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Abstract

This paper presents design, modelling and system identification of a laboratory test apparatus that has been constructed
to experimentally validate the concepts of anomaly detection in complex mechanical systems. The test apparatus is
designed to be complex in itself due to partially correlated interactions amongst its individual components and functional
modules. The experiments are conducted on the test apparatus to represent operations of mechanical systems where both
dynamic performance and structural durability are critical.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An anomaly is defined as deviation from the nominal behavior of a dynamical system and is often associ-
ated with parametric and non-parametric changes that may gradually evolve in time. Anomalies may manifest
themselves with self excitation within the dynamical system, or under persistent excitation of exogenous stim-
uli. The anomalies may be benign or malignant depending on their impact on the mission objectives and oper-
ating conditions. Major catastrophic failures in complex engineering systems could often be averted if the
malignant anomalies are detected at an early stage.

The goal of the detection method [1] is to make inferences on occurrence of slow-time-scale anomalies (e.g.,
evolution of fatigue crack damage) in complex mechanical systems based on observed macroscopic changes in
the behavior pattern of the fast-time-scale process dynamics. Since accurate and computationally tractable
modelling of complex system dynamics is often infeasible solely based on the fundamental principles of
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physics, it is necessary to rely on time series data generated from sensors and other sources of information
[2,3]. Along this line, Ray [1] has reported a novel concept of anomaly detection in complex systems, where
the underlying information on the dynamical behavior is derived from time series data based on the following
assumptions:

• The process has stationary dynamics at the fast time scale;
• Any observable non-stationary behavior is associated with changes evolving at the slow time scale at which

anomalies may occur.

From the above perspectives, anomaly detection in dynamical systems [1] is formulated as a two-time-scale
problem. Progression of anomalies may take place in the form of parametric or non-parametric variations in
the system response and the objective is to capture this information from the observed time series data as early
as possible. Thus, early detection of malignant anomalies allows a decision and control system to take appro-
priate actions, averts catastrophic failures, and possibly satisfies the mission requirements albeit at a degraded
level of performance.

This paper focuses on design, modelling and system identification of an experimental test apparatus that
has been recently fabricated for early detection of small anomalies. Critical parameters (e.g., resonant frequen-
cies) of the test apparatus system provide meaningful information for detection of anomalies that accrue from
fatigue crack damage in the mechanical structures. A mathematical model of the system dynamics is formu-
lated for identification of these critical parameters from the input/output time series data generated by persis-
tent excitation. (Note: Fatigue damage evolves at a time scale that is several orders of magnitude slower than
the structural dynamics.)

The paper is organized in seven sections including the present one. Section 2 briefly describes the test appa-
ratus for anomaly detection along with the design requirements for anomaly detection. Section 3 provides the
details of systems modelling from physical aspects and determines the critical dimensions of the test apparatus
and the expected resonant frequencies of the mechanical structure. Section 4 describes the frequency-domain
identification approach and presents the pertinent results. Section 5 compares the identified model with exper-
imental data. Section 6 discusses how the fatigue crack damage evolves as an anomaly in the dynamic behavior
of the test apparatus and presents the results of anomaly detection. Section 7 concludes the paper and high-
lights the areas of future research.
2. Description of the test apparatus

With the goal of investigating decision and control strategies for damage reduction (i.e., to make the struc-
tural damage as small as possible) in complex mechanical systems (e.g., vehicular systems, power generation
systems, and chemical plants), the test apparatus is designed to deliberately introduce fatigue damage in its
critical component(s) [4]. These components are intentionally made to break in a reasonably short period
of time to enhance the speed of conducting experiments. It is important that the damage in a critical compo-
nent must not be strongly coupled with the plant dynamic performance. For example, a fatigue test machine,
whose performance is directly related to the damage of the test specimens, does not qualify as such a test appa-
ratus. From these perspectives, the requirements of the test apparatus are:

