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The signed real measure of regular languages has been introduced and validated in recent
literature for quantitative analysis of discrete-event systems. This paper reports generalizations

of the language measure, which can serve as performance indices for synthesis of optimal
discrete-event supervisory decision and control laws. These generalizations eliminate a
user-selectable parameter in the original concept of language measure. The concepts are
illustrated with simple examples.

1. Introduction

In the discrete-event setting, a finite-state automaton

(FSA) model of a physical plant is a generator of its

regular language, whose behaviour is constrained by

the supervisor (or controller) to meet a given specifica-

tion. A signed real measure of regular languages has

been reported in Ray (2005) and Ray et al. (2005) to

provide a mathematical framework for quantitative

comparison of controlled sublanguages. In this work,

each transition is assigned a cost, similar to its probabil-

ity measure that can be quantitatively evaluated from

physical experimentation or extensive simulation on a

test bed. Each state of the FSA model is assigned a

signed real weight whose upper and lower bounds are

normalized to 1 and �1, respectively. The measure of

a given event trace is obtained as the product of the

cost of transitions and the (normalized) weight of the

terminating state. The sum of the measures of all

traces yield the language measure.
Optimal control of finite state automata has been

recently reported Ray et al. (2004, 2005) based on the

total ordering induced by the language measure as aug-

mentation to the supervisory control theory of Ramadge

and Wonham (1987). This work consolidates the theory

and applications of optimal supervisory control of

regular languages, where the performance index is

obtained by combining a real signed measure of the

supervised plant language with the cost of disabled

event(s). Starting with the (regular) language of an unsu-

pervised plant automaton, the optimal control policy

makes a trade-off between the measure of the supervised

sublanguage and the associated event disabling cost to

achieve the best performance. Like any other optimiza-

tion procedure, it is possible to choose different perfor-

mance indices to arrive at different optimal policies

for discrete event supervisory control. It is recognized

that optimal control of discrete-event systems can be

achieved with a cost function that may not qualify as

a measure (e.g., Sengupta and Lafortune (1998)).

Nevertheless, usage of a language measure as the cost

function facilitates precise comparative evaluation of

different supervisors so that the appropriate control

policy(ies) can be conclusively identified.
From the above perspectives, this paper presents

generalizations of the language measure (Ray 2005),

each generalization being a formal measure in its own

right and having physical implications that are relevant

to synthesis of discrete-event supervisory control

policies. These generalizations are achieved through

a new concept of trace measure that is characterized

by both initiating and terminating states as well as the

length of the trace and the choice of a vector*Corresponding author. Eamil: axr2@psu.edu
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norm (Naylor and Sell 1982). The concept of generaliza-
tion can be viewed as renormalization (Chattopadhyay
and Ray 2006) of the (normalized) language
measure (Ray 2005).
The paper is organized in six sections including the

present one. Section 2 briefly reviews background con-
cepts on language measure. Section 3 derives measures
related to the stationary state probability vector of the
finite-state automaton. Section 4 introduces the notion
of shaped measures, which allows assignment of selec-
tive length-based importance to different traces in the
generated language. It is further shown that measures
introduced in x 3 can be obtained as limits of sequences
of shaped measures. Section 5 presents an example of
optimal automaton configurations. Section 6 concludes
the paper along with recommendations for future
research.

2. Brief review of language measure

This section briefly reviews the concept of signed real
measure of regular languages Ray (2005) and Ray
et al. (2005). Let Gi � hQ,�, �, qi,Qmi be a trim (i.e.,
accessible and co-accessible) deterministic finite-state
automaton (DFSA) model (Ramadge and Wonham
1987) that represents the discrete-event dynamics of a
physical plant, where Q ¼ fqk : k 2 IQg is the set of
states and IQ � f1, 2, . . . , ng is the index set of states;
the automaton starts with the initial state qi; the alpha-
bet of events is � ¼ f�k : k 2 I�g, and I� � f1, 2, . . . , ‘g
is the index set of events; �: Q�� ! Q is the (possibly
partial) function of state transitions; and Qm �

fqm1
, qm2

, . . . , qmr
g � Q is the set of marked (i.e.,

accepted) states with qmk
¼ qj for some j 2 IQ.

Let �? be the Kleene closure of �, i.e., the set of all
finite-length traces made of the events belonging to �
as well as the empty trace � that is viewed as the identity
of the monoid �? under the operation of trace concate-
nation, i.e., �s ¼ s ¼ s�. The extension �?: Q��? ! Q
is defined recursively in the usual sense (Hppcroft
et al. 2001).

Definition 1: The language L(Gi) generated by a DFSA
G initialized at the state qi 2 Q is defined as
LðGiÞ ¼ fs 2 �? j �?ðqi, sÞ 2 Qg.

Definition 2: The language Lm(Gi) marked by a DFSA
Gi initialized at the state qi 2 Q is defined as
LmðGiÞ ¼ fs 2 �? j �?ðqi, sÞ 2 Qmg.

