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Symbol sequence generation is a crucial step in symbolic time series analysis of dynamical systems,
which requires phase-space partitioning. This letter presents analytic signal space partitioning
�ASSP� that relies on Hilbert transform of the observed real-valued data sequence into the
corresponding complex-valued analytic signal. ASSP yields comparable performance as other
partitioning methods, such as symbolic false nearest neighbor partitioning �SFNNP� and
wavelet-space partitioning �WSP�. The execution time of ASSP is several orders of magnitude
smaller than that of SFNNP. Compared to WSP, the ASSP algorithm is analytically more rigorous
and is approximately five times faster. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2883958�

Symbolic time series analysis �STSA� has been proposed
for real-time anomaly detection in complex systems.1,2 A cru-
cial step in STSA is partitioning of the phase space of the
underlying dynamical system for symbol sequence
generation.3 Several techniques have been suggested in the
physics literature for symbol generation, such as symbolic
false nearest neighbors partitioning4 �SFNNP� and wavelet-
space partitioning �WSP�.1,5

SFNNP optimizes a generating partition by avoiding to-
pological degeneracy. The optimizing criterion in SFNNP is
that short sequences of consecutive symbols should localize
the corresponding state space point as closely as possible.
This is achieved by forming a geometrical embedding of the
symbolic sequence under the candidate partition and mini-
mizing the apparent errors in localizing the state space
points. In a good partition, nearby points in the embedding
remain close when mapped back into the state space. In con-
trast, bad partitions induce topological degeneracy where
symbolic words map back to globally distinct regions of the
state space. The nearest neighbor to each point in the embed-
ding is described in terms of the Euclidean distance between
symbolic neighbors. Thus, better partitions yield a smaller
proportion of symbolic false nearest neighbors. For conve-
nience of implementation, the partitions are parametrized
with a relatively small number of free parameters. This is
accomplished by defining the partitions with respect to a set
of radial-basis influence functions. The statistic for symbolic
false nearest neighbors is minimized over the free parameters
using a genetic algorithm suitable for continuous-parameter
spaces. A major shortcoming of SFNNP is that it may be-
come extremely computation intensive if the dimension of
the phase space of the underlying dynamical system is large.
Furthermore, if the time series becomes noise corrupted, the
symbolic false neighbors rapidly grow in number and may
erroneously require a large symbol alphabet to capture perti-
nent information on the system dynamics.

The wavelet transform largely alleviates the above short-
comings and is particulary effective with noisy data from
high-dimensional dynamical systems. The WSP �1 and 5�
was introduced as an alternative to SFNNP, where the basis

and scales of the wavelet are determined from the power
spectral density of the observed data. The wavelet coeffi-
cients at selected scale�s� are stacked back to back to trans-
form the two-dimensional scale-shift wavelet domain into a
one-dimensional domain. The resulting scale-series data se-
quence is converted to a sequence of symbols by maximum
entropy partitioning.5 Although WSP is significantly compu-
tationally faster than SFNNP and is suitable for real-time
applications, WSP has several shortcomings that include the
following.

• The selection of an appropriate wavelet basis function is
made based on inspection of the power spectral density of
the underlying signal, which may vary with the window
size. Apparently, there is no precise way of selecting a
wavelet basis that is “best” for partitioning.

• The identification of scales for generation of wavelet co-
efficients are identified from the center frequency �that
is also based on visual inspection of the power spectral
density of the Fourier transform� and the selected wavelet
basis.

• The dimension reduction of the scale-shift wavelet domain
to a one-dimensional domain of scale-series sequences is
nonunique and may not be a “best” way.

This letter presents a partitioning method, called analytic
signal space partitioning �ASSP�, for STSA as an alternative
to the existing partitioning methods. The purpose of ASSP is
to capture the relevant statistical patterns for anomaly detec-
tion in real time. Although ASSP is not aimed to be a gener-
ating partition, it is designed with the goal of satisfying the
important property of a generating partition: the inverse im-
age of a small neighborhood in the symbol space is a small
neighborhood in the data space, except possibly in the vicin-
ity of partition boundaries. The contributions of the work
reported in this letter are concept development, formulation,
and validation of ASSP with experimental data from a labo-
ratory apparatus.