1. Operability under cyclic loading with multiple sources of input excitation;
2. Damage accumulation in test specimens (at selected locations) within a reasonable period of time with neg-

ligible damage in other components of the test apparatus;
3. Existence of moderate coupling between the damage of test apparatus and dynamic performance of the

control system;
4. Accommodation of multiple failure sites for comparative evaluation of damage behavior and their trade-off

and
5. Initiation of the groundwork for the implementation of a damage mitigating supervisory control system

that makes decisions related to life extension without significant loss in performance [4].
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Remark 1. The implication of Requirement #3 is as follows. The plant states that influence the structural
damage in the test specimens should not strongly affect the performance variables under normal operating
conditions. The rationale is that a strong coupling will preclude any application of life extending control to
achieve a large gain in structural durability without any significant loss of performance. Nevertheless,
moderate coupling is necessary because the analyzed time series data of the displacement sensor signal must
contain ample information on the system dynamics. If this assumption is relaxed, early detection by
mechanical sensors may not be feasible and one would have to rely entirely on damage sensing devices like
ultrasonic transducers used in non-destructive testing for anomaly detection. The focus of this research is to
show the efficacy of real-time anomaly detection based on time series data from mechanical sensors such as
displacement sensors and accelerometers.

Remark 2. Small structural anomalies in critical components may not often affect the nominal plant dynam-
ics and hence there is no inherent damage feedback. The rationale is that the physical phenomena of material
degradation in plant component microstructures may not appreciably alter its macroscopic mechanical behav-
ior (e.g., stiffness constant or natural modes of vibration) within the range of its normal service life. For exam-
ple, fatigue-induced small cracks in an aircraft wing may not alter flight dynamics within its safe operating life
span.

In order to satisfy the above requirements, the test apparatus is designed and fabricated as a three degree-
of-freedom (DOF) mass beam structure that is excited by two shaker tables (i.e., vibrators). A schematic dia-
gram of the test apparatus system is shown in Fig. 1 and dimensions of the pertinent components are listed in
Table 1. The test apparatus system is logically partitioned into two subsystems: (i) the plant subsystem con-
sisting of the mechanical structure including the test specimens to undergo fatigue crack damage; actuators
and sensors and (ii) the instrumentation and control subsystem consisting of computers, data acquisition
and processing, and communications hardware and software. The sensors include: two load cells for force
measurement and two Linear Variable Displacement transducer (LVDT) for displacement measurement.
Two of the three major DOF’s are directly controlled by the two shaker table actuators, Shaker #1 and Shaker
#2, and the remaining DOF is observable via displacement measurements of the three vibrating masses: Mass
#1, Mass #2 and Mass #3. The inputs to the multi-variable mechanical structure are the forces exerted by the
two shaker tables; and the outputs to be controlled are the displacements of Mass #2 and Mass #3.

The three beams in Fig. 1 are representatives of plant components, which are subjected to fatigue crack
damage. The mechanical structure is excited at one or more of the resonant frequencies so that the critical
component(s) can be subjected to different levels of cyclic stresses with no significant change in the external
power injection into the actuators. The excitation force vector, generated by the two actuators, serves as
Fig. 1. Schematic diagram for the test apparatus.



Table 1
Structural dimensions of the test apparatus

Component Material Length (mm), mass (kg) (length · width · thickness)

Mass 1 Mild steel 1.0
Mass 2 Aluminium 6061-T6 0.615
Mass 3 Mild steel 2.2
Beam 1 Mild steel 800 · 25.4 · 12.7
Beam 2 Aluminium 6061-T6 711.2 · 22.2 · 11.1
Specimens Aluminium 6061-T6 203.2 · 22.2 · 11.1
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the inputs to the multi-DOF mechanical structure to satisfy the Requirement #1. The failure site in each spec-
imen, attached to the respective mass is a circular hole (of radius 0.332 in. dia.) as shown in Fig. 1.

