irregularities. Moreover, an optical microscope is only capable of detecting
cracks when they appear on the front surface of the specimen. Therefore, this paper focuses on analysing the
ultrasonics data for characterisation of fatigue damage in the small crack regime.
4. Pattern recognition for anomaly detection

Technical literature abounds with various techniques of pattern recognition (for example, see citations in
[18]). Brief surveys of pattern recognition tools for anomaly detection are reported in [19]. The existing
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techniques of pattern recognition, which have been used in this paper for comparison with the proposed STSA
approach, are as follows:
�
 multilayer perceptron neural network (MLPNN);

�
 radial basis function neural network (RBF);

�
 principal component analysis (PCA).

These techniques are briefly described for completeness of the paper and in the context of their utilisation for
anomaly detection.

4.1. Multilayer perceptron neural network (MLPNN)

The multilayer perceptron (MLP) neural network is a collection of connected processing elements, called
nodes or neurons [19–21] whose structure is fixed by choosing the number of layers as well as the (possibly
different) number of neurons in each layer. The training phase includes modelling of the input–output system
architecture and identification of the synapsis weights. A set of inputs is passed forward through the network
yielding trial outputs which are then compared to the target outputs to obtain the error. The network
parameters (i.e. synapsis weights and biases) are adjusted until the error is within the specified bounds. If the
specified bound is exceeded, the error is passed backwards through the net and the training algorithm adjusts
the synapsis weights. The back-propagation algorithm has been used in this paper to update the network
parameters in the direction in which the performance function decreases most rapidly until the error is within
the specified bounds. The mean square error criterion is adopted in the recursive algorithm to update the
weight vectors wk as follows:

wnþ1 ¼ wn � angn, (1)

where gn is the gradient qJ=qw and an is the learning rate and J is the training error given by

JðwÞ ¼
1

2

Xq

j¼1

ðoj � djÞ
2, (2)

where o and d are the actual output vector and the target output vector, respectively, each of
dimension q.

Time series data of signals enter into the input layer nodes, progress forward through the hidden layers,
and finally emerge from the output layer. Each node i at a given layer k receives a signal from all
nodes j in its preceding layer ðk � 1Þ through a synapsis of weight wk

ij and the process is carried onto
the nodes in the following layer ðk þ 1Þ. The weighted sum of signals xk�1

j from all nodes j of the
layer ðk � 1Þ together with a bias wk

i0 produces the excitation zk
i that, in turn, is passed through a

non-linear activation function f to generate the output xk
i from the node i at the layer k. This is mathematically

expressed as

zk
i ¼

X
j

wk
ijx

k�1
j þ wk

i0, ð3Þ

xk
i ¼ f zk

i

� �
. ð4Þ

Various choices for the activation function are possible; the hyperbolic tangent function tanhð�Þ has
been adopted in this paper. For anomaly detection, the MLPNN is trained by setting a set of N input
vectors, each of dimension ‘, and a specified target output vector d of dimension q. This implies that
the input layer has ‘ neurons and the output layer has q neurons. If the time series data are obtained
from an ergodic process, then a data set of length N ‘ can be segmented into N vectors of length ‘ to
construct the input and target pattern matrices. The input pattern matrix P 2 R‘�N is obtained from the N

input vectors as

P � p1 p2 � � � pN
� �

, (5)
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where pk � yðk�1Þ‘þ1 yðk�1Þ‘þ2 � � � yk‘

h iT
and each yk is a sample from the ensemble of the time series data.

The corresponding output matrix O is the output of the trained MLPNN under the input pattern P.

O � o1 o2 � � � oN
� �

, (6)

where oi 2 Rq is the output of the trained MLPNN under the input pi 2 R‘. The performance vector u 2 Rq is
obtained as the average of the N outputs.

u �
1

N

XN

k¼1

ok. (7)

The time series data under the nominal condition generates the input pattern matrix Pnom that, in turn, is used
to train the MLPNN with respect to a target output vector d. The resulting output of the trained MLPNN
with Pnom as the input is Onom and the performance vector is unom. Subsequently, input pattern matrices
fP1;P2; . . . ;Pk; . . .g are obtained at slow-time epochs ft1; t2; . . . ; tk; . . .g and corresponding output matrices of
the trained MLPNN are fO1;O2; . . . ;Ok . . .g, which yield the respective performance vectors fu1; u2; . . . ; uk . . .g.
The behavioural changes are described as anomaly from ideal condition and these anomalies are characterised
by a scalar called anomaly measure. The anomaly measure at slow-time epoch tk is obtained as

