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Probabilistic finite state machines have recently emerged as a viable tool for modelling

and analysis of complex non-linear dynamical systems. This paper rigorously establishes

such models as finite encodings of probability measure spaces defined over symbol strings.

The well known Nerode equivalence relation is generalized in the probabilistic setting

and pertinent results on existence and uniqueness of minimal representations of probabilistic

finite state machines are presented. The binary operations of probabilistic synchronous

composition and projective composition, which have applications in symbolic model-based

supervisory control and in symbolic pattern recognition problems, are introduced. The results

are elucidated with numerical examples and are validated on experimental data for statistical

pattern classification in a laboratory environment.

1. Introduction and motivation

Probabilistic finite state machines have recently emerged
as a modelling paradigm for constructing causal models
of complex dynamics. The general inapplicability of
classical identification algorithms in complex non-linear
systems has led to development of several techniques
for construction of probabilistic representations of
dynamical evolution from observed system behaviour.
The essential feature of a majority of such reported
approaches is partial or complete departure from the
classical continuous-domain modelling towards a formal
language theoretic and hence symbolic paradigm
(Ray 2004, Shalizi and Shalizi 2004). The continuous
range of a sufficiently long observed data set is
discretized and tagged with labels to obtain a symbolic
sequence (Ray 2004), which is subsequently used to
compute a language-theoretic finite state probabilistic
predictor via recursive model update algorithms.
Symbolization essentially discretizes the continuous
state space and gives rise to probabilistic dynamics
from the underlying deterministic process, as illustrated
in figure 1.
Among various reported symbolic reconstruction

algorithms, causal-state splitting reconstruction

(CSSR) (Shalizi and Shalizi 2004) computes optimal
representations (e.g., "-machines) and is reported to
yield the minimal representation consistent with accu-
rate prediction. In contrast, the D-Markov construction
(Ray 2004) produces a sub-optimal model, but it has
a significant computational advantage and has been
shown to be better suited for online detection of small
parametric anomalies in dynamic behaviour of physical
processes (Rajagopalan and Ray 2006).

This paper addresses the issue of structural manipula-
tion of such inferred probabilistic models of system
dynamics. The ability to transform and manipulate the
automaton structure is critical for design of supervisory
control algorithms for symbolic models and real-time
pattern recognition from symbol sequences. Specific
issues are delineated in the sequel.

1.1 Applications of symbolic model-based control

The natural setting for developing control algorithms
for symbolic models is that of probabilistic languages.
The notion of probabilistic languages in the context
of studying qualitative stochastic behaviour of discre-
te-event systems first appeared in Garg (1992a, b), where
the concept of p-languages (‘p’ implying probabilistic)
is introduced and an algebra is developed to
model probabilistic languages based on concurrency.*Corresponding author. Email: axr2@psu.edu
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A multitude of control algorithms for p-language-
theoretic models have been reported. Earlier approaches
Lawford and Wonham (1993) and Kumar and Garg
(2001) attempt a direct generalization of Ramadge and
Wonham’s supervisory control theory (Ramadge and
Wonham 1987) for deterministic languages and proves
to be somewhat cumbersome in practice. A significantly
simpler approach is suggested in Ray (2005),
Chattopadhyay (2006) and Chattopadhyay and Ray
(2007), where supervisory control laws are synthesized
by elementwise maximization of a language measure
vector (Ray 2005, Chattopadhyay and Ray 2006) to
ensure that the generated event strings cause the
supervised plant to visit the ‘‘good’’ states while
attempting to avoid the ‘‘bad’’ states optimally in a
probabilistic sense. The notion of ‘‘good’’ and ‘‘bad’’ is
induced by specifying scalar weights on the model states,
with relatively more negative weights indicating less
desirable states. Unlike the previous approaches,
the measure-theoretic approach does not require a
‘‘specification automaton’’; however, a specification
weight is assigned to each state of the finite state
machine. (Note: These states are different from the
states obtained via symbolic reconstruction of observed
physical data.)
Figure 2 illustrates the underlying concept.

The symbolic model shown on the left which has
three states q1, q2, q3, while the control objective is
specified by weights þ1 and �1 on states qA, qB of the
two-state automaton on the right.
Recalling that every finite state automaton induces

a right invariant partition on the set of all possible

finite length strings, the above situation is illustrated by
figures 3(a) and (b). The operation of probabilistic
synchronous composition, defined later in this paper,
resolves the problem by considering the product
partition in figure 3(c). Then, the given model
is ztransformed into the one shown in figure 3(d),
on which the optimization algorithm reported in
Chattopadhyay and Ray (2007) can be directly applied
to yield the optimal supervision policy.

1.2 Applications of symbolic pattern recognition

As mentioned earlier, the symbolic reconstruction
algorithms (Ray 2004, Shalizi and Shalizi 2004) generate
probabilistic finite state models from observed time
series. However, in a pattern classification problem, one
may be only interested in a given class of possible future
evolutions. For example, as illustrated in figure 4, while
the systems G1,G2, . . . ,Gk yield different symbolic
models A1,A2, . . . ,Ak, we may be only interested in
matching a given template, i.e., knowing how similar the
systems are as far as strings with even number of 0s is
concerned (note: qA¼ {strings with even number of 0s}).

The operation of projective composition, defined in
this paper, allows transformation of each model Ai

to the structure of the template while preserving the
distribution over the strings of interest, and is of critical
importance in symbolic pattern classification problems.
As shown in the sequel, the model order of the machines
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Ai is not particularly important; hence projective
composition accomplishes model order reduction
within a quantifiable error.

1.3 Organization of the paper

The paper is organized in seven sections including the
present one. Section 2 presents preliminary concepts and
pertinent results that are necessary for subsequent
development. Section 3 introduces the concept of
probabilistic finite state automata as finite encodings
of probability measure spaces. The concept of Nerode
equivalence is generalized to probabilistic automata and
the key results on existence and uniqueness of minimal
representations are established. Section 4 presents
metrics on the space of probability measures on
symbolic strings which is shown to induce pseudometrics
on the space of probabilistic finite state automata.
Along this line, the concept of probabilistic synchronous
composition is introduced and the results are elucidated
with a simple example. Section 5 defines projective
composition and invariance of projected distributions is
established. A numerical example is provided for clarity
of exposition. Section 6 demonstrates applicability of the
developed method to a pattern classification problem
on experimental data. The paper is summarized and
concluded in x 7 with recommendations for future
research.

2. Preliminary notions

A deterministic finite state automaton (DFSA) is defined
(Hopcroft et al. 2001) as a quintuple Gi¼ (Q, �, �, qi,
Qm), where Q is the finite set of states, and qi 2Q is the
initial state; � is the (finite) alphabet of events. The
Kleene closure of �, denoted as ��, is the set of all
finite-length strings of events including the empty string
"; the set of all finite-length strings of events excluding
the empty string " is denoted as �þ and the set of all
strictly infinite-length strings of events is denoted as �!.
A subset of �! is called an !-language on the alphabet �
and a subset of �� is called a �-language. If the meaning
is clear from context, we refer to a set of strings simply

as a language. The function � : Q��! Q represents

the state transition map and �� : Q��� ! Q is the

reflexive and transitive closure (Hopcroft et al. 2001)

of � and Qm�Q is the set of marked (i.e. accepting)

states. For given functions f and g, we denote the

composition as f � g.

Definition 1: The classical Nerode equivalence N

(Hopcroft et al. 2001) on �� with respect to a given

language L is defined as:

8x, y2��, ðxN y, ð8u2��ðxu2LÞ()ðyu2LÞÞÞ:

ð1Þ

A language L��� is regular if and only if the

corresponding Nerode equivalence is of finite index

(Hopcroft et al. 2001).

Probabilistic finite state automata (PFSA) considered

in this paper are built upon deterministic finite state

automata (DFSA) with a specified event generating

function. The formal definition is stated next.

Definition 2 (PFSA): A probabilistic finite state

automata (PFSA) is a quintuple Pi ¼
�
ðQ,�, �, qi, ~�Þ

where the quadruple (Q,�, �, qi) is a DFSA with

unspecified marked states and the mapping
~� : Q��! ½0, 1� satisfies the following condition:

8qj 2Q,
X
� 2�

~�ðqj, �Þ ¼ 1: ð2Þ

In the sequel, ~� is denoted as the event generating

function. For a PFSA Pl, cardinality of the set of states

is denoted as NUMSTATES(PI).

Definition 3: For every PFSA Pi ¼ ðQ,�, �, qi, ~�Þ,
there is an associated stochastic matrixQ
2R

NUMSTATESðPlÞ�NUMSTATESðPiÞ called the state tran-

sition probability matrix, which is defined as follows:Y
jk
¼

X
�:�ðqj, �Þ¼qk

~�ðqj, �Þ: ð3Þ

We further note that for every stochastic matrix �, there

exists at least one row-vector } such that

}�¼ }, where 8j }j=0 and
XNUMSTATESðPiÞ

j¼1

}j ¼ 1,

ð4Þ

where } is a stable long term distribution over the

PFSA states. If � is irreducible, then } is unique.