The three test specimens, each of which having a drilled hole as shown in Fig. 1, are excited at different
levels of cyclic stresses. Notice that two of them are directly affected by the vibratory inputs while the remain-
ing one is subjected to resulting stresses, thus functioning as a coupling between the two vibrating systems. In
the present configuration, three test specimens are identically manufactured and their material is 6061-T6 alu-
minium alloy. In the future research, different materials will be selected for individual specimens that may also
undergo different manufacturing procedures.

3. Modelling of the test apparatus system

A structural model of the mechanical system described above, is formulated using a cubic interpolation
polynomial to approximate the lateral displacement of the beams and a linear approximation for the lateral
displacement of the masses. The major assumptions in the model formulation include:

• Lumped representation of the beam masses.
• Beams are subjected to pure bending.

The first assumption implies that the beam masses essentially behave as rigid bodies, which is justified by
their relatively high stiffness. The second assumption implies that deformation and rotation of the masses are
negligible.

Since the objectives of the test apparatus also include investigation of different control policies and their
influence on specific modes of fatigue failure in a dynamic setting, structurally weakened elements that are rep-
resentatives of critical plant components, are introduced in the test apparatus to facilitate occurrence of obser-
vable failures. In the two-mass configuration of Fig. 1, three parallel failure sites are introduced by drilling a
hole of diameter 0.332 in. in each of the beams connecting Mass #1 and Mass #2 and Mass #3 and vibrator
#1. Fig. 2 shows the details of the failure site on the beam connecting Mass #1.

3.1. Subsystem modelling

Fig. 3 shows the local co-ordinate system for each component along with the sign convention used for
forces and bending moments. Physics-based modelling of the system dynamics provides ample information
Fig. 2. Side view of failure site on the beam specimen.



Fig. 3. Free body diagram.
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on the resonant frequencies of the structure to estimate the appropriate dimensions for the various compo-
nents. Furthermore, to cause fatigue failure within a reasonable amount of time, the specimens need to be sub-
jected to loads near resonating conditions, as seen in Fig. 4.

The two subsystems 1 and 2 in Fig. 3 are connected by a thin aluminium beam and the failure site is
designed as seen in Fig. 1. In the current configuration, all three specimens are identical and manufactured
from the same process so as to facilitate comparative behavior under fatigue failure.

3.1.1. Analysis of System 1

The bending moment generated by Shaker 1 is
M0 ¼ F 1ðL5 � zÞ. ð1Þ
Fig. 4. Frequency response of full state and reduced order model.
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By Castigliano’s theorem,
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The forced single-input single-output (SISO) system equation in Fig. 3 is obtained as
m€zþ kz ¼ F 1; ð4Þ
_x ¼ Axþ Bu;

y ¼ Cxþ Du; ð5Þ
where
x ¼
x
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0
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; C ¼ ð 1 0 Þ; D ¼ ð0Þ; y ¼ ðxÞ;
x and _x represent, respectively, the modal displacement of the mass m3 from the center of the beam or the rest
position and its velocity in the x-direction.

3.1.2. Analysis of System 2

For the 1-input 2-output System 2, m2 is assumed to be a point mass located at the tip of Beam 2. The lat-
eral displacements of beam 1 and 2, yi (xi), i = 1,3 are approximated by third order polynomials in xi, i = 1,3
and the lateral displacement of mass m1, y2 (x2), is approximated by a linear fit in x2 as seen in Fig. 1
y1ðx1Þ ¼ C1

x3
1

6
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x2
1

2
þ C3x1 þ C4;

y2ðx2Þ ¼ C5x2 þ C6;
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x3
3

6
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x2
3

2
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The above polynomial approximation is based on the assumption that mass m1 is treated as a rigid body with
negligible deformation, because of its dimensions and Young’s Modulus of the material and the forces that it
experiences. With the definitions y2ðL2

2
Þ and y3ðL3Þ, the boundary conditions at the end points and the compat-

ibility conditions are given below in equation.

