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Abstract: This paper introduces a dynamic data-driven method for signature detection in
mobile robots. The core concept of the paper is built upon the principles of symbolic dynamic
filtering (SDF) that can be used to extract relevant information in complex dynamical systems.
The objective here is to identify the robot behaviour in real time as accurately as possible. The
proposed method is validated by experimentation on a networked robotics test bed to detect
and identify the type and motion profile of the robots under consideration.
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1 INTRODUCTION

Automated behaviour recognition of robots is critical

for multi-agent coordination and has become

increasingly important with technological advance-

ments in information processing and sensor net-

working. In such missions, a robotic platform may

be required to make real-time decisions based on

the collective behaviour of other robots on a

distributed network.

This paper defines the behaviour of a mobile robot

system as statistical patterns of its evolutionary

dynamics. Temporal changes in these statistical

patterns occur over a slow scale with respect to the

fast scale of robot dynamics. The concept of two

time scales in the analysis of dynamical systems is

briefly discussed below in the context of statistical

pattern analysis in mobile robotic systems.

Definition 1. The fast scale is defined to be the

time scale over which the statistical properties of

robot behaviour are assumed to remain invariant,

i.e. the robot has statistically stationary dynamics.

Definition 2. The slow scale is defined to be the

time scale over which the robotic system may exhibit

non-stationary dynamics.

In view of Definition 1, the variations in the

internal dynamics of the robot are assumed to be

negligible on the fast scale. Since stationarity is

assumed to be preserved on the fast scale, it is

suitable for acquisition of sensor time series data. In

view of Definition 2, an observable non-stationary

behaviour is associated with the gradual evolution of

anomalies (i.e. deviations from the nominal beha-

viour) in the robotic system. In general, a long time

span in the fast scale is a tiny (i.e. several orders of

magnitude smaller) interval in the slow scale. A

pictorial view of the two-time-scales concept is

presented in Fig. 1.

It is necessary to rely on sensor time series data

because accurate and computationally tractable

modelling of robot dynamics in changing environ-

ments is often infeasible solely based on funda-

mental principles of physics. The aim of this paper is

to identify robot behaviour (i.e. relevant statistical

patterns) in real time. The pattern identification

algorithms are validated on an experimental facility

equipped with a distributed array of piezoelectric

pressure sensors that monitor the environment of
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robot movements. The problem is to capture the

statistical patterns that represent the changing

behaviour of robot motion in the slow scale based

on time series data generated in the fast scale.

The technical approach presented in this paper,

called symbolic dynamic filtering (SDF) [1], is built

upon the concepts of symbolic dynamics [2], finite

state automata [3], and pattern recognition [4].

Partitioning of the space of robot dynamics yields

an alphabet to obtain symbol sequences from time

series data. Then, the tools of computational me-

chanics [1, 5] are used to identify statistical patterns

of these symbol sequences through construction of a

probabilistic finite state machine (PFSM) for each

symbol sequence. Transition probability matrices of

the PFSM, obtained from the symbol sequences,

capture the evolving pattern of the robot behaviour

in the slow scale. The statistical patterns (i.e. state

probability histograms) that are derived from the

respective state transition matrices are compared

with an appropriate metric to discover how close a

particular pattern is to a set of reference patterns.

Causal-state splitting reconstruction (CSSR) [6] is

another symbolic pattern identification method. A

common feature of CSSR and SDF is that both of

them belong to the class of symbolization-based

hidden Markov models [7] where PFSM models are

constructed from symbol sequences in each case.

However, CSSR belongs to the class of sofic shift [2]

and has an a priori unknown structure; and yields

optimal pattern discovery in the sense of mutual

information [8]. In contrast, SDF belongs to the

more restricted class of shift of finite type [2] and

has an a priori known structure that can be freely

chosen. Although the generated patterns are sub-

optimal, SDF provides an algebraic structure of the

probabilistic state machine, where each state has

physical significance that is invariant under a wide

class of changes in statistical patterns of symbol

sequences. This feature of SDF allows unambiguous

comparison of different behaviours from the state

probability histograms of the underlying state ma-

chines. Furthermore, SDF is computationally faster

than CSSR because a significantly fewer number of

floating point arithmetic operations are required.

Conventional hidden Markov models (HMM) (i.e.

directly generated from time series without symbo-

lization) have been adopted in [9] in the context of

Robotic Soccer to identify the behaviour of a robot,

where the states and the structure of the HMM are

fixed a priori and the state transition and observa-

tion probabilities are identified using the Baum–

Welch algorithm [7]. The SDF approach, adopted in

this paper, is computationally more efficient in the

sense that, upon selection of the symbol alphabet, it

is not necessary to identify the states and the state

machine structure; the SDF algorithm identifies only

the state transition probabilities from the ensemble

of (fast scale) sensor time series data. Another

remarkable feature of SDF is robustness (i.e. in-

sensitivity to spurious noise and exogenous distur-

bances) due to the following reasons.

1. Inherent ‘coarse graining’ [10] of the time series

data in the process of space partitioning: This

phenomenon is a consequence of maximum

entropy partitioning that automatically makes

the partition segments coarser in regions of low

data density and finer in regions of high data

density [11, 12].

2. Small variance in estimated parameters of the

probability distribution [13]: This phenomenon is

a consequence of repeated recurrences of paths

in the graph of the finite state machine with a

relatively small number of states and a very large

number of sample points in the (fast scale) time

series data [14].

In contrast to SDF, the conventional HMM

approach can be sensitive to variations in initial

conditions especially if the resulting model is

initially off-phase with the current behaviour.

Another alternative approach is dynamic Bayesian

networks [15] that have been used to identify and

track targets primarily in military applications. Here,

the state machines are hand-coded and the prob-

abilities are estimated with expectation-maximiza-

tion algorithms that are computationally much

slower than SDF.

The major contribution of this paper is the

formulation of a dynamic data-driven method for

signature detection in mobile robots, and its experi-

mental validation on robotic agents in real time. The

novel part of the signature detection algorithm is

pattern generation and identification in mobile

robots by space partitioning of the time series data,

where the theory of partitioning has been success-

fully developed and widely reported in the Physics

and Applied Mathematics literature (e.g. see cita-

tions in [2, 10, 11, 16]).