Mk � d uk; unomð Þ, (8)

where the dð�; �Þ is an appropriately defined distance function [22]. In the present analysis, the distance
function d is chosen as the Euclidean norm and hence the anomaly measure is given by

Mk � kuk � unomk2. (9)
4.2. Radial basis function neural network (RBFNN)

In a radial basis function neural network [20], the activation of a hidden unit is determined by the distance
between the input vector and the prototype vector. The RBFNN is essentially a nearest neighbour type of
classifier. A radial basis function is introduced as

f ða; yÞ ¼ exp �

P
jjyj � mja

Nya

� �
, (10)

where the exponent parameter a 2 ð0;1Þ; the time series y � fyjg is generated on the fast-time scale; and m and
ya are the centre and ath central moment of the data set, respectively. For a ¼ 2, f ð�Þ becomes Gaussian,
which is the typical radial basis function used in the neural network literature. To perform anomaly detection,
the first task is to obtain the sampled time series data when the dynamical system is in the nominal condition
and then the mean m and the central moment ya are calculated as

m ¼
1

N

XN

j¼1

yj and ya ¼
1

N

XN

j¼1

jyj � mja. (11)

The distance between any vector y and the centre m is obtained as ð
P
n

jyðnÞ � mjaÞ1=a. Following Eq. (10), the
radial basis function at the nominal condition is f nom ¼ f ða; yÞ. Under all conditions including anomalous
ones, the parameters m and y are kept fixed. However, at slow-time epochs ft1; t2; . . . ; tk; . . .g, the radial basis
functions ff 1; f 2; . . . ; f k; . . .g are evaluated from the data sets under possibly anomalous conditions. The
anomaly measure at an epoch tk in the slow-time scale is obtained as a distance from the nominal condition
and is given by

Mk ¼ dðf k; f nomÞ,

where the metric dð�; �Þ is chosen as the Euclidean distance (see Eq. (9)).
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4.3. Principal component analysis (PCA)

The PCA [18,23] is the best known linear feature extractor. The eigenvectors corresponding to the q largest
eigenvalues of the (n� n) (positive semi-definite) covariance matrix generated from the time series data, form
the n-dimensional patterns. The linear transformation is then defined as

Y ¼ HX , (12)

where X is the (n� d) transposed data matrix, made of n row vectors; H is the (q� n) linear transformation
matrix whose rows represent q feature vectors each of dimension n; and Y is the derived (q� d) transformed
data matrix.

To detect growth in anomaly from the time series data, principal component analysis is performed for
dimensionality reduction. Data samples of large enough length (‘ ¼ n d) can be used to capture the dynamical
characteristics of the observed process. The length ‘ of time series data is partitioned into n subsections, each
being of length d ¼ ‘=n, where d4n. The resulting (d � n) data matrix is processed to generate the (n� n)
covariance matrix that is positive-definite or positive-semidefinite real-symmetric. The next step is to compute
the orthonormal eigenvectors v1; v2; . . . ; vn and the corresponding eigenvalues l1; l2; . . . ; ln that are arranged in
decreasing orders of magnitude. The eigenvectors associated with the first (i.e. largest) q eigenvalues are
chosen as the feature vectors such thatPn

i¼qþ1liPn
i¼1li

oZ, (13)

where the threshold Z51 is a positive real close to 0. The resulting pattern is the matrix, consisting of the
feature vectors as columns,

eM ¼ ffiffiffiffiffi
l1

p
v1 . . .

ffiffiffiffiffi
lq

p
vq

� 	
. (14)

The above steps are executed for time series data under the nominal (stationary) condition to obtain eMnom.
Then, these steps are repeated at subsequent slow-time epochs, ft1; t2; . . . ; tk; . . .g, using the same values of
parameters, ‘, d, n and q, to obtain the respective pattern matrices f eM1; eM2; . . . ; eMk . . .g. The anomaly
measure at a slow-time epoch tk is obtained as

Mk � d eMk; eMnom

� 	
where the metric dð�; �Þ is chosen as the induced Euclidean norm of the matrix difference (see Eq. (9)).
5. Symbolic time series analysis (STSA)

A data sequence (e.g. time series data) can be converted to a symbol sequence by partitioning a compact
region O of the phase space, over which the trajectory evolves, into finitely many discrete blocks as shown in
Fig. 4. Let fF1;F2; . . . ;Fmg be a partitioning of O, such that it is exhaustive and mutually exclusive set, i.e.