3.1.2.1. Boundary conditions. Beam 1 is modelled as a cantilever and hence both the displacement and velocity
at the fixed end of the beam are zero
y1ð0Þ ¼ 0; y01ð0Þ ¼ 0.
Also, the cantilever beam is attached to a mass m1 which in this case is modelled as a beam. Hence, by the
continuity principle, the displacement at the interface of Beam 1 and mass m1 should be the same.
y1ðL1Þ ¼ y2ð0Þ; y 01ðL1Þ ¼ y02ð0Þ.
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Writing the flexural bending equation for Beam 1 with Young’s modulus E1 and the area moment of inertia I1:
E1I1y001ðL1Þ ¼ Mþ
B ; �E1I1y0001 ðL1Þ ¼ V þB ;
where MB is the bending moment at the interface of Beam 1 and mass m1 and VB is the shear force acting at
the interface. Convention used is + sign for clockwise moment and shear force producing clockwise moment.
The following equations are obtained from similar analysis and sign convention used for the interface between
mass m1 and Beam 2:
y2ðL2Þ ¼ y3ð0Þ; y02ðL2Þ ¼ y03ð0Þ;
E3I3y 003ð0Þ ¼ M�

C ; �E3I3y0003 ð0Þ ¼ V �C ;

E3I3y 003ðL3Þ ¼ 0; E3I3y 0003 ðL3Þ ¼ m2
€y3 � F 2;
where E3 is the Young’s modulus and I3 is the area moment of inertia of Beam 2. The last equation is derived
with F2 being the force applied by Shaker 2.

3.1.2.2. Compatibility conditions. Considering the equilibrium of each individual beam and mass in the single
input, multi-output system, the following compatibility conditions are obtained:
X
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where Ei represents the Young’s modulus of the beam and Ii represents the area moment of inertia of the Beam
i. Also, MC and VC represent the bending moment and shear force at the interface of mass m1 and Beam 2.
Applying these boundary and compatibility conditions and solving manually for all constants in terms of
parameters of Young’s modulus, the area moment of inertia, forces, lengths and masses, the following expres-
sions for the 10 constants, C1 to C10 are obtained in terms of measurable physical parameters.
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Substitution of the constants in Eqs. (6) and (7) yields the following dynamic equations:
m1
€y2 þ Py2 þ Qy3 ¼ 0
and
m2
€y3 þ Ry2 þ Sy3 ¼ F 2.
The parameters P,Q,R, and S are obtained from the following equations:
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Conversion to the single-input multiple-output (SIMO) state space form yields
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where y2, _y2, y3 and _y3 represent the displacements and velocities of mass m1 and m2, respectively.
The above analysis reveals that the single mass-beam system has a resonant frequency at 73.3 rad/s corre-

sponding to mass m3 and the two mass-beam system has resonant frequencies at 28.9 rad/s and 87.8 rad/s,
which approximately correspond to the masses m2 and m1, respectively. The idea behind the design is to obtain
the resonant frequency of System 1 and the higher mode frequencies of System 2 as close as possible to each
other so as to facilitate uniform probabilities of failure in two of the three specimens. However, this may
require the specimens to be identical for comparison of their fatigue damage behavior.
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4. System identification

A set of open loop plant models is typically derived based on a priori information (e.g., fundamental laws of
physics, plant operating conditions and physical dimensions). The plant model parameters can be identified
via time-domain or frequency domain techniques.

4.1. Open loop frequency domain identification

Both the time-domain and frequency-domain approaches are expected to yield equivalent results [5], in gen-
eral. However, since the mechanical system under consideration is highly resonant and we are interested in
accurate assessment of the resonant frequencies in this paper, a frequency-domain method of system identifi-
cation [6] has been adopted based on sinusoidal sweep input excitation. Furthermore, the instrumentation of
the test apparatus allows acquisition of experimental data in the frequency domain.