The paper is organized in six sections. Section 2

lays down the basic framework of the analysis and

briefly reviews the theory of SDF. Section 3 for-

mulates the pattern recognition problem in mobile

robots and presents a solution to the problem under

consideration. This section also provides the neces-

sary algorithms that are implemented in this paper.
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Section 4 describes the experimental facility used in

this paper along with some details of both hardware

and software. Section 5 discusses the experimental

results. The paper is summarized and concluded in

section 6 along with recommendations for future

research.

2 SYMBOLIC DYNAMIC FILTERING (SDF)

This section reviews the theory and salient features

of SDF based on the authors’ previous work that has

been recently reported in the literature [1, 12, 17,

18]. The core concept of SDF is built upon the

fundamental principles of finite state automata,

pattern recognition, and information theory, and

relies on the following two basic assumptions.

1. The system behaviour is quasi-stationary at the

fast time scale of process dynamics.

2. Observable non-stationary behaviour of the dy-

namical system can be associated with para-

metric or non-parametric changes evolving at a

slow time scale.

Along this line, behaviour identification in robotic

platforms is formulated as a two-time-scale pro-

blem. The robot motion process is assumed to have

quasi-stationary dynamics on the fast scale and any

observable non-stationary behaviour is associated

with parametric or non-parametric changes occur-

ring on the slow scale. In other words, the variations

in the internal dynamics of the robotic system are

assumed to be negligible on the fast scale, while

pattern changes due to internal anomalies or exo-

genous environmental variations may become sig-

nificant on the slow scale.

2.1 Space partitioning for symbol generation

This subsection describes the concept of symbol

sequence generation from time series data, which is

an essential ingredient of SDF. A data sequence (e.g.

time series data) is converted to a symbol sequence

by partitioning a compact (i.e. closed and bounded)

region V of the (finite-dimensional) phase space,

over which the trajectory evolves, into finitely many

discrete blocks. As illustrated in Fig. 2, the blocks W1,

W2, ..., Wm represent a partitioning of V such that it is

an exhaustive and mutually exclusive set, that is

[m

j~1

Wj~V and Wj

\
Wk~% Vj=k ð1Þ

Each block Wj is labelled as the symbol sj[A, where

the symbol set A is called the alphabet, consisting

of m different symbols (i.e. m~ Aj j). As the dynami-

cal system evolves in time, it travels through or

touches various blocks in its phase space and the

corresponding symbol is assigned to it, thus con-

verting a data sequence to a symbol sequence

. . . si1
si2

. . . sik
. . .. As such, if a data point falls in a

particular partitioning region it is assigned the

corresponding symbol of that region and the data

sequence is transformed into a symbol sequence in

this manner.

Figure 2 also shows the construction of an HMM

[7] from the symbol sequence as a finite state

machine. The quasi-stationary histograms of the

state probability distribution represent patterns that

are indicatives of the nominal (or reference) and

anomalous behaviour of the dynamical system, as

explained later.

Several partitioning techniques have been re-

ported in the literature for symbol generation

[19, 20]. The method adopted in this paper is

maximum entropy partitioning [12, 18], where the

time series data are partitioned such that the regions

with more information are partitioned finer and

those with sparse information are partitioned coar-

ser. A uniform probability distribution of the states is

a consequence of the maximum entropy partition-

ing. Once the symbol sequence is generated, the next

step is to construct a finite state machine as

described in the following subsection.

2.2 D-Markov machine construction

This subsection describes the construction of an

HMM from a symbol sequence. A finite state

machine is constructed, where the states of the

machine are defined corresponding to a given

Fig. 2 Conceptual view of symbolic time series
analysis
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alphabet A and window length D. The alphabet size

Aj j is the total number of partitions whereas the

window length D is the length of consecutive symbol

words forming the states of the machine [1]. The

states of the machine are chosen as words of length

D from the symbol sequence, thereby making the

number n of states to be less than or equal to the

total permutations of the symbols within words of

length D, i.e. n¡ Aj jD. The choice of Aj j and D

depends on specific experiments, noise level, parti-

tioning, and also the available computation power. A

large alphabet may be noise sensitive whereas a

small alphabet could miss the details of signal

dynamics. Similarly, a high value of D is sensitive

to small signal distortions but would lead to a larger

number of states requiring more computation power

and longer data sets. For machine construction, the

window of length D on the symbol sequence

. . . si1
si2

. . . sik
. . . is shifted to the right by one

symbol, such that it retains the last (D 2 1) symbols

of the previous state and appends it with the new

symbol si‘ at the end. The symbolic permutation in

the current window gives rise to a new state. The

constructed machine is called D-Markov because of

its Markov properties [1].

Definition 3. A symbolic stationary process is

called D-Markov if the probability of the next symbol

depends only on the previous D symbols, that is

P si0
si{1

. . . :si{D
si{D{1

. . . :jð Þ~P si0
si{1

. . . :si{D
jð Þ

The finite state machine constructed above has

D-Markov properties because the probability of

occurrence of symbol si‘ on a particular state

depends only on the configuration of that state, i.e.

the previous D symbols. For example, if A~ 0, 1f g,
i.e. Aj j~2 and D 5 2, then the number of states is

n¡ Aj jD~4; and the possible states are 00,01,10, and

11, some of which may be forbidden.

Once the alphabet A and word length D are

assigned at the nominal condition at time epoch t0,

they are kept invariant for subsequent (slow time)

epochs {t1, t2, …., tk, ….}, i.e. the machine structure is

fixed although arc probabilities may vary. The states

of the machine are marked with the corresponding

symbolic word permutation and edges joining the

states indicate occurrence of an event si‘ .

Definition 4. The probability of transitions from

state qj to state qk belonging to the set Q of states

under a transition d : Q|A?Q is defined as

pjk~P s [A d qj, s
� �

?qk

��� �
,
X

k

pjk~1 ð2Þ

For a D-Markov machine under quasi-stationary

conditions, the irreducible* stochastic matrix

P ; [pij] describes all transition probabilities be-

tween states such that it has at most Aj jDz1 non-zero

entries. The left eigenvector p corresponding to the

unique unity eigenvalue of P is the state probability

vector under the (fast time scale) stationary condi-

tion of the dynamical system [1]. For computation of

state transition probabilities from a given symbol

sequence . . . :si1
si2

. . . sil
. . . : generated from the time

series data collected at the slow time epoch tk, a

D-block (window of length D) is moved by counting

occurrences of symbol blocks si1
� � � siD

siDz1
and

si1
� � � siD

which are respectively denoted by

N si1
� � � siD

siDz1

� �
and N si1

� � � siD
ð Þ. Note that if

N si1
� � � siD

ð Þ~0, then the state q:si1
� � � siD

[Q has

a zero probability of occurrence. For N si1
� � � siD

ð Þ=0,

the transition probabilities are then obtained by

these frequency counts as follows

pjk ¼
D

P qk qj

��� �
~

P si1
� � � siD

siDz1

� �

P si1
� � � siD

ð Þ

&
N si1

� � � siD
siDz1

� �

N si1
� � � siD

ð Þ

ð3Þ

where the corresponding states are denoted by

qj ¼
D

si1
si2
� � � siD

and qk ¼
D

si2
� � � siD

siDz1
.