[m
j¼1

Fj ¼ O and Fj \ Fk ¼ ; 8jak. (15)

Each block Fj is labelled as the symbol sj � S, where the symbol set S is called the alphabet set consisting of
m different symbols. As the system evolves in time, it travels through various blocks in its phase space and the
corresponding symbol sj � S is assigned to it, thus converting a data sequence to a symbol sequence
. . . si1si2 . . . sik . . . . Fig. 4 exemplifies the partitioning of the phase space where each block is assigned a
particular symbol such that a symbol sequence is generated from the phase space at a given slow-time epoch.
Once the symbol sequence is obtained, the next step is the construction of the finite state machine. These steps
are explained in details in the following subsections.
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Fig. 4. An example of space partitioning.
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5.1. Wavelet space (WS) partitioning

A crucial step in symbolic time series analysis is partitioning of the phase space for symbol sequence
generation [15]. Several partitioning techniques have been reported in literature for symbol generation
[3,24,25], primarily based on symbolic false neighbours. These techniques rely on partitioning the phase space
and may become cumbersome and extremely computation-intensive if the dimension of the phase space is
large. Moreover, if the time series data is noise-corrupted, then the symbolic false neighbours would rapidly
grow in number and require a large symbol alphabet to capture the pertinent information on the system
dynamics. Therefore, symbolic sequences as representations of the system dynamics should be generated by
alternative methods because phase-space partitioning might prove to be a difficult task in case of high
dimensions and in the presence of noise.

This paper has adopted a wavelet-based partitioning approach [14] for construction of symbol sequences
from the time series data. The wavelet transform [26] largely alleviates these shortcomings and is particularly
effective with noisy data from high-dimensional dynamical systems. In this method, called wavelet space

partitioning [13], the time series data are first converted by wavelet transform, where wavelet coefficients are
generated at different scales and time shifts. The graphs of wavelet coefficients versus scale, at selected time
shifts, are stacked starting with the smallest value of scale and ending with its largest value and then back from
the largest value to the smallest value of the scale at the next instant of time shift. The arrangement of the
resulting scale series data in the wavelet space is similar to that of the time series data in the phase space. The
wavelet space is partitioned with alphabet size jSj into segments of coefficients on the ordinate separated by
horizontal lines such that the regions with more information are partitioned finer and those with sparse
information are partitioned coarser. In this approach, the maximum entropy is achieved by the partition that
induces uniform probability distribution of the symbols in the symbol alphabet. Shannon entropy [27] is
defined as

S ¼ �
XjSj
i¼1

pi logðpiÞ, (16)

where pi is the probability of the ith state and summation is taken over all possible states. Uniform probability
distribution of states is a consequence of maximum entropy partitioning that might make the partition coarser
in regions of low density of data points and finer in regions of high density of data points. Fig. 5 shows an
example of the maximum entropy partitioning in the wavelet space for alphabet size jSj ¼ 6, where the
partitioned regions are marked by symbols ranging from 0 to 5.
5.2. State machine construction

The partitioning as described in the previous section is performed at time epoch t0 of the nominal condition
that is chosen to be a healthy condition having zero anomaly measure. A finite state machine is then
constructed, where the states of the machine are defined corresponding to a given alphabet S and window
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Fig. 5. Maximum entropy partitioning in the wavelet space.

Fig. 6. Finite state automaton with D ¼ 2 and S ¼ f0; 1g.
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length D. The alphabet size jSj is the total number of partitions while the window length D is the length of
consecutive symbol words forming the states of the machine [13]. The states of the machine are chosen as all
possible words of length D from the symbol sequence, thereby making the number n of states to be equal to the
total permutations of the alphabet symbols within word of length D, (i.e. npjSjD). The choice of jSj and D

depends on specific experiments, noise level and also the available computation power. A large alphabet may
be noise-sensitive while a small alphabet could miss the details of signal dynamics. Similarly, a high value of D

is extremely sensitive to small signal distortions but would lead to a larger number of states requiring more
computation power. Using the symbol sequence generated from the time series data, the state machine is
constructed on the principle of sliding block codes [28] as explained below. The window of length D on the
symbol sequence . . . si1si2 . . . sik

. . . is shifted to the right by one symbol, such that it retains the last ðD� 1Þ
symbols of the previous state and appends it with the new symbol si‘ at the end. The symbolic permutation in
the current window gives rise to a new state. The machine constructed in this fashion is called D-Markov
machine [13] because of its Markov properties.

Definition 5.1. A symbolic stationary process is called D-Markov if the probability of the next symbol depends
only on the previous D symbols, i.e. Pðsi0=si�1 . . . si�D

si�D�1
. . .Þ ¼ Pðsi0=si�1 . . . si�D

Þ.