Non-parametric frequency domain identification makes use of transfer function measurements via combi-
nation of a slowly swept sine with a tracking filter. The reason for choosing the sinusoidal sweep as an input
signal is to capture the resonant peaks that are the modes of the system without any undesired loss of accu-
racy. In this case, the system is characterized by measurements of the frequency response at a large number of
discrete frequency points within the spectrum. In contrast, the parametric model is characterized by a number
of selected parameters.

4.2. Frequency response of plant dynamics

The frequency domain modelling requires the plant output response at a set of discrete frequency points
xk2{x1,x2, . . . ,xN} covering the bandwidth of interest (i.e., from 0 to 20 Hz). An application of curve fitting
techniques [7] yields a rational transfer matrix to obtain a closed form autoregressive moving average
(ARMA) model
HðzÞ ¼ A0 þ A1z�1 þ A2z�2 þ � � � þ Amz�m

1þ b1z�1 þ b2z�2 þ � � � þ bnz�n
; ð9Þ
where the coefficient b0 is normalized to unity and Ai’s represent the ‘ · p coefficient matrices of numerator
polynomials; the number of inputs is p and the number of outputs is ‘ and the bi’s are the coefficients of
the common denominator polynomial of degree n.

System identification is accomplished by using the frequency response data via the invfreqz algorithm of the
freqid GUI package [8] under MATLAB. A sweeping sinusoidal signal over discrete frequencies in the band-
width of the actuator is applied and the resulting output is collected. Similar results could also be achieved by
attaching a frequency analyzer to the system. This is done by individually applying an input excitation to each
actuator successively and collecting the respective output. Figs. 5 and 6 present Bode plots of the actual exper-
imental data with each single input multi-output (SIMO) experiment. The identification is conducted with a
sampling time of 2 ms for the data acquisition. The frequency x of the excitation signal ranges from 0 to
113.1 rad/s (approx 18 Hz) with 176 points. The procedure followed in model identification is to minimize
the frequency-weighted cost functional of the deviation of the model response from the generated plant data.

Algorithm. By default, invfreqz uses the principle of least squares to identify the model from the data series.
This is accomplished by determining the transfer function coefficients by minimizing a cost functional in the
following form:
CðAk; bkÞ ¼ min
Xn

x¼1

Xn

y¼1

1

2

XN

i¼1

W xy;i H xyðxiÞ �
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bkz�k
i �

Xm

k¼0

Axy;kz�k
i

 !					
					
2

0
@

1
A; ð10Þ
where Hxy(xi) is the actual experimental frequency response at xi and Wxy,i is the weighting factor for each
frequency point xi. The weights are chosen as the inverse of the data in order to minimize a relative error in-
stead of the absolute error. Furthermore, since Eq. (10) is a sum of quadratic terms, the cost functional



Fig. 5. Output positions vs input voltage to Shaker 1.

Fig. 6. Output positions vs input voltage to Shaker 2.
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C(Ak,bk) can be minimized using numerical techniques (e.g., Newton–Gauss and Levenberg–Marquardt) for
solving non-linear least-square problems. The analysis can be done in the complex field by ensuring that the
coefficients Ak,bk are real.
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4.3. Data acquisition and estimation of transfer matrices

Output data are collected at steady state (i.e., allowing the transients to die out) over a sufficient length of
time.

The results of the SIMO system experiments are presented in Figs. 5 and 6. Resonant frequencies are seen
to be located at approximately 71 rad/s and 91 rad/s, which are very close to those predicted by the derived
model.

Individual transfer functions are then identified for each input output pair and then the models are com-
bined. Furthermore, the combined model is reduced to a minimal realization removing the uncontrollable
and unobservable states using the Staircase Algorithm. The minimal realization is further balanced using
the Matlab function sysbal to first isolate states with negligible contribution to the input/output response.
While the order of state-space model was further reduced based on the magnitude of Hankel singular values
[9] and by using the Matlab function modred, it was ensured that the resonant peaks (poles) of the original
higher order model are conserved in the reduced order model having 13 states as shown in Fig. 4. This was
done without any significant loss of information in the desired frequency range. Since, the system is highly
resonant, the excess stable zeros were removed during model order reduction.