The time series data under the quasi-stationary

condition at a (slow time) epoch t0 are set as the

benchmark to generate the (irreducible) state transi-

tion matrix P0 that, in turn, is used to obtain

the state probability vector p0. Note that p0 is a

uniform distribution because of maximum entropy

partition [12]. In general, the elements of the

vector pk are quasi-stationary state probabilities of

the D-Markov machine at a slow time epoch tk.

Referring to Fig. 2, p0 serves as the reference

statistical pattern and pk is the statistical pattern of

the slowly evolving dynamical system at the time

epoch tk by using the same partition. The pattern

changes are quantified as deviations from the

reference pattern (i.e. the probability distribution at

the reference condition) [22]. The resulting deviations

are characterized by a scalar-valued function, called

the deviation measure m. The deviation measures are

obtained as

*A square non-negative real matrix A is called irreducible [21] if,

for every i and j, there exists a positive-integer k such that the ijth

element of the kth power of A is strictly positive. The integer k

may vary with i and j.

(3)
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m~d p, p0
� �

ð4Þ

where d(N, N) is an appropriately defined distance

function [1].

2.3 Stopping rule for symbol sequence generation

This subsection presents a stopping rule that is

necessary to find a lower bound on the length of the

symbol sequence required for convergence of the

quasi-stationary stochastic matrix P. The stopping

rule [14] is based on the properties of irreducible

stochastic matrices [21]. The state transition matrix

is constructed at the rth iteration (i.e. from a symbol

sequence of length r) as P(r) that is an n6n

irreducible stochastic matrix under stationary con-

ditions. Similarly, the state probability vector

p(r) ; [p1(r)p2(r)...pn(r)] is obtained as

pi rð Þ~ riPn
j~1 rj

ð5Þ

where ri is the number of D-blocks representing the

ith state such that
Pn

j~1 rjzD{1~r is the total

length of the data sequence under symbolization.

The stopping rule makes use of the Perron–Frobe-

nius theorem [21] to establish a relation between the

vector p(r) and the matrix P(r). Since the matrix P(r)

is stochastic and irreducible, there exists a unique

eigenvalue l 5 1 and the corresponding left eigen-

vector p(r) (normalized to unity in the sense of

absolute sum). The left eigenvector p(r) represents

the state probability vector, provided that the matrix

parameters have converged after a sufficiently large

number of iterations. That is

p rz1ð Þ~p rð ÞP rð Þ[p rð Þ~p rð ÞP rð Þ as r?? ð6Þ

Following equation (5), the absolute error between

successive iterations is obtained such that

p rð Þ{p rz1ð Þð Þk k?~ p rð Þ I{P rð Þð Þk k?¡

1

r
ð7Þ

where INI‘ is the max norm of the finite-dimen-

sional vector N.
To calculate the stopping point rstop, a tolerance of

g(0 , g% 1) is specified for the relative error such

that

p rð Þ{p rz1ð Þð Þk k?
p rð Þð Þk k?

¡g Vr¢rstop ð8Þ

The objective is to obtain the least conservative

estimate for rstop such that the dominant elements of

the probability vector have smaller relative errors

than the remaining elements. Since the minimum

possible value of I(p(r))I‘ for all r is 1/n, where n is

the dimension of p(r), the stopping point is obtained

from equations (7) and (8) as

rstop:floor
n

g

� �
ð9Þ

where floor(N) is the integer part of the real number N.

2.4 Summary of SDF for pattern identification

The major steps in application of SDF for pattern

recognition can be summarized as follows.

1. Acquisition of time series data from appropriate

sensor(s) and/or analytically derived model vari-

ables at the reference condition.

2. Signal conditioning of time series data for elimi-

nation of bias and background noise as necessary.

3. Maximum entropy partitioning of data sets at the

reference condition and generation of the corre-

sponding symbol sequence.

4. Construction of a D-Markov machine and com-

putation of the state probability vector p0 at the

reference condition.

5. Acquisition of time series data at other slow time

epochs tk.

6. Generation of symbol sequences based on parti-

tioning constructed at the reference condition

and computing the state probability vector pk

based on time series data at the slow time epoch

tk.

7. Computation of deviation measures mk at each

slow time epoch tk.

8. Identification of the unknown pattern from the

deviation measure at each slow time epoch tk.

The major advantages of SDF for pattern identi-

fication are listed below.

1. Robustness to measurement noise and spurious

signals [12].

2. Adaptability to low-resolution sensing due to the

coarse graining in space partitions [1].

3. Capability to detect small deviations because of

sensitivity to signal distortion and real-time

execution on commercially available inexpensive

platforms.

Chin et al. [23], Rao et al. [24], and Gupta et al. [25]

have reported the superior capability of SDF for
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detection of small anomalies with respect to other

statistical pattern recognition techniques such as

artificial neural networks and principal component

analysis.

3 PATTERN IDENTIFICATION OF MOBILE
ROBOTS

In contrast to the authors’ earlier work on SDF-

based detection of slowly evolving anomalies [1, 4],

the objective of this paper is to identify the most

likely pattern among a finite set of predetermined

patterns from the time series data. Since behavioural

patterns of robots may vary due to, for example,

variations in payload, type of drive system, type of

motion, and faults in the robot, the patterns are

constructed as the state probability vectors of the

D-Markov machine, described in section 2.2. There-

fore, instead of fixing the partition for the set of time

series data under the nominal condition and

comparing every pattern with this nominal pattern,

a family of (maximum entropy) partitions [12] is

generated corresponding to the patterns that need to

be identified, i.e. a unique partition is obtained for

each pattern from the respective time series data.

The salient steps are delineated below.

1. Identification of a set of pattern classes spanning

the robot behaviour under different operational

conditions.