The finite state machine constructed above has D-Markov properties because the probability of occurrence
of symbol si‘ on a particular state depends only on the configuration of that state, i.e. previous D symbols. For
example, if S ¼ f0; 1g, i.e. jSj ¼ 2 and D ¼ 2, then the number of states is npjSjD ¼ 4; and the possible states
are Q ¼ f00; 01; 10; 11g, some of which may be forbidden. Fig. 6 shows the construction of the finite state
machine for the above example where forbidden states, if any, will have zero probability of occurrence.

Once the partitioning alphabet S and word length D are determined at the nominal condition (time epoch
t0), they are kept constant for all (slow time) epochs ft1; t2; . . . ; tk; . . .g, i.e. the structure of the machine is fixed



ARTICLE IN PRESS
S. Gupta et al. / Mechanical Systems and Signal Processing 21 (2007) 866–884876
at the nominal condition. That is, the partitioning and the state machine structure, generated at the nominal
condition serve as the reference frame for data analysis at subsequent time epochs.

In this analysis, it was found that the combination of jSj ¼ 8 and D ¼ 1 was able to capture anomalies
earlier than the optical microscope. For D ¼ 1, the set of states bears an equivalence relation to the alphabet S
of symbols [22]. The states of the machine are marked with the corresponding symbolic word permutation and
the edges joining the states indicate the occurrence of an event si‘ . The occurrence of an event at a state may
keep the machine in the same state or move it to a new state. The language of the machine is usually
incomplete in the sense that all states might not be reachable from a given state.

Definition 5.2. The probability of transitions from state qj to state qk belonging to the set Q of states under a
transition d : Q� S! Q is defined as

pjk ¼ Pðs 2 S j dðqj ;sÞ ! qkÞ;
X

k

pjk ¼ 1. (17)

Thus, for a D-Markov machine, the irreducible stochastic matrix P � pij

� �
describes all transition

probabilities between states such that it has at most jSjDþ1 non-zero entries. The left eigenvector p

corresponding to the unit eigenvalue of P is the state probability vector under the (fast time scale) stationary
condition of the dynamical system [13]. On a given symbol sequence . . . si1si2 . . . sil

. . . generated from the time
series data collected at slow-time epoch tk, a window of length (D) is moved by keeping a count of occurrences
of word sequences si1 � � � siD

siDþ1
and si1 � � � siD

which are, respectively, denoted by Nðsi1 � � � siD
siDþ1
Þ and

Nðsi1 � � � siD
Þ. Note that if Nðsi1 � � � siD

Þ ¼ 0, then the state q � si1 � � �siD 2 Q has zero probability of
occurrence. For Nðsi1 � � �siD Þa0, the transitions probabilities are then obtained by these frequency counts as
follows:

pjk ¼
Pðsi1 � � �siD

sÞ
Pðsi1 � � � siD

Þ
�

Nðsi1 � � �siD
sÞ

Nðsi1 � � � siD
Þ
, (18)

where the corresponding states are denoted by qj � si1si2 � � �siD and qk � si2 � � � siD
s.

The time series data under the nominal condition (set as a benchmark) generates the state transition matrix

Pnom that, in turn, is used to obtain the state probability vector pnom whose elements are the stationary
probabilities of the state vector, where pnom is the left eigenvector of Pnom corresponding to the (unique) unit
eigenvalue. Subsequently, state probability vectors p1; p2; . . . ; pk; . . . are obtained at slow-time epochs
t1; t2; . . . ; tk; . . . based on the respective time series data. Machine structure and partitioning should be the
same at all slow-time epochs.

The anomaly measure at slow-time epochs tk is obtained as

Mk � d pk; pnom
� �

, (19)

where the dð�; �Þ is chosen as the Euclidean norm of the vector difference (see Eq. (9)).

5.3. Summary of STSA anomaly detection

The following steps summarise the procedure of anomaly detection using symbolic time series analysis
(STSA).
�
 Collection of time series data from appropriate sensor(s) at time epoch t0 of the nominal condition, where
the system is assumed to be in the healthy state (i.e. zero anomaly measure).

�
 Stacking of the wavelet transform coefficients (obtained with an appropriate choice of mother wavelet and
range of scales) that are generated from the time series data at time epoch t0 to generate the scale series data
(see Section 5.1).

�
 Partitioning of the scale series data into jSj regions using maximum Entropy partitioning to obtain the
symbol sequence.