5. Experimental results and discussion

This section presents the results of the derived model and compares them with the experimental data. Figs.
5 and 6 exhibit comparison of the model responses with experimentally generated frequency response data
(FRD) under excitation of Shaker #1 and Shaker #2, respectively. The model fairly captures the resonant
peaks that correspond to the modes of the mechanical structure. Physical modelling of the system indicates
the resonant peaks at 73.3 rad/s and 87.8 rad/s. The identified poles at 71 rad/s and 91 rad/s are close to
the resonant peaks at 73.3 rad/s and 87.8 rad/s, obtained from the physical model (see Section 3.1). The small
deviations in the resonant frequencies of the physical model from those obtained experimentally are possibly
due to lumped parameter approximation and interactions between the two systems, which has not been incor-
porated in the physical model.

The transfer matrix of the open loop model of the test apparatus structure has been identified in the dis-
crete-time setting with a sampling period of 0.002 s. The balanced and reduced model has 13 states, two con-
trol (i.e., actuator command) inputs, two outputs (i.e., displacement of the masses m1 and m3). Displacement
of m1 will be treated as the performance variable to synthesize the robust control law in the future. The dis-
crete-time dynamic model of the plant with a sampling period Ts = 0.002 s is presented below:
xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ; ð11Þ
yðkÞ ¼ CxðkÞ þ DuðkÞ; ð12Þ
where
A¼

�0:8442 0:1770 0:1688 0:2314 0:0843 0:1274 �0:0515 0:0142 �0:0287 0:0356 0:0108 0:0019 �0:0025

�0:1790 �0:1979 0:8040 �0:2611 �0:1083 �0:1624 0:0581 �0:0136 0:0366 �0:0363 �0:0141 �0:0027 0:0062

0:1704 �0:8047 0:1933 0:2670 0:1085 0:1629 �0:0588 0:0143 �0:0362 0:0372 0:0140 0:0027 �0:0058

�0:2246 �0:2554 �0:2622 0:6332 �0:1934 �0:3078 0:0742 �0:0428 0:0544 0:0532 �0:0274 �0:0079 0:0052

0:0385 0:0448 0:0460 0:0763 �0:8356 0:3686 0:1668 0:0598 �0:1188 �0:0238 0:0386 0:0074 0:0097

�0:0641 �0:0845 �0:0859 �0:1761 �0:3685 �0:0273 �0:7588 �0:2019 0:0985 0:0759 �0:0487 �0:0171 �0:0570

0:0356 0:0519 0:0511 0:1132 0:0784 0:6154 0:1701 �0:2355 0:4704 �0:1464 �0:0868 �0:0010 �0:0480

�0:0672 �0:0846 �0:0850 �0:1503 �0:0186 0:0223 0:3442 �0:7033 �0:2474 0:3898 �0:0305 �0:0336 0:0546

�0:0329 �0:0330 �0:0332 �0:0201 0:1623 0:3410 �0:2617 �0:0133 �0:5714 �0:3410 �0:0759 �0:0407 0:1648

0:0379 0:0471 0:0479 0:0801 0:0299 �0:0830 �0:1877 �0:4305 0:2346 �0:2553 0:3867 0:1566 0:4556

0:0225 0:0264 0:0265 0:0342 �0:0383 �0:0831 0:0508 �0:0751 �0:2174 �0:2434 �0:3498 0:7174 �0:0729

�0:0024 �0:0036 �0:0035 �0:0070 �0:0013 �0:0173 �0:0117 �0:0138 0:1281 �0:0237 �0:7711 �0:2423 0:4656