2. Generation of sets of time series data for all pattern

classes either from laboratory or on site experi-

ments, or from computer simulation. For compu-

ter simulation, an adequate dynamic model must

include integration of the following two subsystem

models: first a model of the robot kinematics and

dynamics that may require access to manufac-

turer’s database of the robot’s internal compo-

nents, and second a model of distributed dynamics

of the flexible pressure-sensitive floor that has its

own spatial–temporal memory. In addition, such a

simulation model must be periodically calibrated

with freshly conducted experimental data to

ensure its credibility. The experimental procedure

has been adopted in this paper in the absence of a

reliable simulation model.

3. Analysis of the data sets to generate a unique

partition of time series data sets belonging to each

pattern class.

Let ji(x) represent the ith pattern (e.g. the type and

motion of a given robot) based on symbolization of

the time series data set x. The set J is defined as a

(non-empty finite) collection of patterns ji, i 5 1, 2,

…, |J|, where |J| is the cardinality of J. A maximum

entropy partitioning is generated from the reference

time series data of each pattern. A pattern ji, i 5 1, 2,

…, |J| has the reference probability distribution pi0

that is uniform as a consequence of maximum

entropy partitioning.

The analysis and supporting experimentation in

this paper are formulated by constructing an identity

map between the set {j1, j2, ..., j|J|} of pattern classes

and the set {d1, d2, ..., d|J|} of decisions on partition

selection for symbolization of time series data. The

objective here is to formulate a non-negative real

measure of these partitioning decisions for a given

time series data.

Let x be a set of time series data that truly

belongs to the pattern class jj, j [ {1, ..., |J|}. Let

the partitioning decision of the data set x be

di, i [ {1, ..., |J|}, and the respective state probability

distributions pij(x), i 5 1, ..., |J|, j 5 1, ..., |J|, of the

D-Markov machines are derived from the same time

series data x (whose true pattern is jj). The following

definition formalizes the notion of deviation mea-

sure of a partitioning decision.

Definition 5. Given a time series data set x whose

true pattern is jj, deviation measure of the partition-

ing decision di is defined in terms of the respective

state probability distribution pij(x) and the reference

probability distribution pi0 as

mij xð Þ ¼D d pij xð Þ, pi0
� �

ð10Þ

where d(N, N) is an appropriate distance function (e.g.

the standard Euclidean norm of the difference

between the distributions, pij(x) and pi0).

Due to uncertainties prevalent in the time series

data x, the deviation measure mij(x) in equation (10)

would not be identically equal to zero, regardless of

whether or not the decision di is correct. Never-

theless, it is expected that mij(x) would be relatively

small if di is the correct decision, i.e. i 5 j. This fact

motivates the deviation measure to be treated as a

random variable.

Let Mij xð Þ denote the random variable associated

with the deviation measure when the decision di that

the data set x belongs to the pattern class ji while

x truly belongs to the jth pattern class jj. Then,

realization of the random variable Mij is the non-

negative real mij(x) in equation (10). Hence, for each

pattern class jj, there could be decisions di, i 5 1, 2,

..., |J| that give rise to realizations of the random

variables Mij, i~1, 2, � � � , Jj j as mij(x), i 5 1, 2, ...,

|J|; and there would be a total of |J|6|J| 5 |J|2
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random variables Mij. In the following, the prob-

ability distribution of Mij is denoted as pMij
.

The a priori conditional probability P[x|jj, di]

represents the probability of observation of the data

x conditioned on the true pattern jj and the decision

di of making the partition that represents the pattern

jj. That is

P x jj, di

��� �
~pMij

mij xð Þ
� �

ð11Þ

where Mij is the random variable representing a

decision di when the true pattern class is jj; and the

argument of the distribution pMij
is mij that is the

deviation measure (see equation (10)) of the state

probability vector obtained by the partition decision

di on the data set x that truly belongs to the pattern

class jj. The a posteriori probabilities are given as

P jj x, dij
� �

~
P x jj

�� , di

� �
P jj dij
� �

P x dij½ � ð12Þ

Equation (12) is expressed in a different form as

P jj x, dij
� �

~
P x jj, di

��� �
P jj

� �
P

k P x jk, dij½ �P jk½ �
ð13Þ

based on the following two facts.

1. The pattern classes jj form a mutually exclusive

and exhaustive set. It follows from the total

probability theorem that

P x dij½ �~
X

k

P x jk, dij½ �P jk dij½ �

2. The prior probability of a pattern jj is indepen-

dent of the process of making the decision di,

that is

P jj dij
� �

~P jj

� �

Substitution of equation (11) in to equation (13)

yields

P jj x, dij
� �

~
pMij

mij xð Þ
� �

P jj

� �
P

k pMik
mij xð Þ
� �

P jk½ �
ð14Þ

Let the risk of making a decision di when truly the

pattern class is jj be specified as lij. Then, the

total risk of making a decision di becomes [4]

R di xjð Þ~
XJj j

j~1

lijP jj x, dij
� �

ð15Þ

and the decision on pattern identification is made

by minimizing the risk in equation (15) as

d?~ argmin
i

R di xjð Þ ð16Þ

3.1 Behaviour identification

The long-term objective of the work reported in this

paper is to autonomously identify the behaviour

patterns (e.g. type, payload, and the kind of motion)

of mobile robots, in which respective partitions are

generated for a priori determined classes of beha-

vioural patterns.

In the following, it is shown how the pattern

vectors identify the robot (e.g. Segway RMP or

Pioneer 2AT) and its type of motion (e.g. random

motion, circular motion, or square motion). Future

work is recommended in section 6 for online

identification of robot behaviour under different

payloads and environmental conditions.

Let R 5 {r1, …, r|R|} be the set of robots and let

each robot execute one or more of the different

motion profiles in the set W5 {Q1, …, Q|W|}. Let the

number of profiles executed by robot ri be ni. Also,

let the indices of the profiles executed by robot ri

be yi
1, . . . , yi

ni

n o
. That is robot ri executes profiles

Qyi
1
, . . . , Qyi

ni

n o
. Thus, the total number of pattern

classes Jj j~
P

ij ni¡ Rj j Wj j. The pattern identifica-

tion procedure first generates a partitioning jj [J of

time series data belonging to each pattern class j.

Algorithm 1 describes the procedure to compute the

pattern vectors. Once the partition set J is con-

structed, sets of time series data are analysed to

estimate the probability densities pMij
.ð Þ by follow-

ing the procedure in lines 10 to 18 of Algorithm 1.