The underlying concept of ASSP partitioning is built
upon Hilbert transform of the observed real-valued data se-
quence into the corresponding complex-valued analytic
signal6 as explained below.
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Let x�t� be a real-valued function whose domain is the
real field R= �−� , +��. Then, Hilbert transform7 of x�t� is
defined as

x̃�t� = H�x��t� =
1

�
�

R

x���
t − �

d� . �1�

That is, x̃�t� is the convolution of x�t� with 1 /�t over R,
which is represented in the Fourier domain as

F�x̃���� = − i sgn���F�x���� ,

where sgn��� = �+ 1 if � � 0

− 1 if � � 0
� . �2�

Given the Hilbert transform of a real-valued signal x�t�,
the corresponding complex-valued analytic signal is defined
as

A�x��t� = x�t� + ix̃�t� . �3�

The construction of Eq. �3� is based on the fact that the
values of Fourier transform of a real-valued function at
negative frequencies are redundant due to their Hermitian
symmetry imposed by the transform. Thus, the phase of the
Hilbert transform x̃�t� is in quadrature to the phase of x�t�.
That is, the analytic signal can be expressed as

A�x��t� = A�t�exp�i��t�� , �4�

where A�t� and ��t� are called the instantaneous amplitude
and instantaneous phase of A�x��t�, respectively. Vakman8

has pointed out that the amplitude and phase of an analytic
signal satisfy the following three physical properties.

�1� Amplitude continuity is a small perturbation in x�t� in-
ducing a small change in A�t�.

�2� Phase independence of scale is scaling x�t� by a constant
c�0, which has no effects on ��t� and multiplies A�t�
by c.

�3� Harmonic correspondence is a monofrequency signal
�i.e., a pure sinusoid A0 cos��0t+�0�� yielding A�t�=A0

and ��t�=�0t+�0 for all t.

Thus, for a monofrequency signal, which is embedded in a
two-dimensional state space, a direct parallel can be drawn
between the phase plot and the Hilbert transform plot. The
procedure for ASSP is formulated next.

Let the observed signal be available as a real-valued
time series of N data points. Upon Hilbert transformation of
this data sequence, a pseudophase plot is constructed from
the resulting analytic signal by a bijective mapping of the
complex field onto R2, i.e., by plotting the real and the
imaginary parts of the analytic signal on the x1 and x2
axes, respectively. It is important to note that the pseudo-
phase space is always two-dimensional, whereas the phase
space of the dynamical system is a representation of the
n-dimensional manifold, where n could be an arbitrarily
large positive integer.

The time-dependent analytic signal in Eq. �3� is now
represented as a �one-dimensional� trajectory in the the two-
dimensional pseudophase space. Let 	 be a compact region
in the pseudophase space, which encloses the trajectory. The
objective here is to partition 	 into finitely many mutually
exclusive and exhaustive segments, where each segment is

labeled with a symbol or letter. The segments are conve-
niently determined by the magnitude and phase of the ana-
lytic signal as well as based on the density of data points in
these segments. That is, if the magnitude and phase of a data
point of the analytic signal lies within a segment or on its
boundary, then the data point is labeled with the correspond-
ing symbol. Thus, a symbol sequence is naturally derived
from the �complex-valued� sequence of the analytic signal.
The set of �finitely many� symbols is called the alphabet 
.

One possible way of partitioning 	 would be to divide
the magnitude and phase of the time-dependent analytic sig-
nal in Eq. �3� into uniformly spaced segments between their
maximum and minimum values, respectively. This is called
uniform partitioning. An alternative method, known as maxi-
mum entropy partitioning,5 maximizes the entropy of the
partition that is characterized by the alphabet size �
�,
thereby imposing a uniform probability distribution on the
symbols. In this partitioning, parts of the state space with
rich information are partitioned into finer segments than
those with sparse information. Computationally, the maxi-
mum entropy partition can be obtained by sorting the data
sequence in an ascending order. This sorted data sequence is
then partitioned into �
� equal segments of length �N / �
��,
where N is the length of the data sequence and �x� is the
greatest integer less than or equal to x. Each of these seg-
ments is assigned a symbol and all data points in a given
segment are assigned the corresponding symbol.

The magnitude and phase of the analytic signal in
Eq. �3� are partitioned separately according to either uniform
partitioning, maximum entropy partitioning, or any other
type of partitioning; the type of partitioning may depend on
the characteristics of the physical process. In essence, each
point in the data set is represented by a pair of symbols—one
belonging to the alphabet 
R based on the magnitude �i.e., in
the radial direction� and the other belonging to the alphabet

A based on the phase �i.e., in the angular direction�. The
analytic signal is partitioned into a symbol sequence by as-
sociating each pair of symbols into a symbol from a new
alphabet 
 as


 � 	��i,� j�:�i � 
R,� j � 
A
 and �
� = �
R��
A� .

The construction of the ASSP is now complete. Next, the
performance of ASSP is evaluated against SFNNP and WSP
in the context of STSA for anomaly detection,1 where the
objective is to identify small changes in the critical param-
eters of a dynamical system as early as possible before it
manifests into a catastrophic disruption �e.g., onset of a
chaos in the dynamical system sense or a phase transition in
the thermodynamic sense� in the behavior of the dynamical
system.

