
International Journal of Control
Vol. 81, No. 10, October 2008, 1626–1644

Generalised projections in finite state automata and decidability of state determinacy

Ishanu Chattopadhyay and Asok Ray*

Pennsylvania State University, University Park, USA

(Received 16 October 2007; final version received 2 January 2008)

Loss of sensors and communication links may lead to incomplete observation at the supervisory level of discrete
event systems (DES). Under these circumstances, an event may conceivably be observable at one state and
unobservable at another state and the observability may become dependent on the history of event occurrences.
This paper presents a framework for analysis of generalised projection maps in DES, including the maps that
introduce possibly unbounded memory

Keywords: formal languages; partial observation; discrete event systems

1. Introduction

Incomplete observation in discrete event systems
(DES) may introduce (possibly unbounded) additional
memory in the observed plant model and thus
complicate the problem of supervisory decision and
control. Specifically, loss of sensors and communica-
tion links may lead to incomplete observation at the
supervisory level, where an event may conceivably be
observable at one state and unobservable at another
state and the observability may become dependent on
the history of event occurrences.

Natural projection maps have played a central role
in the study of decentralised control and incomplete
observation in DES (Lin and Wonham 1988a,b).
This paper considers a generalisation of natural
projections which we refer to as unobservability
maps. Specifically, we investigate situations where the
observability of a particular transition from a given
state depends on (possibly unbounded) event history.
Wong (1988) has shown the state size of a projected
plant to be a possibly exponential function of that of
the original system. As an extension of this result, this
paper shows that the observed plant language may
become non-regular for generalised projections, i.e.,
fail to have any finite state description. Two central
concepts, namely, projective Nerode equivalence and
p-minimal plant realisation, are introduced for an
unobservability map p. The notion of �-normal
representations is introduced for p-minimal realisa-
tions of unobservability. It is shown that such
representations allow finite language-theoretic
(but not necessarily finite state) descriptions for
complex unobservability situations.

Following a formalisation of the notion of general-
ised unobservability in DES, this paper investigates the
state determinacy problem (Chattopadhyay and Ray
2007b). Given an observed event trace and an
unobservability map, the problem is to compute the
set of states that the plant currently can possibly be in.
The above problem is conceptually related to diagno-
sability of DES introduced by Sampath et al. (1995).
Given an observed event trace, DES diagnosis is the
problem of determining if an unobservable event
has occurred. Assuming state-independent regular
unobservability, as defined in x 4, and two important
restrictions (i.e., liveness and absence of unobservable
cycles) on the underlying plant dynamics, Sampath
et al. have shown that, for diagnosable systems,
the complexity of diagnoser construction and its
subsequent execution is exponential in the number of
states and doubly exponential in the number of
‘‘failure types’’. Jiang et al. (2003 a,b) have extended
this notion to state-based k-diagnosability, where the
restriction on unobservable cycles is relaxed and
polynomial-time algorithms for diagnosability check-
ing is reported. State determinacy differs from diag-
nosis in the sense that, given the unobservability map,
a state estimate must be obtained immediately after
each observed transition, irrespective of system diag-
nosability. For a finite state automaton, this paper
shows that although the state determinacy problem can
be solved in polynomial time for regular unobserva-
bility maps, it is undecidable for more complex
situations.

The above analysis is important in cases where one
cannot ‘‘arrange’’ for some specific property (e.g., the

*Corresponding author. Email: axr2@psu.edu

ISSN 0020–7179 print/ISSN 1366–5820 online

� 2008 Taylor & Francis

DOI: 10.1080/00207170801888837

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

observer property) by suitably modifying the hierarchy
(Wong and Wonham 2004), or by an optimal
sensor selection (Jiang et al. 2003b). In such a
situation, one must work with the given unobserva-
bility map that represents operations of the physical
plant, which may turn out to have unbounded
memory. Thus even with a finite state underlying
plant, the observed behaviour may be non-regular.
Since any realistic and practically implementable
supervisor must take control decisions based on
observation of transpired events, supervisor design
must be based on an observed non-regular language.