�
 Construction of the D-Markov machine states from the chosen alphabet size jSj and the window length D

and generation of the state probability vector p0 at time epoch t0 of the nominal condition.
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�
 Generation of time series data sequences at subsequent slow-time epochs, t1; t2; . . . ; tk; . . . , and their
conversion to the scale series data in the wavelet domain to generate respective symbolic sequences using the
partitioning at time epoch t0 of the nominal condition.

�
 Generation of the state probability vectors at slow-time epochs, t1; t2; . . . ; tk; . . . from the respective symbolic
sequences using the finite state machine at time epoch t0 of the nominal condition.

�
 Computation of the anomaly measures at time epochs, t1; t2; . . . ; tk; . . . relative to the probability vector at
time epoch t0 of the nominal condition.

5.4. Real time application

Fatigue damage detection using STSA has been implemented in real time. However, the results presented in
this paper are generated by off-line analysis. For real time application, the same steps have been followed as
described in the previous sections. The nominal condition is chosen after the start of the experiment at a time
epoch t0 where the system attains the steady state and is assumed to be in the healthy condition with zero
anomaly measure. The machine states are fixed in advance using a priori determined values of the parameters:
alphabet size jSj and window length D. The partitioning and machine construction were performed based on
the time series data at the slow-time epoch t0 and the resulting information (i.e. partitioning data and the state
probability vector at this nominal condition) was stored for future computation of anomaly measures at future
slow-time epochs, t1; t2; . . . ; tk; . . . ; that were separated by uniform intervals of time in these experiments. The
time series data of ultrasonic sensor signals were written as text files so that the STSA algorithm could read the
data from the text files to calculate the anomaly measure at those time epochs. The algorithm is
computationally very fast and the results can be plotted on the screen such that the plot updates itself with the
most recent anomaly measure at that particular time epoch. This procedure allows on-line health monitoring
at any time and is capable of issuing early warnings.

6. Experimental data collection and analysis

The fatigue tests were conducted using specimens, made of the aluminium alloy 7075-T6, at a constant
amplitude sinusoidal load for a low-cycle fatigue, where the maximum and minimum loads were kept constant
at 87 and 4.85MPa. (see Section 3 for a description of the test apparatus.) For low-cycle fatigue, the stress
amplitude at the crack tip is sufficiently high to observe the elasto-plastic behaviour in the specimens under
cyclic loading. A significant amount of internal damage occurs before the crack appears on the surface of the
specimen when it is observed by the microscope. This internal damage caused by multiple small cracks,
dislocations and microstructural damage affects the ultrasonic waves when they pass through the region where
these faults have developed. This phenomenon causes signal distortion and attenuation at the receiver end.
The crack propagation stage starts when this internal damage eventually develops into a single large crack.
Subsequently, the crack growth rate increases rapidly and when the crack is sufficiently large, complete
attenuation of the transmitted ultrasonic signal occurs, as seen at the receiver end.

6.1. Ultrasonic and optical image data collection

The ultrasonic sensing device was triggered at a frequency of 5MHz at each peak of the ð�12:5HzÞ
sinusoidal load to obtain 100 data points in each cycle. Since the ultrasonic frequency is much higher than the
load frequency, the data collection was performed for a very short interval in the time scale of load
fluctuations. Therefore, it can be implied that the ultrasonic data were collected at the peak of each sinusoidal
load cycle, where the stress is maximum and the crack is open causing maximum attenuation of the ultrasonic
waves. The slow-time epochs were chosen to be 3000 load cycles (i.e. �240 s) apart. At the onset of each slow-
time epoch, the ultrasonic data points were collected on the fast time scale of 100 cycles (i.e. �8 s), which
produced a string of 10 000 data points. At a frequency of 12.5Hz, 100 cycles take only 8 s to run and it is
assumed that during this fast time scale of 100 cycles, the system remained in a stationary condition and no
major changes occurred in the fatigue crack behaviour. This set of time series data collected in the manner
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described above at different slow-time epochs was analysed by several techniques to calculate anomaly
measures at those slow-time epochs.

The optical images were collected at every 200 cycles until a crack was detected on the specimen surface by
the optical microscope. Then onwards the images were taken at user command and the microscope was moved
such that it always focused on the crack tip. The vertical line in the images was adjusted by the movement of
the microscope until it reached the crack tip. The distance travelled by the microscope determined the crack
length.