The language LðGiÞ is partitioned into non-marked and
marked languages, LoðGiÞ � LðGiÞ � LmðGiÞ and LmðGiÞ,
consisting of event traces that, starting from qi 2 Q,
terminate at one of the non-marked states in Q�Qm

and one of the marked states in Qm, respectively.

The set Qm is further partitioned into Qþ
m and Q�

m,
where Qþ

m contains all good marked states that are
desired to be terminated on and Q�

m contains all bad
marked states that one may not want to terminate on,
although it may not always be possible to avoid the
bad states while attempting to reach the good states.
Accordingly, the marked language LmðGiÞ is further
partitioned into Lþ

mðGiÞ and L�
mðGiÞ consisting of good

and bad traces that, starting from qi, terminate on Qþ
m

and Q�
m, respectively. Thus, the language LðGiÞ is decom-

posed into null, i.e., LoðGiÞ, positive, i.e., L
þ
mðGiÞ, and

negative, i.e., L�
mðGiÞ sublanguages. A signed real mea-

sure �: 2LðGiÞ ! R � �1, 1ð Þ is constructed for quan-
titative evaluation of every event trace s 2 LðGiÞ.

Definition 3: The language of all traces that, starting at
a state qi 2 Q, terminates on a state qj 2 Q, is denoted as
Lðqi, qjÞ. That is, Lðqi, qjÞ � fs 2 LðGiÞ : �

?ðqi, sÞ ¼ qjg.

Definition 4: The terminating characteristic function
that assigns a normalized signed real weight to state-
partitioned sublanguages Lðqi, qjÞ, i ¼ 1, 2, . . . , n,
j ¼ 1, 2, . . . , n is defined as �: Q ! ½�1, 1� such that

�j 2

½�1, 0Þ if qj 2 Q�
m

f0g if qj =2Qm

ð0, 1� if qj 2 Qþ
m:

8><>: ð1Þ

Definition 5: The event cost is conditioned on a DFSA
state at which the event is generated, and is defined as
~� : LðGiÞÞ �Q ! ½0, 1� such that 8qj 2 Q, 8�k 2 �,
8s 2 LðGiÞÞ

(1) ~�½�k, qj� � ~�jk 2 ½0, 1Þ;
P

k ~�jk < 1;
(2) ~�½�, qj� ¼ 0 if �ðqj, �Þ is undefined; ~�½�, qj� ¼ 1;
(3) ~�½�ks, qj� ¼ ~�½�k, qj� ~�½s, �ðqj, �kÞ�.

The event cost matrix is defined as e&ij ¼ ~�ij with
i 2 f1, . . . , ng and j 2 f1, . . . ,mg where the automaton
has n states and cardinality of the event alphabet � is m.

An application of the induction principle to part (3)
in Definition 5 shows ~�½st, qj� ¼ ~�½s, qj� ~�½t, �

?ðqj, sÞ�. The
condition

P
k ~�jk < 1 provides a sufficient condition

for the existence of the real signed measure (Ray
2005). Next a measure of sublanguages of the plant
language L Gið Þ is formulated in terms of the signed char-
acteristic function � and the non-negative event cost ~�.

Definition 6: The state transition cost, �: Q�

Q ! ½0, 1Þ, of the DFSA Gi is defined as follows:
8qi, qj 2 Q,

�ij ¼

P
�2� ~�½�, qi�, if �ðqi, �Þ ¼ qj

0 iff�ðqi, �Þ ¼ qjg ¼ ;:

�
ð2Þ

790 I. Chattopadhyay and A. Ray
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Consequently, the n� n state transition cost &-matrix
is defined as &ij ¼ �ij with i, j 2 f1, . . . , ng where the
number of states in the automaton is n.

Although the preceding analysis reported in Ray
(2005) and Ray et al. (2005) was intended for non-
probabilistic regular languages, the event costs can
be interpreted as conditional probabilities of event
occurrence. A brief discussion on the physical inter-
pretation of the event costs is given in Ray (2005)
to explain this issue. Furthermore, an element �jk of
the �-matrix is conceptually similar to the state tran-
sition probability of a Markov chain or a semi-
Markov chain with the exception that the equality
condition

P
k �jk ¼ 1 is not satisfied. Specifically, the

inequality
P

k �jk < 1, j ¼ 1, 2, . . . , n provides a suffi-
cient condition for the language measure to be finite.
This implies that the preceding analysis is applicable
to the case of terminating probabilistic
languages (Garg 1992a, b) that have a non-zero prob-
ability of termination (arising from either intentional
design or unmodelled dynamics of the plant automa-
ton) at each state. If the probability of termination
at each state, or equivalently the probability of transi-
tion to the (deadlock) dump state from each of the
other states qi 2 Q, is set identically equal to
� 2 ð0, 1Þ, then the e&-matrix and the &-matrix can
be �-parameterized as follows (Chattopadhyay and
Ray 2006):

e&ð�Þ � ð1� �ÞeP and &ð�Þ � ð1� �ÞP, ð3Þ

where eP is the event matrix (also known as the morph
matrix), which is derived from experimental data or
simulation data (Ray 2005) and the resulting stochastic
state transition matrix P is obtained from eP in a way
similar to equation (2). Since P is a stochastic matrix
(i.e.,