The paper is organised in seven sections including
the present one. Section 2 provides preliminary
concepts and notations as the background material.
Section 3 introduces unobservability maps and their
minimal realisation to bring in the associated concept
of projective Nerode equivalence. Section 4 deals with
�-normal representations for p-minimal realisations of
unobservability. Section 5 introduces the State
Determinacy problem and derives formal conditions
that are necessary for the former to be decidable.
Section 6 presents a simple example and the paper is
summarised in Section 7 along with recommendations
for future work.

2. Preliminary concepts and notations

This section delineates pertinent notations and
preliminary concepts following the standard literature
on discrete event systems (Ramadge and Wonham
1987; Ray 2005; Chattopadhyay and Ray 2007a) and
formal language theory (Hopcroft et al. 2001).

2.1 Notation

Logical AND and OR operations are indicated by
^ and _, respectively; if G is a state transition system
with Q as the set of states, then G# and G" imply
finite and (countably) infinite cardinality of the state
set Q respectively; REG denotes the set of regular
languages; j is used interchangeably with the expres-
sion ‘‘such that’’; j!j denotes the (non-negative integer)
length of the event string !; and N is the set of natural
numbers. If N is an equivalence relation, then xN y
implies that x and y belong to the same equivalence
class of N , while x j N y implies that they belong to
distinct equivalence classes.

A trim (i.e., accessible and co-accessible) determi-
nistic finite-state automaton (DFSA) Gi¼hQ,�, �,
qi,Qmi represents the discrete-event dynamics of a
physical plant, where Q¼ {qk : k2IQ} is the set of
states and IQ� {1, 2, . . . , n} is the index set of states;
the automaton starts with the initial state qi; the

alphabet of events is �¼ {�k : k2I�}, having
�\IQ¼� and I�� {1, 2, . . . , ‘} is the index set of
events; � :Q��!Q is the (possibly partial) function
of state transitions; and Qm � fqm1

, qm2
, . . . , qml

g � Q is
the set of marked (i.e., accepting) states with qmk

¼ qj
for some j2IQ. Let �* be the Kleene closure of �, i.e.,
the set of all finite-length strings made of the events
belonging to � as well as the empty string 2 that is
viewed as the identity of the monoid �* under the
operation of string concatenation, i.e., �s¼ s¼ s�.
The extension �*:Q��*

!Q is defined recursively in
the usual sense (Ramadge and Wonham 1987;
Hopcroft et al. 2001). The prefix closure of a language
L is denoted by L.

2.2 Partial and total automata models

Partial DFSA refers to models Gi¼ (Q,�, �, qi,Qm) for
which the transition function � is partial as opposed to
complete models for which � is a total function. In the
paradigm of discrete event control, partial automata
are often used to model plant dynamics (Rmadge and
Wonham 1987). It is always possible to complete a
partial transition function by adding a non-marked
dump state qd and allocating the missing transitions to
qd. In doing so, however, the model no longer remains
trim and some key results in supervisory control theory
(Rmadge and Wonham 1987) require the aforemen-
tioned property. The technical problem in dealing with
partial models is whether the results of classical
automata theory (e.g. existence of minimal representa-
tions) (Hopcroft et al. 2001) carry over to this case. In
this regard, two possible approaches are:

1. completion of the automaton by introducing a
single dump state;

2. extension of the notion of acceptance of strings
by finite state automata, by defining a string to
be accepted if and only if the final state is
accepting and if the automaton does not block,
i.e., can process the entire string.

In sequel, the second approach is adopted to
preserve the trim property of the given partial DFSA
model.

2.3 Accepted language and generated language

Definition 1: The (regular) language accepted by a
DFSA Gi¼ (Q,�, �, qi,Qm) is defined to be Lm(Gi)¼
s2�*

j�*(qi, s)2Qm}. Lm(Gi) is also referred to as the
marked language.

Definition 2: The (regular) language generated by a
DFSA Gi¼ (Q,�, �, qi,Qm) is defined to be the set of
strings {s2�*

j�*(qi, s)2Q}.

International Journal of Control 1627

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

It follows that, for a trim DFSA, the generated

language is the prefix closure of the marked (accepted)

language. In the sequel, only trim models are

considered and hence the generated plant language of

a DFSA model Gi¼ (Q,�, �, qi,Qm) is denoted as

LmðGiÞ. Note that if the transition function � is total,

then LmðGiÞ ¼ � �. Also, if all states are marked, i.e.,

if Q¼Qm then LmðGiÞ ¼ LmðGiÞ.