Otherwise, there may exist more than one possible

solution to equation (4), one for each eigenvector

corresponding to unity eigenvalue. However, if the

initial state is specified (as it is in this paper), then } is

always unique. Several efficient algorithms have been

reported in Kemeny and Snell (1960), Harrod and
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Figure 4. Symbolic template matching problem.
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Plemmons (1984) and Stewart (1999) for computation
of }.

Key definitions and results from measure theory that are
used here are recalled.

Definition 4 (�-Algebra): A collection M of subsets of
a non-empty set X is said to be a �-algebra (Rudin 1988)
in X if 2M has the following properties:

(1) X2M
(2) If A2M, then Ac 2M where Ac is the complement

of A relative to X, i.e., Ac
¼X\A

(3) If A ¼
S1

n¼1 An and if An 2M for n2N, then A2M.

Theorem 1: If f is any collection of subsets of X, there
exists a smallest �-algebra M in X such that f �M

�.

Proof: See (Rudin 1988, Theorem 1.10) œ

Definition 5 (Measure): A finite (non-negative)
measure is a countably additive function �, defined on
a �-algebra M, whose range is [0, K] for some K2R.
Countable additivity means that if {Ai} is a disjoint
countable collection of members of M, then

�
[1
i¼1

Ai

 !
¼
X1
i¼1

�ðAiÞ: ð5Þ

Theorem 2: If � is a (non-negative) measure on a
�-algebra M, then

(1) �(;)¼ 0
(2) (Monotonicity) A � B) �ðAÞ � �ðBÞ if A, B2M.

Proof: See (Rudin 1988, Theorem 1.19). œ

Definition 6: A probability measure on a non-empty
set with a specified �-algebra M is a finite non-negative
measure on M. Although not required by the theory,
a probability measure is defined to have the unit interval
[0, 1] as its range.

Definition 7: A probability measure space is a triple
ðX,M, qÞ where X is the underlying set, M is the
�-algebra in X and q is a finite non-negative measure
on M.

3. Properties of probabilistic finite state automata

For any � 2��, the language ��! has an important
physical interpretation pertaining to systems modeled as
probabilistic language generators (figure 5). A string
� 2�� can be interpreted as a symbol sequence that has
been already generated, and any string in �! qualifies
as a possible future evolution. Thus, the language ��! is
conceptually associated with the current dynamical state
of the modelled system.

Definition 8: Given an alphabet �, the set B� ¼
�

2���! is defined to be the �-algebra generated by

the set fL : L ¼ ��! where � 2��g, i.e., the smallest

�-algebra on the set �! which contains the set

fL : L ¼ ��! where � 2��g.

Remark 1: Cardinality of B� is @1 because both 2��

and �! have cardinality @1.
The following relations in the probability measure

space ð�!,B�, qÞ are consequences of Definition 8.

. qð�!Þ ¼ qð"�!Þ ¼ 1

. 8x, u2��, xu�!
j x�! and hence qðxu�!Þ5 qð�!Þ

Notation 1: For brevity, the probability qð��!Þ is

denoted as qð�Þ8� 2�� in the sequel.

Next the notion of probabilistic Nerode equivalence

N q is introduced on �� for representing the measure

space ð�!,B�, qÞ in the form of a PFSA. In this context,

the following logical formulae are introduced.

Definition 9: For x, y2��,

U1ðx, yÞ ¼
�

qðxÞ ¼ 0 ^ qðyÞ ¼ 0ð Þ ð6aÞ

U2ðx, yÞ ¼
�

qðxÞ 6¼ 0 ^ qðyÞ 6¼ 0ð Þ^

8u2��
qðxuÞ

qðxÞ
¼

qðyuÞ

qðyÞ

� �� �
: ð6bÞ

Theorem 3 (probabilistic nerode equivalence): Given

an alphabet �, every measure space ð�!,B�, qÞ induces a

right-invariant equivalence relation N q on �� defined as

8x, y2��, xN qy, U1ðx, yÞ _U2ðx, yÞ
� �

: ð7Þ

Proof: Reflexivity and symmetry properties of the

relation N q follow from Definition 9. Let x, y, z2��

be distinct and arbitrary strings such that xN qy

and yN qz. Then, transitivity property of N q follows

from equation (7) and Definition 9. Hence, N q is an

equivalence relation.
To establish right-invariance (Hopcroft et al. 2001)

of N q, it suffices to show that

8x, y2��, xN qy, 8u2��, xuN qyu
� �� �

: ð8Þ
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Figure 5. Interpretation of the language ��! pertaining to

dynamical evolution of a language generator.
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Let x, y, u be arbitrary strings in �� such that xN qy.

If qðxÞ ¼ 0, qðyÞ ¼ 0 from equation (7). Then, it follows

from the monotonicity property of the measure (see

Theorem 2) that qðxuÞ ¼ 0, which implies the truth of

U1ðxu, yuÞ and hence the truth of xuN qyu. If qðxÞ 6¼ 0,

then ðxN qyÞ ^ qðxÞ 6¼ 0ð Þ implies qðyÞ 6¼ 0. Hence,

qðxu�Þ

qðxuÞ
¼

qðxu�Þ

qðxÞ
¼

qðxÞ

qðxuÞ
: ð9Þ

If qðxÞ ¼ qðyÞ, then xN qy implies qðxuÞ ¼ qðyuÞ and

also 8� 2��ðqðxu�Þ ¼ qðyu�ÞÞ. Similarly, if qðxÞ 6¼ qðyÞ,

then xN qy implies qðxuÞ 6¼ qðyuÞ and also 8� 2���

ðqðxu�Þ 6¼ qðyu�ÞÞ. Hence, 8� 2�� qðxuÞ ¼ qðyuÞð Þ ,ð

qðxu�Þ ¼ qðyu�Þð ÞÞ: œ

Definition 10 (perfect encoding): Given an alphabet �,

PFSA Pi ¼ ðQ,�, �, qi, ~�Þ is defined to be a perfect

encoding of the measure space ð�!,B�, qÞ if 8� 2�þ

and � ¼ �1�2 . . . �r,

qð�Þ ¼ ~�ðqi, �1Þ
Yr�1
k¼1

~�ð��ðqi, �1 . . . �kÞ, �kþ1Þ: ð10Þ

Remark 2: The implications of Definition 10 are

as follows: The encoding introduced is perfect in the

sense that the measure q can be reconstructed without

error from the specification of Pi.

Theorem 4: A PFSA is a perfect encoding if and only if

the corresponding probabilistic Nerode equivalence N q is

of finite index.

Proof (Left to Right): Let Q be the finite set of

equivalence classes of the relation N q of the PFSA

Pi ¼ ðQ,�, �, qi, ~�Þ that is constructed as follows:

(1) Since N q is an equivalence relation on ��, there

exists a unique qi 2Q such that "2 qi. The initial

state of Pi is set to qi.
(2) If x2 qj and x� 2 qk, then �(qj, �)¼ qk
(3) ~�ðqj, �Þ ¼ ðqðx�Þ=qðxÞÞ where x2 qj.

First we verify that the steps 2 and 3 are consistent

in the sense that � and ~� are well-defined.
Probabilistic nerode equivalence (see Theorem 3)

implies that if x, y2��, then ððx2 qjÞ ^ ðx� 2 qkÞ^
ðy2 qjÞÞ ) ðy� 2 qkÞ. Therefore, the constructed � is

well-defined. Similarly, since ðx, y2 qjÞ ) ðqðxÞ ¼

qðyÞÞ ^ ðqðx�Þ ¼ qðy�ÞÞ, the constructed ~� is also

well-defined. Therefore, the steps 2 and 3 are consistent.

For � ¼ �1�2 . . . �r 2�þ, it follows that

qð�Þ ¼ pð�1Þ
YR
r¼2

qð�1 . . . �rÞ

qð�1 . . . �r�1Þ

¼ ~�ðqi, �1Þ
YR�1
r¼1

~� �� qi, �1 . . . �rð Þ, �rþ1ð Þ:

Hence, the criterion for perfect encoding (see

Definition 10) is satisfied.
Right to Left: Let the PFSA Pi ¼ ðQ,�, �, qi, ~�Þ

be a perfect encoding; and let the probabilistic

Nerode equivalence N q be of infinite index. Then,

there exists a set of strings h � ��, having the same

cardinality as ��, such that each element of h belongs

to a distinct N q-equivalence class. That is, 8hj, hk 2h

such that j 6¼ k, we have hjN qhk. Since qðhjÞ ¼ qðhkÞ ¼ 0

implies hjN qhk, there can exist at most one element

h0 2h such that qðh0Þ ¼ 0. That is,

qðhjÞ 6¼ 0 8hj 2h� fh0g.
For the PFSA Pi ¼ ðQ,�, �, qi, ~�Þ, where Q is the

finite set of states, there exists q‘ 2Q and hj, hk 2h such

that ��(qi,hj)¼ �
�(qi,hk)¼ q‘. Let � 2�þ and

� ¼ �1�2 � � � �r. Since Pi ia a perfect encoding, it follows

from Definition 10 that

qðhj�Þ ¼ qðhjÞ ~�ðq‘, �1Þ
Yr�1
m¼1

~� ��ðq‘, �1 � � � �mÞ, �mþ1ð Þ

qðhk�Þ ¼ qðhkÞ ~�ðq‘, �1Þ
Yr�1
m¼1

~� ��ðq‘, �1 � � � �mÞ, �mþ1ð Þ:

Now, it follows that

qðhjÞ 6¼ 0 ^ qðhkÞ 6¼ 0
� �^ qðhj�Þ

qðhjÞ
¼

qðhk�ÞÞ

qðhkÞ

� �
) U2ðhj, hkÞ ) hjN qhk

which contradicts the initial assertion that hjN qhk 8hj,

hk 2h. This completes the proof. œ

The construction in the first part of Theorem 4 is stated

in the form of Algorithm 1.