The nominal condition at the slow-time epoch t0 was chosen to be 5 kilocycles to ensure that the electro-
hydraulic system of the test apparatus had come to a steady state and that no significant damage occurred till
that point. This nominal condition was chosen as a benchmark where the specimen was assumed to be in a
healthy state, where the anomaly measure was chosen to be zero. The anomalies at subsequent slow-time
epochs, t1; t2; . . . ; tk; . . . , were then calculated with respect to the nominal condition at t0. It is emphasised that
the anomaly measure is relative to the nominal condition which is fixed in advance and should not be confused
with the actual damage at an absolute level. Any particular value of the anomaly measure greater than zero
indicates deviation from the nominal condition and it signifies that some changes have occurred inside the
specimen.
6.2. Data analysis and damage evaluation

This section evaluates the collected time series data for early detection of anomalies resulting from fatigue
damage. The proposed anomaly detection technique is compared with other pattern recognition tools (see
Section 4).

(1) MLPNN : Following the MLPNN procedure, described in Section 4.1, the input pattern matrix Pnom

was designed with N ¼ 200 columns. Each column, having a length of ‘ ¼ 50, was generated from the
ultrasonic data collected at the nominal condition at time instant t0 to train the MLPNN. The neural network
was designed with an input layer (with 50 neurons), 3 hidden layers (with 40 neurons in layer 1, 30 neurons in
layer 2 and 40 neurons in layer 3) and the output layer (with 10 neurons). The target corresponding to each
input pattern vector was chosen to be the 10� 1 zero vector. The gradient descent back-propagation
algorithm was used for network training with an allowable performance mean square error of 1:0� 10�5. The
input pattern matrices P1;P2; . . . ; Pk; . . . , each of dimension ð50� 200Þ, were then generated from the
anomalous data sets at slow-time epochs ft1; t2; . . . ; tk; . . .g . Anomaly measures were then calculated with the
procedure described in Section 4.1.

(2) RBF: Following the RBF procedure for anomaly detection as described in Section 4.2, the standard RBF
was chosen with the exponent a to be equal to 2. Lower values of alpha reduced anomaly measure sensitivity
and higher values of alpha produced noisy results. An estimate of the parameters, m and ya, were obtained
according to Eq. (11) based on the data under the nominal condition at t0, which produced the requisite radial
basis function f nom following Eq. (10). At slow-time epochs ft1; t2; . . . ; tk; . . .g the radial basis functions
ff 1; f 2; . . . ; f k; . . .g were evaluated from the data sets collected at those time epochs. Anomaly measures were
then calculated with the procedure described in Section 4.2.

(3) PCA: Following the PCA procedure for anomaly detection as described in Section 4.3, a block of
sampled ultrasonic data, having length of 10 000, was divided into n ¼ 8 segments, each of which was of length
‘ ¼ 1250; these segments were then arranged to form a 1250� 8 data matrix. The resulting 8� 8 (symmetric
positive-definite) covariance matrix of the data matrix provided a monotonically decreasing set of eigenvalues,
l1; . . . ; l8, and the associated orthonormal eigenvectors v1; . . . ; v8. At time instant t0 of the nominal condition,
the first eigenvalue was found to be the dominant (i.e. q ¼ 1) for a threshold of Z ¼ 0:05 such thatP8

i¼2liP8
i¼1li

oZ.

The pattern matrix eMnom was generated at the nominal condition t0 and the pattern matriceseM1; eM2; . . . ; eMk; . . . were generated at time instants t1; t2; . . . ; tk; . . . . Anomaly measures were then calculated
following the procedure described in section 4.3.
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(4) STSA: Following the STSA procedure for anomaly detection as described in Section 5, the alphabet size
for partitioning was chosen to be jSj ¼ 8 and window length of D ¼ 1, while the mother wavelet chosen to be
‘gaus2’ [29]. (Absolute values of the wavelet scale series data were used to generate the partition because of the
symmetry of the data sets about their mean.) This combination of parameters was capable of capturing the
anomalies earlier than the optical microscope. Increasing the value of jSj further did not improve the results
and increasing the value of D created a large number of states of the finite state machine, many of them having
very small or zero probabilities, and required larger number of data points at each time epoch to stabilise the
state probability vectors. This choice of the parameters jSj and D was able to capture early anomalies with
only 8 states and was computationally very fast in the sense that the code execution time was orders of
magnitude smaller than the process response time. The mother wavelet of ‘gaus2’ provided better results than
many other wavelets of the Daubechies family [26] because it closely matched the shape of the sinusoidal
signals. State Probability vector pnom was obtained at the nominal condition of time epoch t0 and the state
probability vectors p1; p2; . . . ; pk; . . . were obtained at other slow-time epochs t1; t2; . . . ; tk; . . . . Anomaly
measures were calculated with the procedure described in Section 5.