We present an example based on the time series data,
generated from a laboratory apparatus of nonlinear active
electronic systems, which emulates the forced Duffing equa-
tion

d2y

dt2 + ��ts�
dy

dt
+ y�t� + y3�t� = A cos�t� , �5�

where the dissipation parameter � varies in the slow time
scale ts with respect to the time scale t of the dynamical
system; �=0.1 represents the nominal condition. A change
in the value of � from its nominal value is considered as
an anomaly. For A=22.0 and =5.0, a sharp change in
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the behavior occurs around ��0.29 possibly due to a
bifurcation.1,2,5

The capability for anomaly detection in the Duffing sys-
tem was evaluated for different quasistatic values of the
slowly varying parameter �. For each of the time series data
sets, corresponding to a value of �, symbolic analysis for
anomaly detection was performed using SFNNP, WSP, and
ASSP. This letter also shows the results by maximum en-
tropy partitioning of time series data without any transforma-
tion and embedding, referred to as simple partitioning
�simpleP�; that is, simpleP is executed only on the real part
of the complex data on which ASSP is executed. The objec-
tive here is to evaluate the performance of ASSP relative to
SFNNP, WSP, and simpleP for detection of small anomalies.

The symbol alphabet size �
�=8 was chosen for each of
SFNNP and WSP and �
�=5 for simpleP. For ASSP, alpha-
bet sizes were chosen as �
R�=5 in the radial direction and
�
A�=3 in the angular direction. For each of the four cases,
the partition was constructed based on the same set of ob-
served data and the respective partitions were kept invariant
for all data sets at subsequent values of �. A deviation in �
affects the dynamical behavior of the nonlinear system and
thereby the underlying statistics of the derived symbol se-
quences change. In this context, a measure of performance of
the partitioning methods for anomaly detection was con-
structed based on the probability distribution p of symbol
occurrence, which is treated as a pattern vector.

One possible measure of anomaly, which is adopted in
this letter, is the angle between pattern vectors at the nominal
and anomalous conditions. The anomaly measure at the kth
epoch is defined as

Mk = arccos� p0,pk�
�p0�2�pk�2

� , �6�

where p0 , pk� is the inner product of probability vectors p0

and pk at the nominal condition and the kth epoch, respec-
tively; and � · �2 is the Euclidian norm of ·. The plots in Fig. 1
depict the anomaly measure profile for each of the four
partitioning methods: SFNNP, WSP, ASSP, and simpleP.
While the results are qualitatively similar for all four cases,
simpleP is outperformed by the other partitioning methods
including ASSP that is executed on a more rich source of
information than simpleP. The execution time for SFNNP

was over 4 h; in contrast, the execution time was �1.5 and
�0.3 s for WSP and ASSP, respectively, and �0.25 s for
simpleP that is slightly faster than ASSP.

To validate the above experimental results for higher or-
der dynamical systems, a simulation test bed has been con-
structed with four van der Pol oscillators in cascade. The first
oscillator provides a sinusoidal input to the second oscillator
and the output of the last oscillator in the cascade is fed back
to the second oscillator to simulate a sixth order nonautono-
mous dynamical system. Simulation experiments were con-
ducted on the test bed for performance comparison of WSP,
ASSP, and simpleP, where simpleP was significantly outper-
formed by ASSP and WSP. Because of excessive computa-
tion time requirements, SFNNP was not investigated on the
simulation test bed. The performances of WSP and ASSP
were quite similar and the ratio of their respective execution
time was also similar �i.e., �5� to what was observed earlier
for the Duffing system.

It is concluded that the usage of Hilbert transform and
analytic signals provides a superior partitioning method in
symbolic time series analysis for real-time anomaly
detection.1 The results generated by the proposed ASSP
method, as applied to electronic circuits on a laboratory ap-
paratus for anomaly detection, are similar to those generated
by SFNNP �4� with several orders of magnitude smaller
computational cost of ASSP. As such, SFNNP serves the role
of a benchmark for testing, evaluation, and calibration of
other partitioning algorithms. Due to its natural Fourier do-
main interpretation, ASSP is more easily implementable and
is physically more intuitive than the WSP �5� that requires a
good understanding of the signal characteristics for selection
of the wavelet basis, identification of appropriate scales, and
conversion of the two-dimensional scale-shift domain into a
single dimension. However, for noise-corrupted data, WSP
has the advantage of having the inherent capability of de-
noising.

Future research areas for enhancement of the ASSP al-
gorithm include:

• development of a rigorous algorithm to determine the
number of symbols in both radial and angular directions;
and

• investigation of effectiveness of the partitioning scheme
for non-Markov �e.g., with long memory� systems.
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FIG. 1. �Color online� Comparison of partitioning methods for anomaly
detection.
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