P
j Pij ¼ 1 8i 2 f1, . . . , ng), the row sumsP

j �ij ¼ ð1� �Þ < 1, j ¼ 1, 2, . . . , n (see Definition 6)
make & a contraction operator with the magnitude of
each of its eigenvalues being less than or equal to
ð1� �Þ; consequently, ½I�&� becomes invertible (Ray
2005).
In the sequel, the preceding measure construction is

generalized and the notion of language measure is
extended to non-terminating models by first assuming
a uniform non-zero probability of termination � at
each state and then computing the limit as � ! 0þ,
i.e., the probability of termination approaching zero.
The resulting �-parameterized model coincides with
the desired non-terminating model in the limit
(Chattopadhyay and Ray 2006).

Definition 7: The �-parameterized measure of the
language Lðqi, qjÞ is defined in terms of its traces

(see Definitions 3, 4 and 5) as

��ðfsgÞ � ~�ðs, qiÞ�j, 8s 2 Lðqi, qjÞ ð4Þ

�� Lðqi, qjÞ
� �

�
X

s2Lðqi, qjÞ

�� fsgð Þ: ð5Þ

Then, the measure of the language L(Gi) of a DFSA Gi,
initialized at the state qi 2 Q, is defined as

��ðLðGiÞÞ ¼
X

j
�� Lðqi, qjÞ
� �

ð6Þ

It is shown in Ray (2005) that the measure
��
i � ��ðLðGiÞÞ can be expressed as: ��

i ¼P
j �ij �

�
j þ �i. In vector notation, the �-parameterized

language measure vector is expressed by making use of
equation (3) as

l� ¼ I� ð1� �ÞP½ �
�1s, ð7Þ

where the measure vector l� � ½��
1 �

�
2 � � � ��

n�
T and the

terminating characteristic vector s � ½�1 �2 � � � �n�
T.

Note that lim�!0þ l
� of the normalized language

measure does not exist. This problem has been circum-
vented via renormalization (Chattopadhyay and Ray
2006) as explained below.

The regular language L(Gi) is a sublanguage of the
Kleene closure �? of the alphabet �, for which the auto-
maton states can be merged into a single state. Then,
P degenerates to the 1� 1 identity matrix and the termi-
nating characteristic vector s becomes one-dimensional
and can be assigned as s ¼ 1 by normalization.
Consequently, the measure vector l� in equation (7)
degenerates to a scalar measure ��1. The renormalized
measure is obtained from equation (7) after normaliza-
tion with respect to ��1.

q�
j1 ¼ � I� ð1� �ÞP½ �

�1s: ð8Þ

3. Generalization of language measure

This section generalizes the notion of language measure
�� (see Definition 7 and equation (7)), which also leads
to a renormalized measure #� (see equation (8)). This
is achieved by redefining the measure of individual
traces in terms of an initiating characteristic function
�: Q 7 �! ½0, 1� that assigns a positive weight to each
initiating state qi and serves as a renormalizing factor
(i.e., a multiplicative constant) for the measure of the
traces initiating from the respective state. Figure 1
illustrates the relationship among the initiating and
terminating characteristics. Different initiating

Language measure of finite state systems 791
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characteristics lead to different renormalized
language measures that may have different physical
interpretations.

Definition 8: The �-parameterized generalized measure
of a singleton event trace set fsg � Lðqi, qjÞ � LðGiÞ in
the �-algebra 2LðGiÞ is defined as

#�ðfsgÞ � �i�
�ðfsgÞ ¼ �ðqiÞ ~�ðs, qiÞ�j, 8s 2 Lðqi, qjÞ: ð9Þ

The generalized measure of Lðqi, qjÞ is defined as

#� Lðqi, qjÞ
� �

�
X

s2Lðqi, qjÞ

#� fsgð Þ:
ð10Þ

The generalized measure of a DFSA Gi, initialized
at the state qi 2 Q, is denoted as #�

i � #�ðLðGiÞÞ ¼P
j #

�ðLðqi, qjÞÞ.
Now it is ascertained that Definition 8 satisfies the

properties of a measure on the defined �-algebra.

Proposition 1: The generalized measure
#�: 2LðGiÞ 7 �!R is defined on the measure space
ðLðGiÞ, 2

LðGiÞ,#�Þ.

Proof: It suffices to establish �-additivity from the
following fact. For a fixed � 2 ð0, 1Þ, #�

i is the product
of �i (which is a constant) and ��

i which is a signed
real measure on the �-algebra 2LðGiÞ. œ

A special family of initiating characteristic functions
is considered for the generalized language measure.