Given a set of time series data with an unidentified

pattern, |J| symbol sequences are generated corre-

sponding to the partitions ji [J by following the

procedure in section 2.1. Then, a D-Markov machine

of appropriate depth D is constructed based on the

procedure described in section 2.2. If the correct

decision is made (i.e. the correct partition is applied

to the data set), then the generated probability

vector p should be very close to the uniform

distribution, implying that the deviation measure

mij < 0.0 in equation (10). The a priori probabilities

pMij
mij

� �
are computed from the densities estimated

in Algorithm 1. The a posteriori probabilities and the

Bayes risk functions are then computed from

pMij
mij

� �
via equations (14) and (15) respectively,

as shown in lines 10 and 11 of Algorithm 3. The

decision dV is chosen so as to minimize the risk in
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line 12 of the Algorithm 3. Lines 13 and 14 simply

convert the identified pattern vector index dV into

corresponding indices of the robot i and the move-

ment profile yi
‘.

4 EXPERIMENTAL APPARATUS

The experimental apparatus consists of a wireless

networked system incorporating mobile robots,

robot simulators, and distributed sensors.

4.1 Distributed sensor network

A major ingredient of the experimental apparatus is

the pressure sensitive floor that consists of distri-

buted piezoelectric wires serving as arrays of

distributed pressure sensors. A coil of piezoelectric

wire is placed under a 0.6560.65 m square floor tile

as shown in Fig. 3(a) such that the sensor generates

an analogue voltage due to pressure applied on it.

This voltage is sensed by a BrainstemTM micro-

controller using one of its 10-bit A/D channels

thereby yielding sensor readings in the range of zero

to 1023. A total of 144 sensors are placed in a 9616

grid to cover the entire laboratory environment as

shown in Fig. 3(b). The sensors are grouped into four

quadrants, each being connected to a stack consist-

ing of eight networked Brainstem microcontrollers

for data acquisition. The microcontrollers are, in

turn, connected to two laptop computers running a

Player [26] server that collects the raw sensor data

and distributes to any client over the wireless

network for further processing.

The functional blocks of data collection software

are represented on the right-hand side of Fig. 4.

Software for data acquisition from the distributed

sensor network involves a specially written Player

driver for collecting raw sensor data from the A/D

channels of the microcontrollers. This software is

run on two dedicated Player servers running on

wireless laptops. Raw sensor data are then collected

by a Player client software for further processing

such as SDF. Using the SDF procedure, a D-Markov

machine of appropriate depth D is constructed and

the steady-state state probabilities, p, are calculated

to identify the closest pattern class.

4.2 Robot platforms

The robot hardware, consists of seven mobile robots,

of which three are Pioneer 2AT robots and four are

Segway RMP robots.Fig. 3 Sensor layout in the laboratory environment

Algorithm 1: Pattern Identification Forward Algorithm

input: time-series Data Sets
output: Sequence of Partition Vectors as matrix J and

probability densities pMij
.ð ÞVi, j~1, � � � , Jj j

1 begin
2 Let j 5 0
3 for i 5 1 to |R| do
4 for k 5 1 to ni do
5 Let robot ri [R execute motion Qyi

k
[W

6 Collect the time series data xj

7 Partition xj using Algorithm 2 to obtain pattern
vector jj

8 Add jj to the sequence J
9 increment j by one

10 for j 5 1 to |J| do
11 for , 5 1 to L do
12 Collect time series data x‘j
13 for i 5 1 to |J| do
14 partition x‘j using ji to obtain symbol sequence s

15 construct D-Markov machine G using s
16 compute state probability vector pij for G
17 compute the deviation measure m‘

ij~d pij , pi0
� �

18 From realizations m1
ij, � � � , mL

ij

n o
estimate the probability

density for pMij
.ð ÞVi, j~1, � � � , Jj j

19 end

Algorithm 2: Maximum Entropy Partitioning

input: time-series Data x, Number of Symbols Aj j
output: Partition Vector j

1 begin
2 sort x in ascending order
3 let K 5 length(x)
4 j(1) 5 x(1); minimum of x
5 for i 5 2 to Aj j do
6

j ið Þ~x floor
i{1ð Þ|K

Aj j

� �� �

7 j Aj jz1ð Þ~x Kð Þ; maximum of x
8 end
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Figure 5 shows a pair of Pioneer robots and a

Segway RMP that have the following features.

1. The Segway RMP is a two-wheeled robot (with

inverted pendulum dynamics) that has a zero

turn radius and has an approximate weight of

70 kg.

2. The Pioneer 2AT is a four-wheeled robot that is

equipped with a differential drive train system

and has an approximate weight of 35 kg.

Since the Pioneer is lighter than the Segway and

the Pioneer’s load on the floor is more evenly

distributed, their statistics are dissimilar. Further-

more, since kinematics and dynamics of the two

types of robot are different, the texture of the

respective pressure sensor signals is also different.

Each robot is equipped with a SICK LMS200 laser

range finder for obstacle avoidance and distance

measurement. The laser range finder provides depth

information for a 180u field of view with an angular

resolution of 0.5u and an accuracy of 1 cm (¡15 per

cent). In addition, the robots are equipped with

multiple sonar sensors and infrared units serving as

secondary range finders. SONY EVI-D30 pan-tilt

cameras in conjunction with Sensoray 311 PC104

frame grabbers are used for object recognition and

tracking. For the purpose of operation monitoring,

control, and communication between the mobile

robots and remote computers, a secure wireless

subnet of the Penn State backbone connection is

employed. In practice, a bandwidth of up to 2 Mbps

is achieved. For the Pioneer AT robots, an Advantech

on-board computer, powered by a Transmeta Cru-

soe Processor TM5400 500 MHz CPU, performs all

real-time computations. It has a 320 MB memory

including a 256 MB PC133 RAM and a 64MB flash

memory, and a 20 GB hard disk. The Segway RMPs

are equipped with commercial laptops (Pentium M

processor with a 2 GB RAM, 40 GB HDD). Each

device is powered by multiple commercially avail-

able 12 V lead acid batteries; DC/DC converters are

used to provide appropriate power to various

devices. The actuators available on the robots are

drive train motors, gripper, and camera.