0:0026 0:0012 0:0012 �0:0097 �0:0445 �0:0810 0:0958 �0:0464 �0:1005 �0:4619 0:0861 �0:5648 �0:0590
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B¼

0:0169 0:0240

�0:0172 �0:0238

0:0170 0:0239

�0:0192 �0:0226

0:0129 �0:0056

�0:0127 0:0094

�0:0145 0:0060

0:0000 �0:0008

0:0020 �0:0079

0:0059 �0:0027

�0:0024 0:0036

0:0017 �0:0009

�0:0019 0:0031

C¼
�0:0249 �0:0240 �0:0239 �0:0251 0:0004 �0:0019 0:0038 �0:0062 �0:0013 �0:0072 0:0002 �0:0001 �0:0035

�0:0164 �0:0180 �0:0183 �0:0178 �0:0039 0:0021 0:0018 0:0114 0:0050 0:0062 0:0002 0:0009 0:0054

D¼
1:0e�005�

0:2628 �0:4518

�0:1784 0:3757:
6. Detection of fatigue crack anomaly

The mechanical system in Fig. 1 has been persistently excited over a frequency range, including the reso-
nance frequency, so as to induce a stress level that causes fatigue failure to yield an average life of approxi-
mately 20,000 cycles, equivalently, a total duration of about 32 min. The applied stress is dominantly
flexural (i.e., bending) in nature and the amplitude of oscillations is symmetrical about the zero mean level.
That is, the beams are subjected to reversed stress cycles [10]. Under such cyclic loading conditions, the spec-
imens undergo fatigue cracking where the far-field stress is elastic and plasticity is only localized at the crack
tip. The fatigue damage occurs at a time scale that is (several order of magnitude) slow relative to the fast time
scale dynamics of the vibratory motion and eventually leads to a complete breakage of the beam structure at
the failure site. Close observation indicates that fatigue failure develops in the following pattern:

• The repeated cyclic stress causes incremental crystallographic slip and formation of persistent slip bands;
• Gradual reduction of ductility in the strain-hardened areas results in the formation of submicroscopic

cracks and
• The notch effect of the submicroscopic cracks concentrates stresses until complete fracture occurs.

Crack initiation may occur at a microscopic inclusion or at site(s) of local stress concentration. In this
experimental apparatus, the sites of stress concentration are localized by creating a hole in each of the three
specimens as shown in Fig. 2.

Since the mechanical structure of the test apparatus consists of beams and masses, the underlying dynamics
can be approximated by a finite set of first order coupled differential equations with parameters of damping
and stiffness. The damping coefficients are very small and the stiffness constants very slowly change due to the
evolving fatigue crack.

The anomaly detection methodology as proposed by Ray [1] has been evaluated with time-series data gen-
erated from the test apparatus in Fig. 1. Both shaker tables were excited by a sinusoidal input of amplitude
0.85 V and frequency 11.39 Hz (71 rad/s) throughout the run of each experiment. The time series data of
Mass #3 displacement sensor, which serve as an indicator of the macroscopic system performance, were col-
lected from the beginning of the experiments until breakage of specimens. The ensemble of data were saved in
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a total of 18 files, with each file containing 2 min of sensor time-series data. The time-series data sets were
collected after the dynamic response attained the stationary behavior. The first data set was taken as the ref-
erence point representing the nominal behavior of the dynamical system. These data sets were used to com-
pare the anomaly detection capability of the symbolic dynamics approach [1] relative to that of three
established pattern recognition techniques: principal component analysis (PCA) [11], radial basis function
neural network (RBFNN) [12] and multi-layer perceptron neural network (MLPNN) [13]. Some of the details
are reported in [14].