Definition 9: Let�ð�Þ � I� ð1� �ÞP½ �
�1. The ‘p-family

of initiating characteristic functions is defined as

�pi ð�Þ ¼
�����ð�Þi�

�����1

p
8p 2 ½1,1�, 8� 2 ð0, 1Þ, ð11Þ

where k � kp denotes the ‘p-norm of �; and ith row of a
matrix M is denoted as Mi� and the jth column as M�j.

Remark 1: Note that lim�!0þ �
p
i ð�Þ does not exist due

to non-invertibility of the operator I� P½ �. However,
ð��1�pi ð�ÞÞj�¼0 is well-defined by virtue of norm
continuity (Naylor and Sell 1982) and hence
lim�!0þ �

�1�pi ð�Þ exists.

Lemma 1: For p¼ 1, the initiating characteristic

�1i ð�Þ ¼ �, 8i8� 2 ð0, 1�: ð12Þ

Proof: Let e ¼ ½1 � � � 1�T. Since P is stochastic, non-
negativity of �ð�Þ follows from the following expansion:

�ð�Þ ¼
X1
k¼0

ð1� �ÞkPk 8� 2 ð0, 1�

¼) �ð�Þe ¼
X1
k¼0

ð1� �ÞkPke ¼
X1
k¼0

ð1� �Þke ¼ ��1e

which implies that k �ð�Þi� k1¼ ��1 8i ¼)�1i ¼ �. œ

The �-parameterized generalized measure for p¼ 1 is
obtained in the vector notation as

q�
j1 ¼ � I� ð1� �ÞP½ �

�1s ð13Þ

which is identical to the renormalized measure in
equation (8).

In general, the �-parameterized generalized measure
for p 2 ½1,1� is obtained in the matrix notation as

q�
jp ¼

�p1ð�Þ � � � 0

..

.
�pi ð�Þ

..

.

0 � � � �pnð�Þ

2664
3775 I� ð1� �ÞP½ �

�1s: ð14Þ

Non-negativity of P and invertibility of I� ð1� �ÞP½ �

guarantee that k�ð�Þi�kp 2 ð0,1Þ 8i, which implies
�pi ð�Þ 2 ð0,1Þ 8 p 2 ½1,1� 8 � 2 ð0,1Þ.

3.1 Limiting values of qh
jp as h ! 0Q

This section computes the generalized measures q�
jp

as � ! 0þ, based on the state transition probability
matrix P of a stationary Markov chain with finitely
many states. Then, P is a stochastic matrix. That is,
P is non-negative with each row sum being identically
equal to unity (Bapat and Raghavan 1997).

Proposition 2: For every stochastic matrix P, the
following limit exists

lim
k!1

1

k

Xk�1

j¼0

Pj ¼ P , ð15Þ

where P is a stochastic matrix. Furthermore, P

commutes with P and is idempotent. That is,

PP ¼ PP ¼ P ¼ P 2: ð16Þ

qi qj

Initiating characteristic ξi

Terminating characteristic χj

Similar to conditional probability

Figure 1. Generalization of langauge measure.

792 I. Chattopadhyay and A. Ray
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Proof: The proof is given in Bapat and Raghavan
(1997). œ

Since P is a stochastic matrix, ½I� P�e ¼ 0 where
e � ½1, 1, . . . , 1�T. Therefore, ½I� P� is not invertible
for any stochastic matrix P; however, ½I� ð1� �ÞP� is
always invertible for � 2 ð0, 1Þ. The lemma to the next
proposition shows that ½I� Pþ P � is invertible.

Proposition 3: The matrix ½I� Pþ 	P � is invertible for
all 	 6¼ 0.

Proof: The proof is based on the commutative and
idempotent properties of P in equation (16) and uses
the principle of contradiction.
Let ½I� Pþ 	P � be non-invertible for an

arbitrary 	 6¼ 0. Then, there is a vector # 6¼ 0 such that

I� Pþ 	P½ �# ¼ 0

) ½P� 	P �# ¼ # ) 	P ½P� 	P �# ¼ 	P #

) ½	P � 	2P �# ¼ 	P #

) 	2P # ¼ 0 ) P # ¼ 0 because 	 6¼ 0:

Hence, P# ¼ P#� 	P # ¼ ½P� 	P �# ¼ #

) Pk# ¼ # 8k 2 N [ f0g,

which implies 
1

k

Xk�1

j¼0

Pj

!
# ¼ # 8k ¼) lim

k!1

 
1

k

Xk�1

j¼0

Pj

!
# ¼ P # ¼ #

¼)# ¼ 0 because P # ¼ 0:

This is a contradiction. œ

Lemma 2: The matrix ½I� Pþ P � is invertible.