Definition 3: The language Lðqi, qjÞ � LmðGiÞ is

defined as : L(qi, qj)¼ {s2�*
j �*(qi, s)¼ qj}.

3. Minimal realisation of unobservability maps

In Ramadge and Wonham’s original treatment of

unobservability (Rmadge and Wonham 1987), the

symbol alphabet � is partitioned as �o[�uo where

events in �o are observable from all states at which

they are defined while the events in �uo are always

unobservable. This is equivalent to considering a

natural projection of a given DES (Wong 1998).

Definition 4: Given a DFSA Gi with the (regular)

marked language Lm(Gi) a generalised projection

pi : LmðGiÞ �!�� is a mapping that satisfies the

following conditions:

1. pi(�)¼ �;
2. pi(�)2 {�, �} 8� 2�;
3. pi(h�)2 { pi(h)�, pi(h)} 8� 2�, h2�*.

In the sequel, such maps are referred to as unobser-

vability maps. If the initial state is understood in the

context, the subscript i in pi may be dropped.
Definition 4 does not imply that p (h1 h2)¼

p (h1) p (h2), i.e., p is not restricted to be a morphism

as in the case of natural projections (Wong 1998; Lin

and Wonham 1988a,b). Unobservability maps, in fact,

belong to a restricted subclass of general causal

reporter maps (Wong 1998). In contrast to a causal

reporter map that takes a string over a given

alphabet � to another string over a possibly distinct

alphabet T, both the image and pre-image are

strings over the same alphabet for unobservability

maps. It follows that unobservability maps are prefix-

preserving (Wong 1998), i.e., if s is a prefix of s0,

then p (s) is a prefix of p (s0) for an unobservability

map p.

Definition 5: For a DFSA Gi with generated

language LmðGiÞ and a given unobservability map pi,

the observed language Op is defined as

f! 2 � � such that 9 s 2 LmðGiÞ with piðsÞ ¼ !g:

Remark 1: Since unobservability maps are prefix-

preserving and generated languages are prefix closed,

the observed language Op is prefix closed.

The necessity of considering unobservability maps,

which are not morphisms, is illustrated in Figure 1
and 2. The unobservability map in Figure 1 is

completely described by marking all transitions
labelled by � in the automaton as unobservable.

The unobservability map in this case is a morphism
and is an example of state-independent unobservability

or a natural projection according to Wonham (2001).
In Figure 2, the observability of an event is dependent

on the state from which it is generated. Although a
partitioning of the event alphabet into observable and

unobservable parts is not feasible in this case, a finite

description of the unobservability map is still possible
as shown in Figure 2. This unobservability map is

definitely not a morphism, but a simple 2-colouring
or marking of edges of the graph to represent the

finite-state automaton is sufficient to completely
describe the unobservability. Such a description is

called a marked realisation of the unobservability map
in the sequel. The map pi can be completely specified

by enumerating the image of each string in LmðGiÞ,
which is a prefix-closed language. However, this

approach may not to able to provide ample insight
into the structure of the unobservability map.

Furthermore, if the language LmðGiÞ is infinite, such
an approach may not work. In this context, the binary

operation of prefix subtraction is introduced, which is
required to define induced unobservability maps.

Definition 6: Let s1, s22�*and let � be the longest

common prefix of the event strings s1 and s2, i.e.,
s1¼ �!1 and s2¼ �!2 with !1,!22�* such that !1 and

Figure 2. State dependent unobservability: observable
transitions in solid lines.

Figure 1. State independent unobservability: observable
transitions in solid lines.

1628 I. Chattopadhyay and A. Ray

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

!2 has no common prefix. Then, prefix subtraction

‘:�*
��*

�!�* is defined as s1‘ s2¼!1.