Corollary 1 (to Theorem 4): A PFSA Pi ¼

ðQ,�, �, qi, ~�Þ induces a probability measure q on the
�-algebra B� and the corresponding probabilistic Nerode
equivalence is of finite index.

Algorithm 1: Construction of PFSA from the probability

measure space (�!, B�, q)

input: (�!, B�, q) such that N q is of finite index
output: Pi

1 begin

2 Let Q ¼ fqj : j2J $Ng be the set of equivalence classes of

the relation N q;
3 Set the initial state of Pi as qi such that " belongs to the

equivalence class qi; If x2 qj and x� 2 qk, then set �ðqj, �Þ ¼ qk;
4 ~�ðqj, �Þ ¼ qðx�Þ=qðxÞ where x2 qj;
5 end
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Proof: Let a probability measure q be constructed on

the �-algebra B� as follows:

8� 2�þ, qð�Þ ¼ ~�ðqi, �1Þ
Yr�1
k¼1

~� ��ðqi, �1 � � � �kÞ, �kþ1ð Þ

 !
:

It follows from Definition 10 that Pi perfectly encodes

the measure q and Theorem 4 implies that the

corresponding N q is of finite index. œ

On account of Corollary 1, we can map any given PFSA

to a measure space (�!, B�, q).

Definition 11: Let p be the space of all probability

measures on B� and a be the space of all possible

PFSA Pi ¼ ðQ,�, �, qi, ~�Þ.

. The map H : a! p is defined as HðPiÞ ¼ q such that

8� 2�þ, qð�Þ ¼ ~�ðqi, �1Þ
Yr�1
k¼1

~� ��ðqi, �1 � � � �kÞ, �kþ1ð Þ

 !

where � ¼ �1�2 � � � �r: ð11Þ

. The map H�1 : p!a is defined as

H�1ðqÞ ¼
Pi given by Algo:1 if N q is of finite index

Undefined otherwise:

(

ð12Þ

Lemma 1: Pi is a perfect encoding for HðPiÞ.

Proof: The proof follows from Definition 10 and

Definition 11. œ

Next we show that, similar to classical finite state

machines, an arbitrary PFSA can be uniquely mini-

mized. However, the sense in which the minimization

is achieved is somewhat different. To this end, we

introduce the notion of reachable states in a PFSA and

define isomorphism of two PFSA.

Definition 12 (reachable states): Given a PFSA

Pi ¼ ðQ,�, �, qi, ~�Þ, the set of reachable states

RCHðPiÞjQ is defined as:

~q2RCHðPiÞ ) 9� ¼ �1 � � � �R 2��

such that ��ðqi, �Þ ¼ ~qð Þ

^ ~�ðqi, �iÞ
YR�1
r¼1

~� ��ðqi, �1 � � � �rÞ, �rþ1ð Þ > 0

 !
:

Remark 3: The strict positivity condition in

Definition 12 ensures that every state in the set of

reachable states can actually be attained with a strictly

non-zero probability. In other words, for every state

qj 2RCHðPiÞ, there exists at least one string !, initiating
from qi and eventually terminating on state qj, such that

the generation probability of ! is strictly positive.

Definition 13 (Isomorphism): Two PFSA Pi ¼

ðQ,�, �, qi, ~�Þ and P0i0 ¼ ðQ
0,�, �0, q0i0 , ~�0Þ are defined to

be isomorphic if there exists a bijective map

� : RCHðPiÞ ! RCHðP0i0 Þ such that

~�ðqj, �Þ 6¼ 0) ~�0ð�ðqjÞ, �Þ ¼ ~�ðqj, �Þ
� �^
�0ð�ðqjÞ, �kÞ ¼ �ð�ðqj, �kÞÞ
� �

:

Remark 4: The notion of isomorphism stated in

Definition 13 generalizes graph isomorphism to PFSA

by considering only the states that can be reached with

non-zero probability and transitions that have a non-

zero probability of occurrence.

Theorem 5 (Minimization of PFSA): For a PFSA

Pi ¼ ðQ,�, �, qi, ~�Þ, H�1 �HðPiÞ is the unique minimal

realization of Pi in the sense that the following conditions

are satisfied:

(1) The PFSA H�1 �HðPiÞ perfectly encodes the prob-

ability measure HðPiÞ.
(2) For a PFSA P0i0 that perfectly encodes HðPiÞ,

the inequality CARDðRCHðH�1 �HðPiÞÞÞ5

CARDðRCHðP0i0 ÞÞ holds.
(3) The equality, CARDðRCHðH�1 �HðPiÞÞÞ5

CARDðRCHðP0i0 ÞÞ, implies isomorphism of Pi and P0i0
in the sense of Definition 13.

Proof:

(1) The proof follows from the construction in

Theorem 4.
(2) Let P0i0 ¼ ðQ

0,�, �0, q0i0 , ~�0Þ be an arbitrary PFSA that

perfectly encodes the probability measure HðPiÞ. Let

us construct a PFSA Pyi0 ¼ ðQ
0 [ fqdg,�, �y, qi0 , ~�yÞ,

where qd is a new state not in Q0, as follows:

8q0j 2Q
0, � 2�,

�yðq0j0�kÞ ¼
qd if ~�0ðq0j�kÞ ¼ 0

�0ðq0j0�kÞ otherwise

(
ð13aÞ

8� 2�, �yðqd, �kÞ ¼ qd ð13bÞ

8q0j 2Q
0, 8� 2�, ~�yðq0j0�kÞ ¼ ~�0ðq0j0�kÞ: ð13cÞ

It is seen that Pyi0 perfectly encodes HðPiÞ as well, which

follows from Definition 10 and equation (13c). It is

claimed that

CARDðRCHðPyi0 ÞÞ ¼ CARDðRCHðP0i0 ÞÞ ð14Þ

based on the following rationale.
Let q0j 2RCHðP0i0 Þ. Following Definition 12, there exists

a string � 2�� such that � 0�ðqi0 , xÞ ¼ q0j and
~�ðqi0 , �1Þ

QR�1
r¼1 ~�0ð� 0�ðqi0 , �1 � � � �rÞ, �rþ1Þ > 0. It follows

from Equation (13c) that ~�yðqi0 , �1Þ
QR�1

r¼1 ~�y �
ð�y�ðqi0 , �1 � � � �rÞ, �rþ1Þ > 0 and hence we conclude
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using equation (13a) that �y�ðqi0 , xÞ ¼ qj 6¼ qd which then
implies that q0j 2RCHðPyi0 Þ. Hence we have
CARDðRCHðP0i0 ÞÞ5CARDðRCHðPyi0 Þ. By a similar argument,
we have CARDðRCHðPyi0 Þ5CARDðRCHðP0i0 ÞÞ and hence
CARDðRCHðPyi0 Þ5CARDðRCHðP0i0 ÞÞ.
Next, we claim

8x, y2�� �yðqi0 , xÞ ¼ �
yðqi0 , yÞ

� �
) xN HðPiÞy

� �
ð15Þ

based on the following rationale.
Let x, y2�� s.t. ð�yðqi0 , xÞ ¼ �

yðqi0 , yÞÞ. It follows from
equations (13a–c) that

HðPiÞðxÞ ¼ 0 ^HðPiÞðyÞ ¼ 0ð Þ if �yðqi0 , xÞ ¼ qd

HðPiÞðxÞ 6¼ 0 ^HðPiÞðyÞ 6¼ 0ð Þ otherwise:

(

ð16Þ

Now, if ðHðPiÞðxÞ ¼ 0 ^HðPiÞðyÞ ¼ 0Þ, then it follows
from equation (6b) that xN HðPiÞy. On the other hand, if
ðHðPiÞðxÞ 6¼ 0 ^HðPiÞðyÞ 6¼ 0Þ, then equation (6a) yields

8u ¼ �1 � � � �R 2��,
HðPiÞðxuÞ

HðPiÞðxÞ
¼

HðPiÞðyuÞ

HðPiÞðyÞ

¼ ~�yðqi0 , �1Þ
YR�1
r¼1

~�y �yðqi0 , �1 � � � �rÞ, �rþ1
� �

) xN HðPiÞy:

We define a map � : RCHðH�1 �HðPiÞÞ ! RCHðPyi0 Þ as
follows: Let q# 2RCHðH�1 �HðPiÞÞ and let "ðq#Þ be the
equivalence class of the relation N HðPiÞ represented by
q#. Let x ¼ �1 � � � �R 2 "ðq

#Þ.