The six pairs of plates in Fig. 7 show two-dimensional images of a specimen surface and histograms of
probability distribution of automaton states at six different time epochs, approximately 5, 30, 40, 45, 60 and 78
kilocycles, exhibiting gradual evolution of fatigue damage. In each pair of plates from (a)–(f) in Fig. 7, the top
plate exhibits the surface image of the test specimen as seen by the optical microscope. As exhibited on the top
plates in each of the six plate pairs in Fig. 7, the crack originated and developed on the right side of the notch
Fig. 7. Pictorial view of crack damage and corresponding probability distribution.
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at the centre. Histograms in the bottom plates of six plate pairs in Fig. 7 show the evolution of the state
probability vector corresponding to fatigue damage growth on the test specimen at different slow-time epochs,
signifying how the probability distribution gradually changes from uniform distribution (i.e. minimal
information) to delta distribution (i.e. maximum information).

The top plate in plate pair (a) of Fig. 7 shows the image at the nominal condition ð�5 kilocyclesÞ when the
anomaly measure is taken to be zero, which is considered as the reference point with the available information
on potential damage being minimal. This is reflected in the uniform distribution (i.e. maximum entropy) as
seen from the histogram at the bottom plate of plate pair (a).

Both the top plates in plate pairs (b) and (c) at �30 and �40 kilocycles, respectively, do not yet have any
indication of surface crack although the corresponding bottom plates do exhibit deviations from the uniform
probability distribution (see the bottom plate of plate pair (a)). This is an evidence that the analytical
measurements, based on ultrasonic sensor data, produce damage information during crack initiation, which is
not available from the corresponding optical images.

The top plate in plate pair (d) of Fig. 7 at �45 kilocycles exhibits the first noticeable appearance of a
�300 mm crack on the specimen surface, which may be considered as the boundary of the crack initiation and
propagation phases. This small surface crack indicates that a significant portion of the crack or multiple small
cracks might have already developed underneath the surface before they started spreading on the surface. The
histogram of probability distribution in the corresponding bottom plate shows further deviation from the
uniform distribution at �5 kilocycles. This is also an indication of having increasingly more information on
damage than what was available in the earlier cycles.

The top plate in plate pair (e) of Fig. 7 at �60 kilocycles exhibits a fully developed crack in its propagation
phase. The corresponding bottom plate shows the histogram of the probability distribution that is significantly
different from those in earlier cycles in plate pairs (a)–(d), indicating further gain in the information on crack
damage. The top plate in plate pair (f) of Fig. 7 at �78 kilocycles exhibits the image of a completely broken
specimen. The corresponding bottom plate shows delta distribution indicating complete information on crack
damage.

The observation in Fig. 7 is further clarified by using the notion of entropy (see Eq. (16)). The scale series
data at the nominal condition were partitioned using the maximum entropy principle, which led to uniform
probability distribution (i.e. maximum entropy) among the states in the bottom plate of plate pair (a) in Fig. 7.
In contrast, for the completely broken stage of the specimen, the entire probability distribution is concentrated
in only one state of the finite state machine as seen in the bottom plate of plate pair (f) in Fig. 7, which
indicates a very large attenuation of the ultrasonic signal. This phenomenon of the sample being completely
broken signifies certainty of information and hence zero entropy. Therefore, as the fatigue crack damage
evolves, the uniform distribution (i.e. maximum entropy) under nominal condition degenerates toward the
delta distribution (i.e. zero entropy) for the broken specimen. In the intermediate stages, gradual degradation
can be quantitatively evaluated using this information. Fig. 8 shows the monotonically decreasing profile of
entropy versus load cycles, which is a clear evidence of gradual evolution of fatigue crack damage with load
cycles. The sharp decrease in entropy from the first appearance of a surface crack at �45 kilocycles to the
complete breakage at �78 kilocycles can be related to phase transition of first order in the thermodynamic
sense [30].

6.3. Comparative evaluation of damage detection techniques

This section makes a comparative assessment of the proposed STSA method with other existing techniques
of pattern recognition, described in Section 4 for early detection of fatigue crack damage using the ultrasonic
sensor data generated on the test apparatus described in Section 3. The following anomaly detection
approaches were investigated.
�
 multilayer perceptron neural network (MLPNN);

�
 radial basis function neural network (RBFNN);

�
 principal component analysis (PCA);

�
 symbolic time series analysis (STSA).
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The efficacy of a specific approach is largely determined by its capability for early detection of small
anomalies. The four plots in Fig. 9 compare the anomaly measures obtained by using the afore-described four
anomaly detection approaches. Each of the curves in Fig. 9 show a possible bifurcation where the slope of the
anomaly measure changes dramatically indicating the onset of crack propagation phase. First appearance of
fatigue crack was detected by the optical microscope at approximately 45 kilocycles, which is marked by the
dashed vertical line in Fig. 9. The crack when it appeared on the surface was �300mm long, which implies that
a significant amount of fatigue damage including multiple small cracks developed inside the specimen before
they finally spread out to the surface. Fig. 10 shows the fatigue crack growth in millimeters vs the load cycles,
which was derived from the optical images.