Definition 7: Let pi : LmðGiÞ �!�� be an unobserva-

bility map for a DFSA Gi. Then, 8qj2Q, an induced

unobservability map pindi : Lðqi, qjÞ � LmðGjÞ �!� � is

defined as pindi ðs,!Þ ¼ qiðs!Þ ‘ piðsÞ. Note: Let

Gj¼ (Q,�, �, qj,Qm) be the plant model with initial

state set to qj. We adopt the following notational

simplification. Since for all ! 2 LmðGiÞ, we have

pið!Þ ¼ pindi ð�,!Þ, p
ind
i ðs,!Þ is denoted as psi ð!Þin the

sequel.

Unobservability maps introduced in this paper

model the unobservability in the plant dynamics by

erasing unobservable transitions from the generated

string. The notion is formalised as follows.

Definition 8: (unobservable and observable transi-

tions): Given a DFSA plant Gi with generated

language LmðGiÞ and an unobservability map pi,

a transition � 2� with a generated event history

h 2 LmðGiÞ is said to be unobservable if q
h
i ð�Þ ¼ �.

Likewise, the event � 2� is said to be observable if

q
h
i ð�Þ ¼ �. We use the following terminology: a string

s 2 LmðGiÞ is called unobservable if at least one of the

events in s is unobservable. Similarly, a string s2�* is

called completely unobservable if each of the events in

s is unobservable.

Definition 9: (state-dependent and state-

independent unobservability): A state-independent

unobservability map pi for a DFSA Gi (see Figure 1),

is characterised as

8s; t; s!, t! 2 LmðGiÞðp
s
i ð!Þ ¼ ptið!ÞÞ: ð1Þ

That is, if an event � 2� is unobservable from some

state qk2Q, it is unobservable from all states at which

it is defined.
A state-dependent unobservability map pi for a

DFSA Gi (see Figure 2), is characterised by the

following conditions:

Gi is in its unique minimal realisation ð2aÞ

8qj 2 Qð8s, t 2 Lðqi, qjÞ, 8! 2 LmðGjÞ, ðp
s
i ð!Þ ¼ ptið!ÞÞÞ

ð2bÞ

9qj, qk 2 Qð 9s 2 Lðqi, qjÞ 9t 2 Lðqi, qkÞ 9! 2 � � such

that ðs! 2 LmðGiÞ
^

t! 2 LmðGiÞ
^

psi ð!Þ 6¼ ptið!ÞÞÞ:

ð2cÞ

Thus, under state-dependent unobservability, an event

� 2� may be observable at one state qj2Q and

unobservable at some other state qk2Q, but the

observability of � is not dependent on how those

states are reached.

Given an unobservability map p, the notion of a

marked realisation of a DFSA is introduced next. An

arbitrary regular language has many automaton

representations and a unique minimal representation;

a non-minimal representation might be necessary for

the following reason : if an event �j from a state qk is

unobservable in the ‘‘marked realisation’’ for one

possible path reaching state qk, then it is unobservable

for all paths that reach the same state qk .
The term ‘‘marked’’ in ‘‘marked realisation’’

denotes that transitions can be unambiguously denoted

as either observable or unobservable. The formalisa-

tion of this concept requires the notion of a (possibly

infinite state) deterministic transitioxsn system

(Leeuwen 1990).

Definition 10: A deterministic labelled transition

system T is a tuple ð ~Q, ~�, ~�, ~qiÞ such that

1. ~Q is the (possibly infinite) set of states,
2. ~� is the alphabet,
3. ~qiis the initial state,
4. ~� � ~Q� ~�� ~Q is a ternary relation such that

8 ~qj 2 ~Q 8� 2 ~� ðð9 ~qk 2 ~Q such that ð ~qj, �, ~qkÞ 2 ~�Þ

) 8 ~qs 2 ~Q n f ~qkg ð ~qj, �, ~qsÞ 62 ~�Þ:

Property 3 ensures that T is deterministic.

Definition 11 (marked realisation): Let pi be an

unobservability map for a DFSA Gi¼ (Q,�, �, qi,Qm).