HðPiÞðxÞ > 0 ðSee Definition 12Þ

) ~�yðqi0 , �1Þ
YR�1
r¼1

~�y �y�ðqi0 , �1 � � � �rÞ, �rþ1
� �

> 0

ðSince Pyi0 perfectly encodes HðPiÞÞ

) �y�ðqi0 , xÞ 2RCHðPyi0 Þ:

Let �ðq#Þ ¼ �y�ðqi0 , xÞ. Note that �(q#) depends on the
choice of x. Let q#

1 , q
#
2 2RCHðH�1 �HðPiÞÞ such that

�ðq#
1 Þ ¼ �ðq

#
2 Þ. If x1, x2 are the corresponding strings

chosen to define �ðq#
1 Þ, �ðq

#
2 Þ, we have �y�ðqi0 , x1Þ ¼

�y�ðqi0 , x2Þ which implies x1N HðPiÞx2, i.e., q#
1 ¼ q#

2 .
Hence we conclude � is injective which, in turn, implies

CARDðRCHðH�1 �HðPiÞÞÞ5CARDðRCHðPyi0 ÞÞ: ð17Þ

Finally, from equations (14) and (17), it follows that

CARDðRCHðH�1 �HðPiÞÞÞ5CARDðRCHðP0i0 ÞÞ: ð18Þ

Let P0i0 ¼ ðQ
0,�, �0, qi0 , ~�0Þ be an arbitrary PFSA that

perfectly encodes HðPiÞ such that

CARDðRCHðH�1 �HðPiÞÞÞ5CARDðRCHðP0i0 ÞÞ: ðC1Þ

Let the PFSA H�1 �HðPiÞ be denoted as

ðQ#,�, �#, q#
i#
, ~�#Þ. Let eðq#

j Þ denote the equivalence

class of N HðPiÞ that q# represents. We define a map

� : RCHðH�1 �HðPiÞÞ ! 2RCHðP0
i0
Þ as follows:

�ðq#
j Þ ¼ q0j 2Q

0 9x2eðq#
j

��� Þ s:t: � 0�ðqi0 , xÞ ¼ q0j

n o
: ð19Þ

We claim

8q#
j , q

#
k 2Q

# q#
j 6¼ q#

k

� �
) �ðq#

j Þ
\
�ðq#

kÞ ¼ 	

� �� �
:

ðC2Þ

Let q0‘ 2�ðq
#
j Þ \ �ðq

#
kÞ. Hence there exists xj 2eðq

#
j Þ,

xk 2eðq
#
kÞ such that

q0‘ ¼ �
0�ðqi0 ,xjÞ ¼ �

0�ðqi0 , xkÞ ð20Þ

that

xjN HðPiÞxk ) 9u2��
HðPiÞðxjuÞ

HðPiÞðxjÞ
6¼

HðPiÞðxkuÞ

HðPiÞðxkÞ

� �
ð21Þ

but, P0i0 perfectly encodes HðPiÞ implying

8u ¼ �1 � � � �R 2��
HðPiÞðxjuÞ

HðPiÞðxjÞ
6¼

HðPiÞðxkuÞ

HðPiÞðxkÞ

�

¼ ~�0ðq0‘, �1Þ
YR�1
r¼1

~�0ð� 0�ðqi0 , �1 � � � �rÞ, �rþ1

!

which contradicts equation (21).
Next we claim that

8q#
j 2RCHðH�1 �HðPiÞÞ CARDð�ðq#

j ÞÞ ¼ 1 ðC3Þ

Let x1, x2 2Eðq
#
j Þ such that

� 0�ðqi, x1Þ ¼ q0j
� 0�ðqi, x2Þ ¼ q0k

�
with q0j 6¼ q0k: ð22Þ

Therefore,

CARDð�ðq#
j ÞÞ41

¼)
X

q#
k
2RCHðH�1�HðPiÞÞ

0

CARDð�ðq#
kÞÞ

4CARDðRCHðH�1 �HðPiÞÞÞ

¼)CARDðRCHðP0i0 ÞÞ4CARDðRCHðH�1 �HðPiÞÞÞ

which contradicts C1 thus proving C3.
On account of C2 and C3, let us define a bijective map

~� : RCHðH�1 �HðPiÞÞ ! RCHðP0i0 Þ as ~�ðq#
j Þ ¼ �

0�ðqi, xÞ,

x2eðq#
j Þ. Then,

8�k 2�, 8q#
j 2RCHðH�1 �HðPiÞÞÞ, x2eðq

#
j Þ

~�#ðq#
j , �kÞ ¼

HðPiÞðx�kÞ

HðPiÞðxÞ
¼ ~�#ð ~�ðq#

j Þ, �kÞ

9>=
>; ð23Þ
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~�ð�#ðq#
j , �kÞÞ ¼ �

0�ðqi0 , x�kÞ

¼ �0ð� 0�ðqi0 , �kÞ, �kÞ ¼ �
0ð ~�ðq#

j Þ, �kÞ ð24Þ

which implies that H�1 �HðPiÞ and P0i0 , are

isomorphic in the sense of Definition 13. This completes

the proof. œ

Theorem 6: For a PFSA Pi ¼ ðe,�, �,Ei, ~�Þ, the

function ~� : Q��! Q can be extended to
~� : Q��� ! Q as

8qj 2Q, � 2��,

� 2�,
~�ðqj, "Þ ¼ 1

~�ðqj, ��Þ ¼ ~�ðqj, �Þ ~�ðqj, �Þ ~�ð�ðqj, �Þ, �Þ:

	
ð25Þ

Proof: Let 	 ¼ HðPiÞ. We note that that Pi perfectly

encodes q (see Lemma 1). It follows from Theorem 4 that

8qj 2Q, ~�ðqj, "Þ ¼
qðx"Þ

qðxÞ
¼

qðxÞ

qðxÞ
¼ 1 where ��ðqi, xÞ ¼ qj:

Similarly, for a string �� initiating from state qj, where

� 2�, � 2��, we have

~�ðqj, ��Þ ¼
qðx��Þ

qðxÞ
¼

qðx�Þ

qðxÞ
�

qðx��Þ

qðx�Þ
: ð26Þ

We note that qðx�Þ=qðxÞ ¼ ~�ðqj, �Þ. Also, ��(qi, x)¼ qj
implies �(qj, �)¼ �

�(qi, x�). Therefore, qðx��Þ=qðx�Þ ¼
~�ð�ðqj, �Þ, �Þ and hence

~�ðqj, ��Þ ¼ ~�ðqj, �Þ ~�ð�ðqj, �Þ, �Þ:

This completes the proof. œ

Theorem 7: For a measure space ð�!,B�, qÞ,

H �H�1ðqÞ ¼ q ð27Þ

i.e., H �H�1 is the identity map from p onto itself.

Proof: Let H�1ðqÞ ¼ Pi ¼ ðQ,�, �, qi, ~�Þ. We note Pi

perfectly encodes q (See Lemma 3.1). Let HðPiÞ ¼ q
0.

We claim

8x2��, qðxÞ ¼ q
0ðxÞ:

The result is immediate for jxj ¼ 0, i.e., x¼ 
. For jxj 
 1,

we proceed by the method of induction. For jxj ¼ 1,

we note

8� 2�, q0ð�Þ ¼ ~�ðqi, �Þ ¼ qð�Þ ðperfect EncodingÞ:

Next let us assume that 8x2��, s.t. jxj ¼ r2N,

q
0ðxÞ ¼ qðxÞ. Since 8x2�� with jxj ¼ r2N,

it follows that

q
0ðx�Þ ¼ q

0ðxÞ ~�ðqj, �Þ where �
�ðqi, xÞ ¼ qi

¼ qðxÞ ~�ðqi, �Þ ¼ qðx�Þ:

This completes the proof. œ

4. Metrization of the space p of probability

measures on BD

Metrization of p is important for differentiating

physical processes modeled as dynamical systems evol-

ving probabilistically on discrete state spaces of finite

cardinality. In this section, we introduce two metric

families, each of which captures a different aspect of

such dynamical behaviour and can be combined to form

physically meaningful and useful metrics for system

analysis and design.

Definition 14: Given two probability measures q1, q2
on the �-algebra B� and a parameter s2 ½1,1�,

the function ds : p�p! ½0, 1� is defined as follows:

dsðq1, q2Þ ¼ sup
x2��

Xj�j
j¼1

q1ðx�jÞ

q1ðxÞ
�
q2ðx�jÞ

q2ðxÞ

����
����s

 !1=s

8s2 ½1,1Þ ð28aÞ

d1ðq1, q2Þ ¼ sup
x2��

max
� 2�

q1ðx�jÞ

q1ðxÞ
�
q2ðx�jÞ

q2ðxÞ

����
����: ð28bÞ

Theorem 8: The space p of all probability measures

on B� is ds-metrizable for s2 ½1,1�.

Proof: Strict positivity and symmetry properties

of a metric follow directly from Definition 14.