The robots are operated with the functional blocks

on the left-hand side of Fig. 4 while the data

collection from the distributed sensors is run using

the functional blocks on the right-hand side. The

individual functional blocks can run on multiple

machines networked either through Ethernet or

WiFi. The communication between various func-

tional blocks is through message passing via the

TCP/IP protocol. The Player [26] is the lowest level

functional block that has access to the robots’

physical hardware, namely the sensors (e.g. laser,

sonar, and camera) and actuators. The Player is

usually run on the onboard computer of the robot to

reduce the network-induced time delay in sending

commands to the robot motion controller. The

ActionGenerator block in Fig. 4 is a client to the

Player server and requests access to the sensors/

actuators on the robot. The ActionGenerator consists

of a set of fundamental behaviours that the robot can

perform. For example, the Search behaviour looks

for a target, and the GoTo behaviour makes moves

from point to point in a predefined map that, in the

Fig. 4 Overview of the software architecture

Algorithm 3: Pattern Identification Inverse Algorithm

input: time-series Data x, Partition Matrix J
output: Identified Pattern j [J

1 begin
2 for i 5 1 to |J| do
3 partition x using ji to get symbol sequence s
4 construct D-Markov machine G using s
5 compute state probability vector pijV for G, where jV

corresponds to the unknown pattern jjV that is yet to be
identified

6 compute the deviation measure mij 5 d(p, p0)
7 for j 5 1 to |J| do
8 compute P x di, jj

��� �
~pMij

mij xð Þ
� �

(equation (11))

9 for j 5 1 to |J| do
10 compute P[jj|x, di] using equation (14)
11 compute the Bayes risk R(x|di) using equation (15)
12 compute dV 5 argminiR(x|di)
13 from sequence {n1, n2, …, n|R|} compute the cumulative

sequence 0, n1, n1zn2, . . . ,
Pi~ Rj j

i~1 ni

n o
to form the new

sequence {N0, N1, N2, …, N|R|}
14 find i such that Ni 2 1 , dV

( Ni and k 5 Ni 2 j
15 Conclude that the robot ri was executing Qyi

k
profile

16 end

Fig. 5 The robot hardware: Pioneer 2AT and Segway
RMP
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context of this paper, include motion behaviours

(e.g. random motion, circular motion, and square

motion).

The Navigator block implements a discrete event

obstacle avoidance algorithm [27] to maintain safe

operation of the robot and is capable of receiving

commands from the ActionGenerator to move.

However, the Navigator block overrides the com-

mand if it cannot safely navigate using the command

given by ActionGenerator.

5 EXPERIMENTAL RESULTS AND DISCUSSION

This section provides a detailed description of

the experimental procedure, an application of the

SDF method to time series data of robot signature,

and discussion of the experimental results. The

objective here is to identify the statistical patterns

of robot behaviour that may include both parametric

and non-parametric uncertainties including the

following.

1. Small variations in the robot mass that includes

unloaded base weights of the platform itself and

its payload.

2. Uncertainties in the friction coefficients for robot

traction.

3. Fluctuations in the robot motion due to small

delays in commands due to communication

delays, computational delays especially if the

processor is heavily loaded.

4. Sensor uncertainties due to random noise in the

A/D channels of the microprocessor.

In the presence of the above uncertainties, a

complete solution of the pattern identification

problem may not be possible in a deterministic

setting because the pattern measure would not be

identical for similar robots behaving similarly.

Therefore, the problem is posed in the statistical

setting, where a family of pattern measures is

generated from multiple experiments conducted

under identical operating conditions. The require-

ment is to generate a family of patterns for each class

of robot behaviour that needs to be recognized. Each

member of a family represents the pattern measure

of a single experiment of one robot executing a

particular motion profile.

Both the Segway RMP and Pioneer 2AT robots

are commanded to execute three different motion

trajectories, namely, random motion, circular

motion, and square motion, following the software

architecture described in section 4.2. Since the

spatial distribution of the pressure-sensitive coils

underneath the floor (see Fig. 3) is statistically

homogeneous, the decisions on the detection of

robot behaviour patterns are statistically independent

of the robot location (e.g. centre of the circle, centre

and orientation of the square, and mean of the

distribution for random motion). From this perspec-

tive, the following parameters are selected for the

above three types of motion:

(a) Diameter of the circular motion: 4 m;

(b) Edge length of the square motion: 3 m;

(c) Distribution of the random motion: Uniform in

the range of 1 to 7 m in the x-direction and 1 to

4 m in the y-direction.

For the two types of robot, a total of six different

behaviour patterns are defined. The data sets for

each of the six pattern classes are collected and

processed to create the respective partitions ji [J,

where |J| 5 6. To simplify the exposition of results,

the patterns are labelled as follows:

(a) Segway random ; 1, Segway circle ; 2, Segway

square ; 3;

(b) Pioneer random ; 4, Pioneer circle ; 5, Pioneer

square ; 6.

Both robots were made to execute each of the

three different types of trajectory on the pressure-

sensitive floor of the laboratory environment for

about an hour. The data from the 144 sensors in

the (9616) grid floor were collected at the sampling

rate of approximately 10 Hz. The 144 readings

were stacked row-wise to create a one-dimensional

array of length 144. This configuration facilitates

identification of the type of robot and its motion

profile but not its exact location. Thus, a total of

approximately 1440 points per second were collected

for an hour to create a sufficiently long one-

dimensional time series data set. This procedure

was repeated to collect six data sets for two different

robots executing each of the three different motion

behaviours. It has been assumed that, during the

execution of each motion, the statistical behaviour

of the robot is stationary and it does not switch

behaviours in between.

The voltage generated by the piezoelectric pres-

sure sensors, embedded under the floor, is converted

to a digital signal by using a 10-bit A/D converter

over the range of zero to 5 V to generate readings in

the range of zero to 1023. Since the robot move-

ments influence those sensors that surround its

location, only a few sensors generate significantly

higher readings than the remaining sensors. A

418 G Mallapragada, I Chattopadhyay, and A Ray

Proc. IMechE Vol. 222 Part I: J. Systems and Control Engineering JSCE583 F IMechE 2008



simple background subtraction was used to elim-

inate the readings from sensors away from the

robot’s location.

For all cases considered in this paper, the follow-

ing options have been used in the SDF procedure for

construction of D-Markov machines.

1. Partitioning method: Hilbert-transform-based

analytical signal space partitioning [18].

2. D-Markov machine parameters: Alphabet size

Aj j~8 and depth D 5 1.

3. Distance function for computation of deviation

measure: Standard Euclidean norm of the differ-

ence between the pair of patterns.

The above combination of the parameters Aj j and

D was adequate to successfully recognize all six

behavioural patterns with only eight states and was

computationally very fast in the sense that the code

execution time was orders of magnitude smaller

than the process response time. Further increase of

the alphabet size Aj j did not provide any noticeable

improvement in the results because a finer partition-

ing did not generate any significant new information

as discussed in detail by Rajagopalan and Ray [12].