A marked realisation hGi, pii is a deterministic labelled

transition system I ¼ ð ~Q,�� f0; 1g, ~�, ~qiÞ such that

1: there exists a surjective function

MERGE : ~Q�!Q with MERGEð ~qiÞ ¼ qi ð3aÞ

2: ð8 ~qj, ~qk 2 ~Q, 8� 2 �; ð ~qj, ð�, 0Þ, ~qkÞ 2 ~�Þ

) ð8 ~qr 2 ~Q, ð ~qj, ð�, 1Þ, ~qrÞ 62 ~�Þ ð3bÞ

3: ð8 ~qj, ~qk 2 ~Q, 8� 2 �; ð ~qj, ð�, 1Þ, ~qkÞ 2 ~�Þ

) ð8 ~qr 2 ~Q, ð ~qj, ð�, 0Þ, ~qrÞ 62 ~�Þ ð3cÞ

4: 8 ~qj, ~qk 2 ~Q, � 2 �;we have

ð ~qj, ð�, 0Þ, ~qkÞ 2 ~�

, 9h 2 LmðGiÞ

�
q
h
i ð�Þ ¼ �

� �^
ðMERGEð ~qjÞ

¼ �ðqi, hÞÞ
^

MERGEð ~qkÞ ¼ �ð�ðqi, hÞ, �Þð Þ

�

International Journal of Control 1629

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

ð ~qj, ð�, 1Þ, ~qkÞ 2 ~�

, 9h 2 LmðGiÞÞ

�
q
h
i ð�Þ ¼ �

� �^
ðMERGEð ~qjÞ

¼ �ðqi, hÞÞ
^

MERGEð ~qkÞ ¼ �ð�ðqi, hÞ, �Þð 5Þ

�
:

ð3dÞ

The function MERGE defines how the states of
the transition system may be merged to yield the
underlying plant states. Hence we refer to it as the
merging map. Note that Property 4 in Definition 11
has the following implication: While it is possible that
q
s
i ð�Þ ¼ � and q

t
ið�Þ ¼ � with �(qi, s)¼ �(qi, t)¼ qj in the

underlying plant Gi, the state qj must be split into two

or more states in a corresponding marked realisation
to ensure that the strings s and t terminate on different
states in hGi, pii. We formalise this observation in the
following lemma:

Lemma 1: For a given unobservability map pi,
a DFSA Gi¼ (Q,�, �, qi,Qm) and a marked realisation
hGi, pii with the merging map MERGE, we have

9s, t 2 LmðGiÞ

�
9� 2 �, q

s
i ð�Þ

¼ �
^

q
t
ið�Þ ¼ �

^
ð�ðqi, sÞ ¼ �ðqi, tÞ ¼ qj 2 QÞ

�
¼)Card MERGE

�1ðfqjgÞ
� �

4 1: ð4Þ

Proof: Denote hGi, pii ¼ ð ~Q,�� f0; 1g, ~�, ~qiÞ and let
9s; t 2 LmðGiÞðq

s
i ð�Þ ¼ �

V
q
t
ið�Þ ¼ �

V
� �ðqi, sÞ ¼

� �ðqi, tÞ ¼ qj 2 QÞ. Since MERGE is onto, we have
8qm2Q, MERGE

� 1({qm}) 6¼�, i.e., CardðMERGE
�1�

ðfqjgÞÞ > 0. Assume if possible MERGE
�1ðfqjgÞ ¼ f ~qkg.

Since �(�*(qi, s), �) is defined, surjectivity of MERGE

implies that 9 ~qr 2 ~Q such that MERGEð ~qrÞ ¼
�ð�ðqi, sÞ, �Þ. It follows that ððqsi ð�Þ ¼ �Þ

V
ðMERGEð ~qkÞ

¼ qj ¼ �
�ðqi,sÞÞ

V
ðMERGEð ~qrÞ ¼ �ð�

�ðqi, sÞ, �ÞÞÞ is true,
implying that ð ~qk; ð�, 0Þ, ~qrÞ 2 ~� from Property 4 of
Definition 11. Similarly, starting with t, we can argue
that 9qI‘ 2

~Q such that ð ~qk; ð�, 1Þ; q
I
‘ Þ 2

~�. This contra-
dicts Property 2 of Definition 11 implying
CardðMERGE

�1ðfqjgÞÞ > 1. œ

Example 1 illustrates that there exist situations
where no finite marked realisation can be derived.