The five plots in Fig. 7 compare the anomaly measures obtained by using five anomaly detection
approaches, symbolic false nearest neighbors (SFNN) [15], wavelet space (WS) [1], PCA, MLPNN and
RBFNN; details of the comparative analysis are reported in a previous publication [16]. The comparative
analysis in this paper was performed for the first 16 files (i.e., up to 32 min when the service life of the test
specimen is virtually expired, i.e., the specimen is about to break). Note: The estimated service life of the spec-
imen under this load excitation is about 40 min, equivalently, the data contained in 20 files. The nominal con-
dition is chosen at the time epoch of 2 min to ensure that all transients have decayed. The symbolic dynamics-
based anomaly detection with both SFNN and WS partitioning yields the best performance and the MLPNN
yields the worst performance in terms of early detection of anomalies. Both SFNN and WS are capable of
detecting the anomaly within 16 min when the remaining life is more than 50% of the total service life of
32 min. In contrast, MLPNN is found to take more than 24 min to detect the anomaly at a similar level, which
is equivalent to having the remaining life less than 20% of the total service life of 32 min. The distributed non-
linearities in the MLPNN may not be specifically suited to capture the small parameter perturbations in the
largely linear behavior of the dynamic response of the vibrating structures. The WS-partitioning [1] with a
proper choice of scales and mother wavelet shows significant higher anomaly measure as compared to
PCA. The rationale is that the PCA method is dependent on eigenvalues and eigenvectors of the covariance
matrix that is sensitive to measurement noise in the data acquisition process. In contrast, the symbolic
dynamic approach, for both WS and SFNN partitioning, is much less sensitive to (zero-mean) measurement
noise because of the inherent averaging due to repeated path traversing in the finite-state machine.

Test results show that the detection method is robust relative to modelling uncertainties within a few per-
cent. Experimental data have been generated to quantify the statistical confidence levels on robustness as well
as accuracy of the predicted remaining life based on anomaly measure. This is a topic of future research.

7. Conclusions and future work

This paper presents design, modelling and system identification of a laboratory test apparatus that has been
constructed to experimentally validate the concepts of anomaly detection in complex mechanical systems. The
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test apparatus is designed to be complex in itself due to partially correlated interactions amongst its individual
components and functional modules. The experiments are conducted on the test apparatus to represent oper-
ations of mechanical systems where both dynamic performance and structural durability are critical.

The main objective of the work reported in this paper is design, modelling and system identification of an
experimental apparatus to detect slowly evolving anomalies (e.g., decrease in stiffness due to fatigue failure) in
complex mechanical systems at an early stage by observing time series data of the available displacement mea-
suring sensors [14]. (Additional ultrasonic sensors will be installed at local crack sites in the future for
enhancement of anomaly detection.) The information on evolving anomaly will serve as an input to the life
extending control policy that will, in turn, generate corrective actions to mitigate fatigue crack damage in the
specimen structures and thereby extend the remaining life of the specimens without any significant loss in per-
formance [4]; synthesis and validation of the life extending control policy is a topic of future research. Nev-
ertheless, the information on anomaly (i.e., fatigue crack damage) from the required time series data must be
generated in real time by remote sensing if the failure site is not directly accessible to the measuring instru-
ments that produce the time series data. Future work would involve usage of this real-time damage measure
to synthesize control policies for mitigating failure and extending life without any significant loss in perfor-
mance. A variety of sensor data (e.g., ultrasonic, acoustic emission, optical metrology, and displacement
transducers) will be used to accurately assess the fatigue crack damage and predict the onset of widespread
fatigue damage.

Further theoretical and experimental research is recommended in the following areas:

• Understanding deeper aspects of fatigue crack initiation using advanced sensing technology such as ultra-
sonics and electro-magnetics.

• Validation of the symbolic time series method for early detection of fatigue damage in different materials.
• Localization of crack incubation sites (possibly via acoustic emission) in large specimens.
• Formulation of decision and control policies for failure mitigation and life extension.
• Investigation of robustness of the detection method and accuracy of the predicted remaining life based on

anomaly measure.
• Implementation of the anomaly detection methodology in real-time to facilitate life extension without any

appreciable loss in performance.
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