A comparison of the plots in Fig. 9 clearly indicates that the STSA technique for anomaly detection yielded
the best performance among all methods. It is observed that small changes can be detected by STSA
significantly before the microscope can capture a surface crack. The slope of the anomaly measure represents
the anomaly growth rate while the magnitude indicates the changes that have occurred relative to the nominal
condition. An abrupt change in the slope (i.e. a sharp change in the curvature) of anomaly measure profile
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provides a clear insight into a forthcoming failure. Each of the four techniques detected a sharp slope change
in the anomaly measure when the crack propagation stage started indicating an increased rate of anomaly
progression at that stage. STSA, RBFNN and PCA detected this slope change between �40 and
�44 kilocycles while MLPNN was slightly delayed in capturing this crack propagation phase and detected
the slope change after �44 kilocycles. Upon the onset of crack propagation, all four techniques showed similar
patterns as indicated by the region to the right of the vertical dashed line in Fig. 9. However, the critical
information lies in the region to the left of the vertical line where no crack was visible on the surface. In this
region, STSA clearly demonstrated a significantly superior performance because the other techniques have not
shown any significant change in the anomaly measure. MLPNN, RBFNN and PCA were slightly sensitive to
the changes before the onset of crack propagation phase and they indicated a very small slope and magnitude
in this region. However, the slope of STSA-based anomaly measure curve showed a clear trend of growth of
anomaly right after �15 kilocycles. This was the region where multiple small cracks were possibly formed
inside the specimen, which caused small changes in the ultrasonic signal profile. Another increase in anomaly
growth rate was observed at �30 kilocycles. After the multiple small cracks coalesced together to form one
single crack and crack propagation stage started, the corresponding changes in the ultrasonic signal were
captured by all techniques effectively. A striking feature of the STSA technique with wavelet-based
partitioning is that it takes advantage of the vector information, embedded in the histograms of probability
distributions, to detect small changes in the signal.

7. Summary and conclusions

This paper presents early detection of fatigue damage in polycrystalline alloys that are commonly used in
mechanical structures and its experimental validation on specimens, made of the aluminium alloy 7075-T6.
The codes of damage analysis are executable in real time and have been demonstrated in the laboratory
environment for on-line detection of fatigue damage, based on the analysis of ultrasonic sensor signals, before
any surface cracks are visible through the optical microscope in a special-purpose fatigue testing apparatus.
The recently developed tool of STSA [13], which is built upon the principles of Symbolic Dynamics and
Automata Theory, has been adopted. Fatigue damage is detected from small changes in the statistical
characteristics of the sensor signals.

The efficacy of the proposed STSA technique has been examined by comparison with other existing
techniques of pattern recognition: neural networks (NN) and PCA. The results clearly show that, in
comparison with the NN and PCA techniques, the performance of STSA is superior in terms of early detection
of precursors that provide early warnings before the onset of widespread fatigue damage. A combination of
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maximum-entropy partitioning in the wavelet domain and symbolic dynamics was able to detect fatigue
damage growth significantly before the onset of crack propagation phase and yielded better performance than
other techniques.

The reported work is a step toward building a reliable instrumentation system for early detection of fatigue
damage in polycrystalline alloys; further research is necessary before its usage in industry. The utilisation of
this information provided by the anomaly measure for appropriate control action for damage mitigation is an
area of future work and would require stochastic analysis of multiple data sets generated under identical
loading and environmental conditions. While there are many research issues that need to be addressed, the
following research topics are being currently pursued.
�
 Solution of the inverse problem using ultrasonic stochastic data and development of performance bounds
for safe reliable operation.

�
 Statistical analysis of time series data of fatigue damage, collected under identical loading and
environmental conditions, to account for manufacturing and material uncertainties.

�
 Validation of the STSA technique for early detection of fatigue damage under different conditions, such as
high-cycle loading, variable-amplitude block loading, and spectral loading [31].

�
 Interpretation of phase changes in the fatigue damage evolution in terms of those in statistical mechanics.
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