Increasing the value of D beyond one was also found

to be ineffective, which increases the number of

states of the finite state machine, many of them

having near-zero or zero probabilities and requires a

larger data set for computational convergence of the

state probability vectors.

The results of partitioning the data sets using

Algorithm 1 are presented in Fig. 6. The abscissa

shows segment numbers of the six partitions and the

ordinate represents the respective segment bound-

aries in terms of (pressure) sensor readings as

outputs of 10-bit analog-to-digital converters. For a

clear exposition of differences in the partitions, the

two bottom plates in Fig. 6 present separate displays

for the partition segments of one to four and five to

eight, respectively, for different ranges of sensor

readings. It is seen in Fig. 6 that the segment

lengths are non-uniform due to maximum entropy

partitioning.

5.1 Generation of statistical patterns

A set of L 5 60 experiments was conducted to

generate an ensemble of realizations for each of

these random variables. To compute a realization

m‘
ij, where , [ {1…L}, the following procedure is

adopted.

1. Partition the lth data set for pattern j using

the reference partition i to generate a symbol

sequence.

2. Construct a D-Markov machine (of state cardin-

ality less than or equal to Aj jD) for each generated

symbol sequence and compute the state prob-

ability vector p.

3. Compute the realization m‘
ij.

Fig. 6 Partitions created by various patterns
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Thus, an ensemble consisting of L 5 60 realiza-

tions m1
ij, . . . , mL

ij

n o
was created for each random

variable Mij. A two-parameter lognormal distribu-

tion was hypothesized for each random variableMij.

The rationale for selecting a lognormal distribution

ofMij, as opposed to other distributions (e.g. normal

or Weibull), is stated below.

1. The fact that the lognormal distribution is one

directional on the position axis is consistent with

the deviation measure which cannot be negative

since it is a distance function.

2. For a sample data set using the correct partition,

the probability of deviation measure being ex-

tremely close to zero is less but higher for a

certain range and gradually decreases as the

deviation measure increases. This is easily

modelled by a lognormal distribution.

3. Since the random variable ln Mij

� �
is Gaussian,

many standard statistical tools are available for

statistical data analysis.

The probability density function of the random

variable Mij is defined as

pMij
xð Þ~ 1ffiffiffiffiffiffi

2p
p

sijx
exp

{ ln xð Þ{mij

	 
2

2s2
ij

0

B@

1

CAU xð Þ ð17Þ

where U .ð Þ is the standard Heaviside unit step

function; and m and s are respectively the mean

and standard deviation of the Gaussian distributed

random variable ln Mij

� �
. The two parameters (i.e.

mean mij and the variance s2
ij of Mij) for lognormal

distribution were identified from each of the 36 sets,

m1
ij, . . . , mL

ij

n o
. Each lognormal distribution satisfied

the 10 per cent significance level which suffices

for the conventional standard of 5 per cent sig-

nificance level. Figure 7 shows the histograms ofMij

for four typical cases (out of a total of 36) for

different values of i and j. The goodness of fit of

these histograms evinces that the lognormal dis-

tribution is an adequate approximation of the

statistics of Mij.

5.2 Identification of robot type and motion
profile

The problem at hand is to identify the type of robot

and its motion profile on the pressure-sensitive

floor in the laboratory environment. Based on

the acquired information of statistical patterns, a

solution to the above identification problem was

obtained through usage of Algorithm 3 from online

time series data from the unidentified robot (i.e.

either Segway or Pioneer in the present experimen-

tation). The time series data were partitioned using

each of the six predefined partitioning formats

shown in Fig. 6 to generate respective symbol

sequences. A D-Markov machine (with state cardin-

ality Aj jD~8 for Aj j~8 and D 5 1) was constructed

for each generated symbol sequence. The state

probability vectors were computed for each of the

constructed state machines; typical examples of

state probability vectors for different motion profiles

of Segway and Pioneer robots are shown in Fig. 8.

Following equation (10), the deviation measure

mij(x) was computed for each probability vector

pij(x), where i [ {1, ..., 6} for a given set of time series

data x and the unknown pattern jj is yet to be

identified.

The pattern of robot type and motion was

identified based on the probabilistic Bayesian

method in section 3. The following assumptions

were made in the absence of any specific informa-

tion on P[jj] in equation (14) and lij in equation (15).

Fig. 7 PDF plots of Mij and their lognormal fit

Fig. 8 State probability vectors for pattern identifica-
tion (a) Segway random; (b) Segway circle; (c)
Segway square; (d) Pioneer random; (e) Pioneer
circle; (f) Pioneer square
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1. Uniform probability of the prior probabilities of

occurrence of the pattern classes jj’s, that is

P jj

� �
~

1

Jj j Vj[ 1, � � � , Jj jf g

2. Uniform non-zero risk for all wrong decisions and

zero risk for correct decisions, i.e. lij 5 1 2 dij

where

dij~
1 if i~j

0 if i=j

�

is the Kronecker-delta function.

With the above choices of lij values and P[jj]

values, risk minimization in equation (16) is equiva-

lent to having the maximum likelihood estimate of

the pattern class as

argmax
i

P x di, jij½ �ð Þ~ argmax
i

pMii
mij

� �
xð Þ

� �
ð18Þ

The pertinent results for a given time series data x

are summarized in Tables 1, 2, 3, 4, and 5. Table 1

lists the values of the deviation measures mij for an

unidentified set of time series data x which belongs

to the class of Pioneer Square (i.e. j6). The matrix

elements in Table 2 list the values of pMij
mij

� �
for

i 5 1, 2, ..., 6 and j 5 1, 2, ..., 6. The values in Table 3

show the a posteriori probabilities given by equation

(14). Assuming the prior probabilities for all jj are

equal, equation (14) reduces to

P jj x, dij
� �

~
pMij

mij xð Þ
� �

P
k pMik

mij xð Þ
� � ð19Þ

Table 4 shows the risks lij 5 (1 2 dij) of making

decision di when the true hypothesis is jj. With this

choice of the risk parameters, the total risk of making

the decision di given by equation (15) becomes

R di xjð Þ~
X

j=i

P jj x, dij
� �

ð20Þ

Table 5 shows the computed values of the total risk

of making decision di. The decision dV as given in

Table 1 Deviation measures mij(x) (see equation (10))

Decision di mij(x)

Segway random 0.14831
Segway circular 0.12076
Segway square 0.10643
Pioneer random 0.44743
Pioneer circular 0.075726
Pioneer square 0.038984