Validity of the remaining property of triangular inequal-

ity follows by application of Minkowski inequality

(Rudin 1988). œ

Definition 15: LetM be a right invariant equivalence

relation on �� and the ith equivalence class of M be

denoted as Mi; i2 I, where I is an arbitrary index set.

Let q be a probability measure on the �-algebra B�

inducing the probabilistic Nerode equivalence N q on ��

with the jth equivalence class of N q denoted as N
j
q
,

j2J , where J is an index set distinct from I .

Then, the map �M : p! ½0, 1�CARDðIÞ
� ½0, 1�CARDðJ Þ is

defined as

�MðqÞ
��
ij ¼

X
x2Mi\N

j
q

qðxÞ:

Definition 16: Let q1, q2 be two probability

measures on the �-algebra B�. Then, the function

dF : p� p! ½0, 1� is defined as follows:

dFðq1, q2Þ ¼ �N q2
ðq1Þ ��N q2

ðq2Þ




 



F
, ð29Þ

where k�kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trace½�H��

p
is the Frobenius norm of

the operator �, and �H is the Hermitian of �.

Definition 16 implies that if I and J are the index

sets corresponding to N q1
and N q2

respectively,
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then �N q1
ðq2Þ 2 ½0, 1�

CARDðIÞ
� ½0, 1�CARDðJ Þ and �N q2

ðq1Þ 2

½0, 1�CARDðJ Þ
� ½0, 1�CARDðIÞ.

Theorem 9: The function dF is a pseudometric on the
space p of probability measures.

Proof: The Frobenius norm on a probability space
satisfies the metric properties except strict positivity
because of the almost sure property of a probability

measure. œ

Theorem 10: For 8�2 ½0, 1Þ and 8s2 ½1,1Þ, the para-

metized function ��,s ¼
�
�dF þ ð1� �Þds is a metric on p.

Proof: Following Theorems 8 and 9, ds is a metric
for s2 ½1,1� and dF is a pseudometric on p.

Non-negativity, finiteness, symmetry and sub-additivity
of ��,s follow from the respective properties of dF and ds.

Strict positivity of ��,s on �2 ½0, 1Þ is established below

��,sðq1, q2Þ ¼ 0) ð1� �Þdsðq1, q2Þ ¼ 0) q1 ¼ q2:

ð30Þ

œ

Remark 5: If two physical processes are modelled as
discrete-event dynamical systems, then the respective

probabilistic language generators can be associated with
probability measures q1 and q2. The metric dsðq1, q2Þ is
related to the production of single symbols as arbitrary

strings and hence captures the difference in short term
dynamic evolution. In contrast, the pseudometric dF is

related to generation of all possible strings and therefore
captures the difference in long term behavior of the

physical processes. The metric ��,s thus captures
the both short-term and long-term behaviour with
respective relative weights of 1�� and �.

Definition 17: The metric ��,s on p for �2 ½0, 1Þ,
s2 ½1,1�, induces a function 	�,s on a�a as follows:

8Pi,P
0
i0 2a, 	�,sðPi,P

0
i0 Þ ¼ ��,sðHðPiÞ,HðP

0
i0 ÞÞ: ð31Þ

Corollary 2 (to Theorem 10): The function 	�,s in
Definition 17 for �2 ½0, 1Þ and s2 ½1,1� is a pseudometric

on a. Specifically, the following condition holds:

	�,sðPi,H�1 �HðPiÞÞ ¼ 0: ð32Þ

Proof: Following Theorem 7,

	�,sðPi,H�1 �HðPiÞÞ ¼ ��,sðHðPiÞ, H �H�1 �HðPiÞÞ

¼ ��,sðHðPiÞ, ðH �H�1Þ �HðPiÞÞ

¼ ��,sðHðPiÞ,HðPiÞÞ ¼ 0:

œ

Remark 6: Corollary 2 can be physically interpreted

to imply that the metric family 	�,s does not
differentiate between different realizations of the same

probability measure. Thus when comparing two prob-

abilistic finite state machines, we need not concern

ourselves with whether the machines are represented in

their minimal realizations; the distance between two

non-minimal realizations of the same PFSA is always

zero. However this implies that 	�,s only qualifies as a

pseudo-metric on a.

4.1 Explicit computation of the pseudometric m

for PFSA

The pseudometric 	�,s is computed explicitly for pairs of

PFSA over the same alphabet. Before proceeding to the

general case, 	�,s is computed for the special case, where

the pair of PFSA have identical state sets, initial states

and transition maps.

Lemma 2: Given two PFSA P1
i ¼ ðQ,�, �, qi, ~�1Þ,

P2
i ¼ ðQ,�, �, qi, ~�2Þ, and � 2�, the steps for computation

of 	0, sðP
1
i ,P

2
i Þ are

Set �ðqjÞ ¼ ~�1ðqj, �Þ � ~�2ðqj, �Þ

Then, 	0, sðP
1
i ,P

2
i Þ ¼ max

qj 2Q
�ðqjÞ


 



s
:

Proof: Let HðP2
i Þðx�Þ=HðP

2
i ÞðxÞ denote a j

P
j-dim-

ensional vector-valued function, where � 2�.

For proof of the lemma, it suffices to show that the

following relation holds:

sup
x2��

ds
HðP1

i Þðx�Þ

HðP1
i ÞðxÞ

,
HðP2

i Þðx�Þ

HðP2
i ÞðxÞ

� �
¼ max

qi 2Q
�ðqjÞ


 



s
:

Since P1
i perfectly encodes HðP1

i Þ, it follows that

ð8x, y2��, �ðqi, xÞ ¼ �ðqi, yÞÞ implies

HðP1
i Þðx�kÞ

HðP1
i ÞðxÞ

¼ ~�1ðqj, �kÞ ¼
HðP1

i Þðy�Þ

HðP1
i ÞðyÞ

,

where �(qi, x)¼ qj. Similar argument holds for HðP2
i Þ.

Hence, it follows that for computing 	0, sðP
1
i ,P

2
i Þ, only

one string needs to be considered for each state qj 2Q.

That is,

	0, sðP
1
i ,P

2
i Þ ¼ max

x:�ðqi,xÞ¼qj

HðP1
i Þðx�kÞ

HðP1
i ÞðxÞ

�
HðP2

i Þðx�kÞ

HðP2
i ÞðxÞ











s

¼ max
x:�ðqi,xÞ¼qj

~�1ðqj, �kÞ � ~�2ðqj, �kÞ


 



s

¼ max
qj 2Q

�ðqjÞ


 



s
:

Lemma 3: Let }1,}2 be the stable probability distribu-

tions for PFSA P1
i ¼ ðQ,�, �, qi, ~�1Þ and P2

i ¼

ðQ,�, �, qi, ~�2Þ respectively. Then,

lim
�!1

	�,sðP
1
i ,P

2
i Þ ¼ d2ð}1,}2Þ
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Proof: Since P1
i and P2

i have the same initial state and
state transition maps,

N
j

HðP1
i
Þ

\
N

k
HðP2

i
Þ ¼

	

N
j

HðP1
i
Þ
¼ N

k
HðP2

i
Þ

if j 6¼ k

otherwise

(

where N
j

HðP1
i
Þ
and N

k
HðP2

j Þ
are the jth and kth equivalence

classes (i.e., states qj and qk) for P1
i , P

2
i , respectively.

The result follows from Definition 16 and Corollary 11
and noting that

�N
HðP2

i
Þ
ðHðP1

i ÞÞ

����
jk

¼

�
x:�ðqi,xÞ¼qj

qðxÞ ¼ }1

��
j

if j ¼ k

0 otherwise

8<
: :

Theorem 11: Given two PFSA P1
i ¼ ðQ,�, �, qi, ~�1Þ and

P2
i ¼ ðQ,�, �, qi, ~�2Þ, the pseudometric 	�,sðP

1
i ,P

2
i Þ can be

computed explicitly for �2 ½0, 1Þ and s2 ½1,1� as

	�,sðP
1
i ,P

2
i Þ ¼ � lim

�!1
	�,sðP

1
i ,P

2
i Þ þ ð1� �Þ	0, sðP

1
i ,P

2
i Þ:

ð33Þ

Proof: The result follows from Theorem 10 and
Corollary 2. œ

The algorithm for computation of the the pseudometric
	 is presented below.
To extend the approach presented in Lemma 2 to

arbitrary pairs of PFSA, we need to define the

synchronous composition of a pair of PFSA.