Proof: The proof follows by setting 	¼ 1 in
Proposition 3. œ

Proposition 4:

P� 	P½ �
k
¼ Pk � 1� ð1� 	Þk

� �
P , 8k 2 N 8	 6¼ 0:

ð17Þ

Proof: The above identity is valid for k¼ 0 and k¼ 1.
It is also true for k¼ 2 by virtue of the commutative
and idempotent properties of P in equation (16). The
proof follows directly by the method of induction. œ

Lemma 3: P� P½ �
k
¼ Pk � P 8k 2 N:

Proof: The proof follows by setting 	¼ 1 in
Proposition 4. œ

Proposition 5:

lim
�!0þ

� I� ð1� �ÞP½ �
�1

¼ P : ð18Þ

Proof: For � 2 ð0, 1Þ, it follows from equation (16)
and Lemma 3 that

� I� ð1� �ÞP½ �
�1
�P

¼ �
X1
k¼0

�
ð1� �ÞkPk

�
� �

X1
k¼0

ð1� �Þk P

¼ �
X1
k¼0

ð1� �Þk
�
Pk � P

�
¼ �

X1
k¼0

ð1� �Þk
�
P� P

�k
by Lemma 3

¼ � I� ð1� �ÞðP� P Þ½ �
�1 by Lemma 2

) lim
�!0þ

� I� ð1� �ÞP½ �
�1
�P

� �
¼ lim

�!0þ
� I� ð1� �ÞðP� P Þ½ �

�1:

Since, for continuous functions f( � ) and g( � ) with

lim
�!0þ

fð�Þ ¼ 0 and lim
�!0þ

gð�Þ < 1

¼) lim
�!0þ

fð�Þgð�Þ ¼ 0,

it follows from Lemma 2 that

lim
�!0þ

� I� ð1� �ÞðP� P Þ½ �
�1
¼ 0

) lim
�!0þ

� I� ð1� �ÞP½ �
�1
�P

� �
¼ 0:

The proof is thus complete. œ

Proposition 6: For every stochastic matrix P, the

generalized measure is expressed as

q0
jp � lim

�!0þ
q�

jp ¼

..

.

P i�s

kP i�kp

..

.

8>>>>><>>>>>:

9>>>>>=>>>>>;
, ð19Þ

where P i� is the ith row of P .

Language measure of finite state systems 793
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Proof: Following equation (11) in Definition 9, it
suffices to show that

lim
�!0

�p1ð�Þ � � � 0

..

.
�pi ð�Þ

..

.

0 � � � �pnð�Þ

2664
3775 I� ð1� �ÞP½ �

�1

¼

kP 1�kp � � � 0

..

.
kP i�kp

..

.

0 � � � kP n�kp

2664
3775

�1

P 1�

� � �

P n�

264
375

The above identity is a direct consequence of the
following two relations:

lim
�!0

� I� ð1� �ÞP��1
¼ P

�

lim
�!0þ

��1

�p1ð�Þ � � � 0

..

.
�pi ð�Þ

..

.

0 � � � �pnð�Þ

2664
3775

¼

kP 1�kp � � � 0

..

.
kP i�kp

..

.

0 � � � kP n�kp

2664
3775

�1

:

The first relation is a restatement of equation (18) in
Proposition 6. The second relation is obtained from
continuity of norm in equation (11) (see Remark 1). œ

We now consider the special class of primitive
(i.e., irreducible and acyclic (Bapat and Raghavan
1997)) stochastic matrices. The restriction of primitivity
is valid for many applications such as finite-state
machines without any deadlock or local livelock. A
primitive stochastic matrix P has the following
properties (Bapat and Raghavan 1997):

(i) limk!1 Pk ¼ P and PP ¼ PP ¼ P ¼ P 2

(ii) The matrix P has the following structure:

P ¼

}T

� � �

}T

264
375 where }TP ¼ }T

implying that } is the left eigenvector of P

corresponding to its unique unity eigenvalue
(iii) Upon ‘1-normalization, } becomes the state

probability vector of the stationary Markov chain
associated with the stochastic primitive matrix P.

(iv) The spectral radius of the matrix ðP� P Þ is less
than unity, i.e., the eigenvalues of ðP� P Þ are

located within the unit radius circle with center at
the origin.

For a primitive stochastic matrix, the expression for
q0

jp in equation (19) of Proposition 6 is simplified as
presented in the following proposition.

Proposition 7: For a primitive stochastic matrix P, the
generalized measure is expressed as

q0
jp � lim

�!0þ
q�

jp ¼
}Ts

k}kp

1

..

.

1

8><>:
9>=>;, ð20Þ

where }TP ¼ }T.

Proof: From the properties (i) and (ii) of primitive
matrices, it follows that

P j� ¼ }T 8j 2 f1, . . . , ng, ð21Þ

where }T is the state probability vector of the associated
Markov chain. Then, the proof follows from
Proposition 6. œ

3.2 Physical interpretation of the q0
jp measures

All entries of the q0
jp vector in equation (19) are

identical for a primitive stochastic matrix and hence a
single entry can be taken as a scalar measure, #0jp �

}T�=k}kp, of the regular language of the underlying
automaton. For all p 2 ½1,1�, the measure #0jp repre-
sents the long-range behaviour of the plant dynamics
in terms of the (assigned) terminating characteristics
and the stationary state probability vector of the finite
Markov chain model. However, the measures for differ-
ent values of p are not equivalent in the sense that a con-
trol policy optimizing #0jp does not necessarily coincide
with one that optimizes #0jq for p 6¼ q. For example,
a control policy that maximizes #0j1 selectively disables
controllable events such that }Ts is maximized; and
a control policy that maximizes #0j2 chooses an automa-
ton configuration to make the stationary state probabil-
ity vector } closest to the terminal characteristic vector s
in the Euclidean sense. For physical understanding
and visualization, let S be a bounded submanifold of
R

n such that

8 p ¼
�
p1, . . . , pn

�
2 S with

pi 	 0Pn
i¼0 pi ¼ kpkl1 ¼ 1:

�
ð22Þ

Then, for any n-state automaton, the stationary state
probability vector is } 2 S . Figure 2 illustrates S for
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n¼ 3, where the central point }c denotes the uniform

probability vector ½1=n, . . . , 1=n�, which is interpreted

to have maximum entropy log2 n in the Shannon

sense (Cover and Thomas 1991). Moving away from

}c on the S -plane, the distribution becomes non-

uniform, i.e., the Shannon entropy S �

�
Pn

k¼1 pk log2 pk
� �

decreases toward zero.
In view of the above discussion and Lemma 4, a

supervisory control policy can be constructed by opti-

mizing #0jp in the sense of equation (19) for a specified

p 2 ½1,1� to obtain a stationary state probability

vector }. For example, if p¼ 1, then the optimization

algorithm attempts to choose } as a unit vector in the

direction of one of the axes of R
n for which the

s-vector has the largest element; if this is the case,

then Shannon entropy S¼ 0. If p¼ 2, then the optimiza-

tion algorithm attempts to choose } as the point of

intersection of the s vector with the S -plane; in this

case, the Shannon entropy is S>0 unless s is coincident

with one of the axes of R
n. For p>2, the algorithm

attempts to choose } closer to the central point }c

more and more aggressively as p increases toward

infinity, for which the Shannon entropy S increases

toward its maximum value log2 n.
Three measures are considered to be significant; #0j1

and #0j1 optimal policies are useful to obtain low

and high entropy (thermodynamically stable) distribu-

tions, respectively, and #0j2 optimality is useful when

the problem definition requires achieving a target

distribution over the plant states as closely as the

controllability criteria would allow. An example is

given in x 5.
The following lemma is useful for interpretation

of the q0
jp measures.

Lemma 4: Let 
 be a n-dimensional vector with


i 2 ½0, 1� and
P

i 
i ¼ 1. Then we have

ðiÞ k
kp 2 nð1�pÞ=p, 1
� �

8p 2 ½1,1� ð23Þ

ðiiÞ k
kp 
 k
kq 8p > q with p, q 2 ½1,1� ð24Þ

Proof: For Assertion (i),


i 2 ½0, 1� ) 
pi 
 
i )
X
i


pi 

X
i


i ) k
kp 
 1:

The result follows by noting that the smallest
value is attained when all 
i are equal i.e.


i ¼ 1=n 8i. Assertion (ii) follows by noting that

pi 
 
qi if p > q. œ

4. Shaped measures

The measures defined in the previous sections put equal
importance to all traces in the generated language of

an automaton, including traces of unbounded lengths.

This section investigates formal measures that generalize
the process of assigning importance or weight to a

trace as a function of its length. For a given automaton
Gi, a partition of the generated language L(Gi) is

obtained as:

LðGiÞ ¼
[1
i¼0

L r
i where L r

i ¼

�
! 2 Lðqi, qjÞ : j!j ¼ r

	
:

ð25Þ

(Note that L r
i

T
r 6¼s L

s
i ¼ ;.) From �-additivity of

the language measure (Ray 2005), the following notion

of language measure is introduced.

Definition 10: For a given starting state qi and the

parameter � 2 ð0, 1Þ, the shaped measure of the language
L(Gi) is defined as


ðLðGiÞÞ ¼
X1
r¼0

��
i ðL

r
i Þ: ð26Þ

The above definition, as observed before, fails to exist
as � ! 0þ. The singularity at � ¼ 0 is alleviated by a
shaping sequence that provides appropriate weights on

the individual terms of the infinite sum in equation
(26). The next proposition establishes that every

‘1-sequence qualifies as a shaping sequence.

Figure 2. Representation of the S -plane for three states.
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Proposition 8: For a real ‘1-sequence � ¼ f�ig with
�i 2 ½0,1Þ,

ðiÞ
X1
i¼0

��
i ðL

iÞ�i < 1 8 � 2 ð0, 1Þ ð27Þ

ðiiÞ lim
�!0þ

X1
i¼0

��
i ðL

iÞ �i < 1: ð28Þ

Proof: The proof of the proposition requires the
following lemma. œ

Lemma 5: The following expression holds for the
�-parameterized shaped measure

l�ðL r
i Þ ¼ ð1� �ÞrPrs: ð29Þ

Proof: From Definition 7, we have

��
i ðL

r
i Þ ¼

Xn
j¼1

X
!2

Lðqi , qjÞ\L
r
i

~�ðqi,!Þ�j

¼
Xn
j¼1

(X
i1

� � �
X
ir

�ii1 � � ��irj

)
�j

¼
X
j

�r
ij�j ¼

X
j

ð1� �ÞrPr
ij�j

Using Lemma 5 and noting that for all � 2 ½0, 1Þ, it
follows that

kð1� �ÞrPrsk1 
 j1� �jr kPkr1 ksk1 
 1, ð30Þ

where k � k1 is the induced sup-norm of �. œ

The shaped measure is now formally defined based on
Proposition 33 by setting the parameter � to 0.