Table 2 Probabilities pMij
mij xð Þ
� �

(see equation (17))

Decision di \True pattern jj Segway random Segway circular Segway square Pioneer random Pioneer circular Pioneer square

Segway random 0.0030 0.0001 0.0120 0.0000 0.2816 0.1223
Segway circular 0.0883 0.0000 0.0186 0.0000 0.2422 0.1909
Segway square 0.1724 0.0000 0.0049 0.0000 0.2829 0.2013
Pioneer random 0.5007 0.0080 0.5416 0.0479 0.4663 0.6150
Pioneer circular 0.0053 0.0000 0.1495 0.0000 0.1652 0.3338
Pioneer square 0.0000 0.0000 0.0008 0.0000 0.0165 0.3966

Table 3 A Posteriori Probabilities P[jj|x, di] (see equation (19))

Decision di \True pattern jj Segway random Segway circular Segway square Pioneer random Pioneer circular Pioneer square

Segway random 0.0071 0.0003 0.0287 0.0000 0.6720 0.2919
Segway circular 0.1635 0.0000 0.0344 0.0000 0.4485 0.3535
Segway square 0.2607 0.0000 0.0074 0.0000 0.4277 0.3043
Pioneer random 0.2297 0.0037 0.2485 0.0220 0.2140 0.2822
Pioneer circular 0.0081 0.0000 0.2286 0.0000 0.2527 0.5105
Pioneer square 0.0000 0.0000 0.0019 0.0000 0.0400 0.9581

Table 4 The risks lij of making decision di when the true pattern is jj

Decision di \True pattern jj Segway random Segway circular Segway square Pioneer random Pioneer circular Pioneer square

Segway random 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Segway circular 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
Segway square 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
Pioneer random 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
Pioneer circular 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000
Pioneer square 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
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equation (16), is the one that minimizes the total risk

R(di|x). The maximum likelihood estimate is simply

the maximum of the diagonal elements of the matrix

pMij
mij

� �h i
given in Table 2. In this example the

maximum corresponds to Pioneer Square, shown in

bold in Table 5, which confirms the decision dV

obtained by minimizing the total risk in equation (20).

Figure 9 shows the results of identification of

pattern types for 60 sets of time series data for each

pattern class. The numbers on the abscissa of Fig. 9

indicate the data corresponding to a particular

pattern class. For all six patterns, the algorithms

successfully identified the patterns for more than 80

per cent of the cases studied for all pattern classes.

From the statistical perspectives, it is expected that

the success rate would improve if the number of

samples in the goodness-of-fit analysis is increased

(see section 5.1).

The performance for correct pattern identification

was also tested both in the absence and presence of

faults. For healthy robots, robustness of performance

was tested by perturbing the parameters lij values

and P[jj] values by 10 per cent from their nominal

values; the algorithms successfully identified the

patterns for about 80 per cent of the cases studied

for all pattern classes.

Two cases were encountered for fault occurrences

during the course of experiments. In the first case, a

pin in the wheel of the Pioneer was broken which

made it difficult for the robot to turn. This event

significantly affected the robot’s motion character-

istics and the performance for correct pattern

identification dropped below 35 per cent. In the

second case of the Segway moving in a circle, a

malfunction in the robot control software made the

robot repeatedly run toward the walls of the

laboratory and the underlying obstacle avoidance

algorithm had to change the robot’s motion beha-

viour to avoid collisions. This phenomenon caused

the performance of pattern identification to drop

below 50 per cent.

6 SUMMARY, CONCLUSIONS, AND FUTURE
WORK

This paper presents an online dynamic data-driven

method for identification of behaviour patterns in

autonomous agents such as mobile robots. The

proposed method utilizes SDF [1] to model the

statistical behaviour patterns of mobile robots.

These identified models are then used to detect the

pattern class of robot behaviour (e.g. the type of

robot and the kind of robot motion) in real-time

based on the time series data collected from an array

of sensors. The proposed pattern identification

method has the following distinct features compared

to standard statistical pattern recognition [4].

1. Fully automated model identification in the

symbol space via coarse graining of the phase

space. This feature allows usage of relatively

Table 5 Total risk of making decision di (see equation
(20))

Decision di Total risk R(di|x)

Segway random 0.9929
Segway circular 1.0000
Segway square 0.9926
Pioneer random 0.9780
Pioneer circular 0.7473
Pioneer square 0.0419 (see equation (16))

Fig. 9 Performance of the robot behaviour identification algorithm for different patterns
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low-precision and inexpensive commercially

available sensors.

2. Robustness to parametric and non-parametric

uncertainties due to, for example, phase distor-

tion and imprecise initial conditions.

3. Insensitivity to environmental and spurious dis-

turbances due to the inherent noise suppression

capability of SDF [1, 12].

The pattern identification method has been tested to

closely identify the correct behaviour pattern among

six different pattern classes with two different kinds of

robot, each performing three types of movement in the

laboratory environment. However, further theoretical

and experimental research is needed before its

implementation beyond the laboratory environment.

Topics of future research include the following.

1. Comparison of SDF with other existing pattern

recognition tools for robot behaviour identification

under different operating (e.g. change of payload)

and environmental (e.g. change of terrain) condi-

tions: Performance evaluation of SDF has been

reported for other applications such as fatigue

damage detection [25] and non-linear active

electronic systems [24]. Similar investigation is

needed for robot behaviour identification.

2. Behaviour identification of multiple robots simul-

taneously operating in a dynamic environment:

This scenario poses a challenging problem

because the time series data are intermingled and

signal separation becomes very difficult, especially

in real time. A possible solution to circumvent this

problem is spatial localization of data by noting

the initial positions and keeping track of the robot

motion throughout the operation, thus generating

individual time series data for each robot.

3. Augmentation of data-driven analysis with model-

based information: There is a strong spatial

correlation among the time series data generated

from neighbouring slabs in the pressure-sensitive

floor due to inherent mechanical coupling that

exists for each sensor from its neighbours and

also due to electrical coupling of the sensors

having a common ground at the microcontroller

end. Due to the capacitive nature of piezoelectric

transducers, the sensor readings in response to a

step change in the load decay slowly, which

creates temporal correlations as well. Analysis in

the frequency domain may also be ineffective

because the generated data sets suffer from a very

wide frequency band with near-uniform power

throughout the band. Therefore, information on

the spatial–temporal correlations needs to be

captured for more accurate estimates of the

probability histogram estimates.
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