Definition 18: The binary operation of synchronous

composition of PFSA, denoted as � : p�p! p, is

defined as follows:

Let
Pi ¼ ðQ,�, �, qi, ~�Þ

Gi0 ¼ ðQ
0,�, �0, q0i0 , ~�0Þ:

(

Then, Pi � Gi0 ¼ ðQ�Q0,�, ��, ðqi, q
0
i0 Þ, ~��Þ, where

��ððqj, q
0
k0 Þ, �Þ

¼

�ðqj, �Þ, �
0ðq0j0 , �Þ

� �
, if �ðqj, �Þ and

�0ðq0j0 , �Þ are defined

Undefined otherwise

8>><
>>:

ð34Þ

~��ððqj, q
0
k0 Þ, �Þ ¼ ~�ðqj, �Þ: ð35Þ

Remark 7: Synchronous composition for PFSA is not

commutative, i.e., for an arbitrary pair Pi and Gi0,

Pi � Gi0 6¼ Gi0 � Pi: ð36Þ

Synchronous composition of PFSA is associative, i.e.,

8P1
i1,P

2
i2,P

3
i3 2p, P1

i1 � P2
i2

� �
� P3

i3 ¼ P1
i1 � P2

i2 � P3
i3

� �
Theorem 11: For a pair of PFSA Pi and Gi0 over the

same alphabet,

HðPiÞ ¼ HðPi � Gi0 Þ: ð37Þ

Proof: Let q ¼ HðPiÞ and q
0 ¼ HðPi � Gi0 Þ. It suffices

to show that

8x2��, qðxÞ ¼ q
0ðxÞ: ðC4Þ

For jxj ¼ 0, i.e., x¼ 
, the result is immediate. For

jxj= 1, we use the method of induction. Since Pi

perfectly encodes HðPiÞ,

8� 2�,qð�Þ ¼ ~�ðqi, �Þ

¼ ~��ððqi, q
0
i0 Þ, �Þ ¼ q

0ð�Þ:

Hence C4 is true for jxj5 1.
With the induction hypothesis

8x2��, s:t:, jxj ¼ r2N, qðxÞ ¼ q
0ðxÞ ð38Þ

we proceed with an arbitrary � 2� to yield

qðx�Þ ¼ qðxÞ ~�ðqj, �Þ where �ðqi, xÞ ¼ qj

¼ q
0ðxÞ ~��ððqj, q

0
j0 Þ, �Þ where �

��ððqi, q
0
i0 Þ, xÞ

¼ ðqj, q
0
j0 Þ ¼ q

0ðx�Þ:

This completes the proof. œ

Theorem 12: Given a pair of PFSA Pi, P0i0 and an

arbitrary parameter s2 ½1,1�, Algorithm 2 computes

	�,s(Pi, P
0
i0) for �2 ½0, 1Þ, s2 ½1,1�.

Proof: By Theorem 11, 8�2 ½0, 1Þ, s2 ½1,1�,

	�,sðPi,P
0
i0 Þ ¼ 	�,sðPi � P0i0 ,P

0
i0 � PiÞ: ð39Þ

Since Pi � P0i0 and P0i0 � Pi have the same state sets,

initial states and transition maps (see Definition 18),

correctness of Algorithm 2 follows from Lemmas

2 and 3. œ

Algorithm 2: Computation of 	�, sðPi,P
0
i0 Þ

input: Pi,P
0
i0 , s,�

output: 	�, sðPi,P
0
i0 Þ

1 begin

2 Compute P12 ¼ ð �Q,�, ��, ~�12Þ ¼ Pi � P0i0 ;

3 Compute P21 ¼ ð �Q,�, ��, ~�21Þ ¼ P0i0 � Pi;

4 for j¼ 1 to CARDð �QÞ do
5 �ðJÞ ¼ ~�12ðqj, �kÞ � ~�21ðqj, �kÞ



 

�� s;

6 endfor

7 	0, sðPi,P
0
i0 Þ ¼ maxj �ðjÞ;

8 Compute }12; = � State prob: for P12 ðDef: 2:3Þ � =
9 Compute }21; = � State prob: for P21 ðDef: 2:3Þ � =
10 Compute d ¼ }12 � }21



 


2
;

11 Compute 	�, sðPi,P
0
i0 Þ ¼ �dþ ð1� �Þ	0, sðPi,P

0
i0 Þ;

12 end
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Example 1: The theoretical results of x 4 are illustrated

with a numerical example. The following PFSA are

considered:

P1
q1
¼ ðfq1, q2, q3g, f0, 1g, �

1, q1, ~�1Þ ð40Þ

P2
qA
¼ ðfqA, qBg, f0, 1g, �

2, qA, ~�2Þ ð41Þ

as shown in figures 6 and 7, respectively, and figure 8

illustrates the computed compositions P1
q1
� P2

qA
(above)

and P2
qA
� P1

q1
(below).

Following Algorithm 2, we have

�s ¼

0:4� 0:9 0:6� 0:1k ks

0:2� 0:9 0:8� 0:1k ks

0:3� 0:9 0:7� 0:1k ks

0:3� 0:7 0:7� 0:3k ks

0:4� 0:7 0:6� 0:3k ks

0:2� 0:7 0:8� 0:3k ks

2
666666664

3
777777775
: ð42Þ

As an illustration, we set s¼1. Hence,

�1 ¼ 0:5 0:7 0:6 0:4 0:3 0:5½ �
T

ð43Þ

) 	0,1ðP
1
q1
,P2

qA
Þ ¼ maxð�1Þ ¼ 0:7: ð44Þ

The final state probabilities are computed to be

}P1�P2 ¼ ½0:15 0:07 0:09 0:2 0:22 0:27� ð45Þ

}P2�P1 ¼ ½0:29 0:29 0:29 0:043 0:043 0:043�:

ð46Þ

For �¼ 0.5, we have

	0:5,1 P1
q1
,P2

qA

� �
¼ 0:5d2 }P1�P2 ,}P2�P1

� �
þ 0:5� 0:7

¼ 0:4599:

The pseudonorm 	0,1ðP
1
q1
,P2

qA
Þ ¼ 0:7 is interpreted as

follows. There exists a string x2� and an event � 2�

such that probability of occurrence of �, given that x has
already occurred, is 70% more in one system compared
to the other. Also, the occurrence probability of any
event, given an arbitrary string has already occurred,
is different by no more than 70% for the two systems.
The composition P1

q1
� P2

qA
shown in the upper part

of figure 8 is an encoding of the measure HðP1
i Þ and

hence is a non-minimal realization of P1
i , while

the composition P2
qA
� P1

q1
shown in the lower part of

figure 8 encodes HðP2
i0 Þ and therefore is a non-minimal

realization of P2
i0 . Although the structures of the

two compositions are identical in a graph-theoretic
sense (i.e. there is a graph isomorphism between the
compositions), they represent very different probability
distributions on B�.

5. Model order reduction for PFSA

This section investigates the possibility of encoding
an arbitrary probability distribution on B� by a PFSA
with a pre-specified graph structure. As expected, such
encodings will not always be perfect. However, we will
show that the error can be rigorously computed and
hence is useful for very close approximation of large
PFSA models by smaller models.

Definition 19: The binary operation of projective
composition ~� : p�p! p is defined as follows:

Let

Pi ¼ ðQ,�, �, qi, ~�0Þ

Gi0 ¼ ðQ
0,�, �0, q0i0 , ~�0Þ

Gi0 � Pi ¼ ðQ
0 �Q,�, ��, ðq0i0 , qiÞ, ~��Þ:

8><
>:

qA qB

0/0.1

1/.7

0/0.31/0.9

Figure 7. PFSA P2.

qA3 qA1 qA2

qB1qB3qB2

qA1 qA2qA3

qB2 qB3 qB1

1/ 0.3

1/ 0.4 1/ 0.2

1/ 0.3 0/ 0.7

0/ 0.7

1/ 0.9

1/ 0.20/ 0.6

1/ 0.7

0/ 0.1

1/ 0.4

0/ 0.8

1/ 0.9 1/ 0.9

0/ 0.1 1/ 0.7

0/ 0.80/ 0.6

0/ 0.3 0/ 0.3

0/ 0.3

1/ 0.70/ 0.1

Figure 8. P1 � P2 (above) and P2 � P1 (below).

q1

q2 q3

1/0.2 1/0.4

0/0.6

1/0.3

0/.7 0/.8

Figure 6. PFSA P1.
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For notational simplicity set 8qj 2Q and 8q0k0 2Q
0,

#ðq0k0 , qjÞ ¼
X

x:���ððq0
i0
, qiÞ, xÞ

¼ðq0
k0
, qjÞ

HðGi0 ÞðxÞð Þ:

Then, Gi0 ~�Pi ¼ ðQ,�, �, qi, ~�~�Þ s.t.

~�
~�ðqj, �Þ ¼

P
q0
k0
2Q0#ðq

0
k0 , qjÞ ~�

�ððq0k0 , qjÞ, �ÞP
q0
k0
, 2Q0#ðq0k0 , qjÞ

: ð47Þ

Theorem 13: For PFSA Pi, Gj, Hk over the same

alphabet,

(1) Pi ~�ðGj ~�HkÞ ¼ Pi ~�Hk

(2) ðPi ~�GjÞ ~�Hk 6¼ Pi ~�ðGj ~�HkÞ ðNon-associativeÞ
(3) Pi ~�Gj 6¼ Gj ~�Pi ðNon-commutativeÞ:

Proof: The results follow from Definition 19. œ

We justify the nomenclature ‘projective’ composition in

the following theorem.