Definition 11: Let � ¼ f�ig be a ‘1-sequence of non-
negative real numbers (called the shaping sequence
in the sequel). The shaped measure ��i of a trace set
fsg � Lðqi, qjÞ � LðGiÞ with s ¼ k 2 N [ f0g relative to
� is defined as

��i ðfsgÞ � ��ðfsgÞk ¼ ~�ðs, qiÞ�ðqjÞk 8s 2 Lðqi, qjÞ: ð31Þ

The shaped measure of Lðqi, qjÞ is defined as:

��i Lðqi, qjÞ
� �

�
X1
r¼0

X
!2

Lðqi , qj Þ\L
r
i

��i fsgð Þ: ð32Þ

The shaped measure of a DFSA Gi, relative to the
sequence � and initialized at the state qi 2 Q, is
denoted as: ��i � ��i ðLðGiÞÞ ¼

P
j �

�
i ðLðqi, qjÞÞ.

The shaped measure vector, relative to the sequence
�, is denoted as: �� � ½��1 , . . . , �

�
n �.

Remark 2: If the short-term behaviour of the
discrete-event system is of interest, then all but finitely
many elements of the shaping sequence � ¼ f�ig in
Definition 11 could be restricted to be zeros. Then,
there exists r? 2 N such that L r

i ¼ ; 8r 	 r?, i.e., the
generated language has only bounded length traces.

4.1 Relation between sCðpÞ and q0
jp measures

In spite of a different construction, shaped measures are
related to the generalized measure defined in x3.
Specifically, there exist sequences of shaped measures
that converge to q0

jp.

Remark 3: Let p 2 ½1,1� and let �kðpÞ, k 2 N be a
sequence of non-negative real numbers, whose all ele-
ments, except the kth one, are zeroes and the kth element
is k}kp. Let �ðpÞ � limk!1 �kðpÞ. Then, it follows from
Proposition 6 or Proposition 7 that there exists �(p)
such that ��ðpÞ ¼ q0

jp 8p 2 ½1,1�.

4.2 Physical interpretation of shaped measures

A shaping sequence � specifies length-based relative
importance of traces in the generated language.
Intuitively, one is rarely interested in all traces generated
by an automaton. More often than not, either short
traces or very long traces (specifically of unbounded
length) are important. The first case is handled by shap-
ing sequences with finitely many non-zero terms and
the latter, shown in Remark 3 is viewed as a limit of
the shaped measures. However, shaping sequences can
be more complicated; the only requirement is that the
sequence be in ‘1 (see Proposition 8). In this context,
Remark 3 implies that #0j1 addresses the long-term
behaviour of the discrete-event system based on the
traces of unbounded length with no importance to
finite traces. This follows from the fact that, for p¼ 1
and all elements of the sequence �k are zeros with
the exception of the kth element being equal to 1.

5. An illustrative example

Figure 3 shows the finite-state automaton model of
the plant, where the state set Q ¼ fq1, . . . , q9g and the
event alphabet � ¼ f�r, �l, �f, �b, �fl, �rf, �rb, �lb,!1g.
The transitions, shown by dashed lines, are controllable
and those, shown by solid lines, are uncontrollable. The
state transition matrix P is given in table 1. The stochas-
tic matrix P is primitive because P2 is a positive matrix.
The stationary state probability vector of P and the

796 I. Chattopadhyay and A. Ray
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�-vector for the DFSA are

The scalar measures #0jp and k}kp for the primitive

matrix in table 1 are plotted for different values of p

in figure 4. A shaping sequence � evaluates the short-

term behaviour based on traces of length less than

60 and the resulting measure vector is

Supervisory control policies have been computed

based on #0jp, k}kp and �� by optimizing the respective

scalar measures via a standard search algorithm.

Different values of p ¼ 1, 4, and 1 are chosen to illus-

trate the fact that they result in different optimal

control policies. The choices of p¼ 1 and p ¼ 1 are

made as they are familiar norms used in engineering

analysis; and the choice of p¼ 4 is made because

it effects are intermediate between p¼ 1 and p ¼ 1

and are different from those of the Euclidean norm

p¼ 2 (see x 3). For these cases, the results of

improved performance under optimal supervision are

summarized below.