Theorem 14: For arbitrary PFSA Pi and Gi0 over the

same alphabet,

Gi0 ~�Pi

� �
~�Pi ¼ Gi0 ~�Pi: ð48Þ

Proof: Let Pi ¼ ðQ,�, �, qi, ~�Þ. Definition 19 implies

that ðGi0 ~�PiÞ ¼ ðQ,�, �, qi, ~�z for ~�z computed as

specified in equation (47). It further follows from

Definition 19, that ðGi0 ~�PiÞ ~�Pi ¼ ðQ,�, �, qi, ~�~�Þ,
i.e., ðGi0 ~�PiÞ ~�Pi and Gi0 ~�Pi have the same state set,

initial state and state transition maps. Thus, it suffices to

show that

8qj 2Q, ��, ~�zðqj, �Þ ¼ ~�
~�ðqj, �Þ: ð49Þ

Considering the probabilistic synchronous

composition ðGi0 ~�PiÞ � Pi ¼ ðQ�Q,�, ��, ðqi, qiÞ, ~��Þ
(see Definition 18),

8x2��, �� � ððqi, qiÞ,xÞ ¼ ðqi, qjÞ, for some qj 2Q

It follows that, for qk 6¼ qj,

#ðqk, qjÞ ¼
X

x:��
�
ððqi, qiÞ, xÞ

¼ðqk, qjÞ

H Gi0 �
!

Pi

� �
ðxÞ

� �
¼ 0: ð50Þ

Finally we conclude 8qj 2Q, � 2�,

~��
!
ðqj, �Þ ¼

P
qk 2Q

#ðqk, qjÞ ~�
�ððqk, qjÞ, �ÞP

qk 2Q
#ðqk, qjÞ

¼
#ðqj, qjÞ ~�

�ððqj, qjÞ, �Þ

#ðqj, qjÞ

¼ ~��ððqj, qjÞ, �Þ

¼ ~�zðqj, �Þ ðsee Definition 18Þ: ð51Þ

This completes the proof. œ

Projective composition preserves the projected

distribution which is defined next.

Definition 20 (projected distribution): The projected

distribution }2 ½0, 1�NUMSTATESðPiÞof an arbitrary PFSA

Gi0 with respect to a given PFSA Pi is defined by the

map ½½���Pi : a! ½0, 1�NUMSTATESðPiÞ as follows:

½½Gi0 ��Pi ¼ }2 ½0, 1�
NUMSTATESðPiÞ,

such that if Nj is the jth equivalence class (i.e. the

jth state) of Pi,

then
X
x2Nj

HðGi0 ÞðxÞ ¼ }j:

We note ½½Gi0 ��Pi is a probability vector, i.e.,

XNUMSTATES

j¼1

½½Gi0 ��Pi j ¼
X
x2��

HðGi0 ÞðxÞ ¼ 1:

����� ð52Þ

Theorem 15: (Projected Distribution Invariance): For

two arbitrary PFSA Pi and Gi over the same alphabet,

½½Gi0 ��Pi
¼ ½½Gi0 �

!
Pi��Pi

:

Proof: Let Pi¼ðQ,�, �, qi, ~�Þ and Gi0 ¼ ðQ
0,�, �0,

q0i0 , ~�0Þ. It follows that Gi0 �
!

Pi ¼ ðQ,�, �, qi, ~��
!

Þ, where

~��
!

is as computed in Definition 19. Using the same

notation as in Definition 19, we have 8� 2�,X
x:��ðqi,xÞ¼qj

HðGi0 Þðx�Þ

¼
X

q0
k0
2Q0

#ðq0k0 , qjÞ ~�
0ðq0k0 , �Þ

¼
X

q0
k0
2Q0

#ðq0k0 , qjÞ

P
q0
k0
2Q0 #ðq

0
k0 , qjÞ ~�

0ðq0k0 , �ÞP
q0
k0
2Q0 #ðq

0
k0, qjÞ

( )

¼
X

q0
k0
2Q0

#ðq0k0 , qjÞ

8<
:

9=
; ~�

~�ðqj, �Þ: ð53Þ

Since ½½Gi0 ��Pi
jj ¼

P
x:��ðqi, xÞ¼qj

HðGi0 ÞðxÞ ¼
P

q0
k0
2Q0 �

#ðq0k0 , qjÞ, it follows that 8� 2�,P
x:��ðqi,xÞ¼qj

HðGi0 Þðx�Þ

½½Gi0 ��Pi j

��
¼ ~�

~�ðqj, �Þ

)
X

�:�ðqj, �Þ¼q‘

P
x:��ðqi, xÞ¼qj

HðGi0 Þðx�Þ

½½Gi0 ��Pi j

��
¼

X
�:�ðqj, �Þ¼q‘

~�
~�ðqj, �Þ

)
1

½½Gi0 ��Pi j

�� HðGi0 Þðx�j‘Þ ¼ �
~�ðqj, q‘Þ, ð54Þ
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where �j‘j� such that � 2�j‘ ) �ðqj, �Þ ¼ q‘ and
�~�ðqj, q‘Þ is the j‘th element of the stochastic state
transition matrix � ~� corresponding to the PFSA
Gi0 ~�Pi. It follows from (54), thatX

qj 2Q

HðGi0 Þðx�j‘Þ ¼
X
qj 2Q

½½Gi0 ��Pi j

�� �~�ðqj, q‘Þ
) ½½Gi0 ��Pi ‘j ¼

X
qj 2Q

½½Gi0 ��Pi j

�� �~�ðqj, q‘Þ:
ð55Þ

It follows that ½½Gi0 ��Pi
satisfies the vector equation

½½Gi0 ��Pi
¼ ½½Gi0 ��Pi

�
~�: ð56Þ

We note that ½½Gi0 ~�Pi��Pi
is the stable probability

distribution of the PFSA Gi0 ~�Pi and hence, we have

½½Gi0 ~�Pi��Pi
¼ ½½Gi0 ~�Pi��Pi

�
~�: ð57Þ

In general, a stochastic matrix may have more than one
eigenvector corresponding to unity eigenvalue (Bapat
and Raghavan 1997). However, as per our definition of
PFSA (see Definition 2), the initial state is explicitly
specified. It follows that the right hand side of (53)
assumes that all strings begin from the same state qi 2Q.
Hence it follows:

½½Gi0 ��Pi
¼ ½½Gi0 ~�Pi��Pi

: ð58Þ

This completes the proof. œ

5.1 Physical significance of projected distribution
invariance

Given a symbolic language theoretic PFSA model for a
physical system of interest, one is often concerned with
only certain class of possible future evolutions. For
example, in the paradigm of deterministic finite state
automata (DFSA) (Ramadge and Wonham 1987), the
control requirements are expressed in the form of a
specification language or a specification automaton. In
that setting, it is critical to determine which state of the
specification automaton the system is currently visiting.
In contrast, for a PFSA, the issue is the probability of
certain class of future evolutions. For example, given
a large order model of a physical system, it might be
necessary to work with a much smaller order PFSA, that
has the same long-term behaviour with respect to a
specified set of event strings. Although projective
composition may incur a representation error in general,
the long-term distribution over the states of the
projected model is preserved as shown in Theorem 14.

The idea is further clarified in the commutative diagram

of figure 9.
Probabilistic synchronous composition is an exact

representation with no loss of statistical information;

but the model order increases due to the product

automaton construction. On the other hand, the

projective composition has the same number of states

as the second argument in ð�Þ ~�ð�Þ. Both representations

have exactly the same projected distribution with respect

to a fixed second argument, thus making ~� an extremely

useful tool for model order reduction. Algorithm 3

computes the projected composition of two arbitrary

PFSA.

5.2 Incurred error in projective composition

Given any two PFSA Pi and Gi0 , the incurred error in

projective composition operation P�
!

G_i0 is quantified in

the pseudo-metric defined in x 4 as follows:

v�,sðPi,Pi ~�Gi0 Þ: ð59Þ

Next we establish a sufficient condition for guaranteeing

zero incurred error in projective composition.

Theorem 16: For arbitrary PFSA Pi ¼ ðQ,�, �, qi, ~�Þ
and Gi0 ¼ ðQ

0,�, �0, q0i0 , ~�0Þ with corresponding

probabilistic Nerode equivalence relations N and N
0
,

we have

N 5N
0
) v�,sðGi0 ,Gi0 �

!
PiÞ ¼ 0:

Proof: N 5N
0
implies that there exists a possibly

non-injective map f: Q ! Q such that

8x2��, ��ðqi, xÞ ¼ qj 2Q) ��ðq0i0 , xÞ ¼ fðqjÞ 2Q
0:

It then follows from Definition 19 that

#ðq0k0 , qjÞ ¼ 0 if fðqjÞ 6¼ q0k0 :

Algorithm 3: Computation of Projected Composition

input: Pi ¼ ðQ,�, �, qi, ~�Þ,Gi0 ¼ ðQ
0,�, �0, qi0 , ~�0Þ

output: Pi ~�Gi0

1 begin

2 Compute Pi � Gi0 ¼ ðQ�Q0,�, ��, ðqi, q
0
i0 Þ, ~��Þ;

3 = � See Definition 4:5 � =
4 Compute }; = � State prob: for Pi � Gi0 Def: 2:3 � =
5 Set up matrix T s.t. Tjk ¼ }ððqj, q

0
kÞÞ;

6 Compute ~�~� ¼ T ~�;
7 return Pi�

!
Gi0 ¼ ðQ

0,�, �0, qi0 , ~�~�Þ
8 end
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Denoting Gi0 � Pi ¼ ðQ�Q0,�, ��, ðqi, q
0
i0 Þ, ~��Þ and

Gi0 �
!

Pi ¼ ðQ,�, �, qi, ~��
!

Þ, we have fron Definition 19

that

~� �
!
ðqj, �Þ ¼

P
q0
k0
2Q0 #ðq

0
k0 , qjÞ ~�

�ððq0k0 , qjÞ, �ÞP
q0
k0
2Q0 #ðq

0
k0 , qjÞ

¼ ~��ððfðqjÞ, qjÞ, �Þ ¼ ~�0ðfðqjÞ, �Þ,

where the last step follows from Definition 18.

The proof is completed by noting

8x2��, HðGi0 ÞðxÞ ¼ ~�0ðq0i0 ,xÞ ¼ ~��ððfðqiÞ, qiÞ, xÞ

¼ ~� �
!
ðqi, xÞ ¼ HðGi0 �

!
PiÞðxÞ:

œ

Example 2: The results of x 5 are illustrated considering

the PFSA models described in Example 1. Given

the PFSA models P1
q1 ¼ ðfq1, q2, q3g,�, �1, q1, ~�1Þ and

P2
qA ¼ ðfqA, qBg,�, �2, qA, ~�2Þ (see (40) and (41)), we

compute the projected compositions P1
q1�
!

P2
qA ¼

ðfqA, qBg,�, �2, qA, ~�12Þ and P2
qA�
!

P1
q1 ¼ ðfq1, q2, q3g,

�, �1, q1, ~�21Þ. The synchronous compositions

P1
q1 � P2

qA and P2
qA � P1

q1 were computed in Example 1

and are shown in figure 8. Denoting the associated

stochastic transition matrices for P1
q1 � P2

qA and

P2
qA � P1

q1 as �12 and �21 respectively, we note

�12 ¼

0:2000:8

00:3:700

:4000:60

0:2000:8

00:3:700

:4000:60

2
6666666664

3
7777777775
, �21 ¼

0:9000:1

00:9:100

:9000:10

0:7000:3

00:7:300

:7000:30

2
6666666664

3
7777777775

� � � ðq1, qAÞ

� � � ðq2, qAÞ

� � � ðq3, qAÞ

� � � ðq1, qBÞ

� � � ðq2, qBÞ

� � � ðq3, qBÞ:

The stable probability distributions}12 and }21 are

computed to be

}12¼ ½0:1458 0:0695 0:0864 0:2017 0:2186 0:2780 �

ð60aÞ

}21¼ ½0:2917 0:2917 0:2917 0:0417 0:0417 0:0417 �:

ð60bÞ

Using Algorithm 3, we compute the event generating
functions ~�12 and ~�21 as

~�12 ¼
0:7197 0:2803

0:6891 0:3109

" #
, ~�21 ¼

0:1250 0:8750

0:1250 0:8750

0:1250 0:8750

2
64

3
75:
ð61Þ

We note that the stable distributions for P1
q1�
!

P2
qA

and P2
qA�
!

P1
q1 are given by

}12
�!
¼ ½ 0:3017 0:6983 �,

}21
�!
¼ ½ 0:3333 0:3333 0:3333 �:

ð62Þ

The operations are illustrated in figures 10 and 11 and
invariance of the projected distribution is checked as
follows:

}12ð1Þ þ }12ð2Þ þ }12ð3Þ ¼ 0:3017 ¼ }12
�!
ð1Þ ð63aÞ

}12ð4Þ þ }12ð5Þ þ }12ð6Þ ¼ 0:6983 ¼ }12
�!
ð2Þ ð63bÞ

}21ð2Þ þ }21ð5Þ ¼ 0:333 ¼ }21
�!
ð2Þ ð63cÞ

}21ð3Þ þ }21ð6Þ ¼ 0:333 ¼ }21
�!
ð3Þ: ð63dÞ

6. An engineering application of pattern recognition

Projective composition is applied to a symbolic pattern
identification problem. Continuous-valued data from a
laser ranging array in a sensor fusion test bed are fed
to a symbolic model reconstruction algorithm (CSSR)

q1

q2 q3
qA

qA

qB

1/0.2

1/0.3

1/0.4

.31

0/0.6

0/.80/.7

1/0.2803 0/0.6891

1⊗P2→

Figure 10. P1
q1 projectively composed with P2

qA.
Pi

 ⊗Gi′

⊗Gi′

Pi ⊗ Gi′ 

Pi ⊗ Gi′ ℘→

→
G

i′
[ [

•

G
i′

[ [

•

G
i′

[ [

•

Figure 9. Commutative diagram relating probabilistic

composition, projective composition and the original projected

distribution.

0 0

qA qB q2 q3

q1

1

1/0.9 0/0.3
1/.875 1/.875

0/.125

.125

1/.875
0/0.1

0.7

q1
⊗P1→

Figure 11. P2
qA projectively composed with P1

q1.
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(Shalizi and Shalizi 2004) to yield probabilistic finite

state models over a four-letter alphabet. A maximum

entropy partitioning scheme (Rajagopalan and Ray

2006) is employed to create the symbolic alphabet on

the continuous time series. Figure 12 depicts the results

from four different experimental runs. Two of those

runs in the top two rows of figure 12 correspond to a

human subject moving in the sensor field; the other two

runs in the bottom two rows correspond to a robot

representing an unmanned ground vehicle (UGV).

The symbolic reconstruction algorithm yields PFSA

having disparate number of states in each of the above

four cases (i.e., two each for the human subject and the

robot), with their graph structures being significantly

different. The resulting patterns (i.e., state probability

vectors) for these PFSA models in each of the four cases

are shown on the left side of figure 12. The models are

then projectively composed with a 64 state D-Markov

machine (Ray 2004) having alphabet size¼ 4 and

depth¼ 3. The resulting pattern vectors are shown on

the right hand column of figure 12. The four rows in

figure 12 demonstrate the applicability of projective

composition to statistical pattern classification; the state

probability vectors of projected models unambiguously

identify the respective patterns of a human subject

and an UGV.

7. Summary, conclusions and future work

This paper presents a rigorous measure-theoretic
approach to probabilistic finite state machines. Key
concepts from classical language theory such as the
Nerode equivalence relation is generalized to the
probabilistic paradigm and the existence and uniqueness
of minimal representations for PFSA is established. Two
binary operations, namely, probabilistic synchronous
composition and projective composition of PFSA are
introduced and their properties are investigated.
Numerical examples have been provided for clarity of
exposition. The applicability of the defined binary
operators has been demonstrated on experimental data
from a laboratory test bed in a pattern identification and
classification problem. This paper lays the framework
for three major directions for future research and the
associated applications.

. Probabilistic non-regular languages: Since projective
composition can be used to obtain smaller order
models with quantifiable error, the possibility of
projectively composing infinite state probabilistic
models with finite state machines must be investi-
gated. The extension of the theory developed in this
paper to non-regular probabilistic languages would
prove invaluable in handling strictly non-Markovian

0 10 20 30 40 50 60 70
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0.4

0 10 20 30 40 50 60 70
0

0.2

0.4

0 10 20 30 40 50 60 70
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0.2
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0 10 20 30 40 50 60 70 80
0

0.2
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0 10 20 30 40 50 60 70
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1
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0

0.5

1

0 10 20 30 40 50 60 70
0

0.5

1

0 5 10 15 20 25 30
0

0.2

0.4
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Figure 12. Experimental validation of projective composition in pattern recognition: (a) and (b) correspond to ranging data for a

human subject in sensor field; (c) and (d) correspond to an UGV.
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models in the symbolic paradigm, especially physical

processes that fail to have the semi-Martingle prop-

erty, e.g., fractional Brownian motion (Decreusefond

and Ustunel 1999). Future work will investigate

language-theoretic non-regularity as the symbolic

analogue to chaotic behavior in the continuous

domain.
. Optimal control: The reported measure-theoretic

approach to optimal supervisor design in PFSA

models will be extended in the light of the develop-

ments reported in this paper to situations where the

control specification is given as weights on the states

of DFSA models disparate from the plant under

consideration. Such a generalization would allow the

fusion of Ramadge and Wonham’s constraint based

supervision approach (Ramadge and Wonham 1987)

with the measure-theoretic approach reported in

Chattopadhyay (2006) and Chattopadhyay and Ray

(2007). This new control synthesis tool would prove

invaluable in the design of event driven controllers in

probabilistic robotics.
. Pattern identification: Preliminary application in

pattern classification has already been demonstrated

in x6. Future research will formalize the approach and

investigate methodologies for optimally choosing the

plant model on which to project the constructed PFSA

to yield maximum algorithmic performance. Future

investigations will explore applicability of the struc-

tural transformations developed in this paper for the

fusion, refinement and computation of bounded order

symbolic models of observed system behavior in

complex dynamical systems.
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