For p¼ 1, #0j1 is increased from 0.12 to 0.35.
For p¼ 4, #0j4 is increased from 0.48 to 1.03.
For p ¼ 1, #0j1 is increased from 0.52 to 1.3 and
�� is increased elementwise from

Table 1. State transition matrix P of the plant automaton model.

0 0.015 0.102 0.041 0.120 0.048 0.300 0.139 0.139
0.372 0 0.131 0 0 0 0 0 0

0.130 0.319 0 0.551 0 0 0 0 0
0.087 0 0.424 0 0.489 0 0 0 0
0.351 0 0 0.411 0 0.238 0 0 0

0.337 0 0 0 0.240 0 0.423 0 0
0.069 0 0 0 0 0.470 0 0.460 0.460
0.738 0 0 0 0 0 0.259 0 0
0.199 0.218 0 0 0 0 0 0.583 0.583

q8 q0 q4

q1 q2 q3

q7 q6 q5

σl

σr

σb

σf

σfl

σlb

σrf 

σrb

σf

σb 

σr 

σl

σf 

σb

σl

σr 

σb

σf 

σl 

σr

σf 

σb

σr

σl

ω1

ω1

ω1 

ω1

ω1

ω1 

ω1

ω1

Figure 3. Plant automaton model.
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0.3
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0.5

0.6

0.7
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0.9

1

ϑ(0)|p
||℘||p

p 

Figure 4. Profiles of #0
jp and k}kp with p. Note the

stabilizing feature of each plot for increasing p.

}T ¼ 0:234 0:041 0:065 0:084 0:095 0:016 0:153 0:147 0:076
� �

s ¼ 0:66 �0:42 �0:97 0:52 �0:49 �0:57 0:57 �0:09 0:43
� �T

:

s� ¼ 0:276 �0:252 0:627 �0:375 0:256 �0:055 �0:059 �0:103 0:475
� �T

:
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1:2 1:5 0:9 0:3 1:1 1:4 1:2 1:7 1:4½ �
T to

3:4 3:8 2:5 1:7 2:6 3:3 3:5 3:7 4:0½ �
T.

Table 2 enumerates the optimal decision sets for
disabling of controllable events obtained in the above
four cases, where � and X indicate disabled controllable
events and enabled controllable events, respectively. The
decisions are made from the stationary state probability
distributions achieved from the optimal policies shown
in figure 5. It is seen that the #0j1-optimal policy achieves
both maximum and minimum probability values in
states 9 and 6, respectively. This shows that #0j1-optimal
policy does indeed produce relatively less uniform distri-
bution in comparison to the #0j1-optimal policy, as
stated in x 3. It is also noted that the ��-optimal policy
achieves the least uniform distribution.

6. Summary, conclusions, and future work

This paper formulates and validates a concept of gener-
alization of signed real measure of regular languages,
which also leads to renormalization (Chattopadhyay
and Ray 2006) of the normalized measure and eliminates
the need for a user-selectable parameter in the original
concept of language measure Ray (2005). These general-
izations are achieved through a trace measure that is
characterized by both initial and terminal states as well
as the length of the trace and the choice of a vector
norm for renormalization. The generalized measures
with different norms are not equivalent in the sense
that the respective optimal control policies with these
measures as the performance cost functionals are differ-
ent. These concepts are illustrated with simple examples
for quantitative analysis and synthesis of discrete-event

supervisory control systems. It is envisioned that

optimal supervisory decision & control of discrete-

event systems (Sengupta and Lafortune 1998, Ray et

al. 2004) can be enhanced through appropriate selection

of a language measure to enhance the objectives at hand.

In this context, future research is recommended in the

following areas:

. Generalization of the language-measure-based opti-

mal control algorithms (Ray et al. 2004) for sub-

stochastic transition matrices to the stochastic case.

A potential application is to compute a sufficiently

small termination probability � such that, as � ! 0þ,

the optimal control policies approach the true situa-

tion for the non-terminating plant.
. Extension the concept of (regular) language measure

for (non-regular) languages higher up in the

Chomsky Hierarchy such as context-free and context

-sensitive languages. A first attempt to extend the

concept of the language measure to linear grammars

was reported in (Ray et al. 2004). Further investiga-

tions in this direction is required for extension of the

concept to more complex models.
. Applications of language measure in anomaly detec-

tion, model identification and order reduction, and

construction of interfaces between continuously

varying and discrete-event spaces.
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Table 2 Optimal decision for disabling of controllable events.

Controllable
events

#0
j1 #0

j4 #0
j1 s�

q1
�r
! q5 � � � �

q1
�rb
! q6 � � � �

q1
�l
! q9 X X X X

q2
!1
! q1 X X X X

q2
�r
! q3 � � � �

q2
�b
! q9 X � X �

q3
!1
! q1 X X X X

q5
�f
! q4 X X X X

q5
�b
! q6 X X X X

q7
!1
! q1 � � � X

q7
�r
! q6 � � � �

q9
�b
! q8 � � � �

q9
�f
! q2 � � X �
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Figure 5. Stable distributions for computed optimal
policies.
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