Definition 11 provides a more general approach to
partitioning the event alphabet � into unobservable
events �u and observable events �o. The observability
of an event from a particular state is made dependent
on how the state is reached. A particular event �,
defined at state qk, may be observable for some paths
reaching the state qk and unobservable for others.
Consequently, the state qk must be split in a marked

realisation and there will be some transitions labelled

(�, 0) and some as (�, 1) in hGi, pii* all of which

correspond to � (at state qk) in the underlying plant.

Example 1: It follows from the DFSA in

Figure 3 that LmðG1Þ � f0, 1g
�. The unobservability

map p is specified as follows:

If the number of 1s that occur before the first 0 is n,
then n consecutive 0s thereafter are not observed.

A marked realisation of the DFSA under such an

unobservability map is shown in Figure 4. It is shown

later in section 4 that such an unobservability

specification requires the minimal marked realisation

to be infinite and hence no finite marked realisation

exists. Note that, for each string in 1n0 � with n 2 N,

the image under the map p has to be specified

separately. Intuitively, this precludes the possibility of

existence of a finite marked realisation. Figure 4 shows

an example of infinite marked realisation. The

observed language Op is regular. In fact,

P : {0, 1}* {0, 1}* is surjective and non-injective.
A marked realisation is, in general, not unique.

For a given DFSA and a specified unobservability

Figure 4. Marked realisation with observable transitions in
solid lines.

Figure 3. Plant for Example 1.

1630 I. Chattopadhyay and A. Ray

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

map, there can be at most countable number of distinct

marked realisations. However, it will be shown that the

minimal marked realisation (in a sense to be clarified in

Proposition 2) is unique. The proof requires the notion

of projective Nerode equivalence.

Definition 12: For a given alphabet �, the Nerode

equivalence relation (N) on �* induced by a language

L is defined as 8x, y 2 � �ðxN y()ð8u 2 ���

xu 2 Lð Þ ()ðyu 2 LÞÞ
�
. The Nerode equivalence

relation is an example of a right invariant relation.

A language L is regular if and only if the corresponding

Nerode equivalence relation is of finite index.

Remark 2: The Nerode equivalence relation induced

on �* by a given DFSA Gi¼ (Q,�, �, qi,Qm) is the

Nerode equivalence on �* induced by the marked or

accepted language Lm (Gi) (see section 2C).

Definition 13: Projective Nerode equivalence (N p)

with respect to an unobservability map p on a

language L, is defined as 8x, y 2 � �ðxN py,

ðxN y
V
ð8u 2 ��ðxu 2 L) ðqxi ðuÞ ¼ q

y
i ðuÞÞÞÞÞÞ

Lemma 2: Given a DFSA Gi¼ (Q,�, �, qi,Qm) and

an unobservability map p,N p is a right invariant

equivalence relation on �*, i.e.,

8x; y; u 2 � �ðxN py¼) xuN pyuÞ.

Proof: Let x, y, u2�* such that xN py. Since,

Nerode equivalence N is right invariant, we have

ðxN pyÞ) ðxN yÞ) ðxuN yuÞ. Assume xu 2 LmðGiÞ.

Let v2�* such that xuv 2 LmðGiÞ. Now ðxN pyÞ implies

q
x
i ðuvÞ ¼ q

y
i ðuvÞ which in turn implies q

xu
i ðvÞ ¼ q

yu
i ðvÞ.

Hence we have ðxuN yu
V
ð8v 2 ��ðxuv 2 LmðGiÞ)

ðqxui ðvÞ ¼ q
yu
i ðvÞÞÞÞÞ) xuN pyu. If xu 62 LmðGiÞ, then

69v 2 � �jxuv 2 LmðGiÞ which implies ð8v 2 ��ðxuv 2

LmðGiÞ) ðq
xu
i ðvÞ ¼ q

yu
i ðvÞÞÞÞ is vacuously satisfied.

This completes the proof. œ

To show that minimal marked realisations are

unique we need the following definitions.

Definition 14: Let hGi, pii ¼ ð ~Q,�� f0; 1g, ~�, ~qiÞ.

Further, let qd be a symbol not in ~Q. Then
~� � : ~Q

S
fqdg � ð�� f0; 1gÞ

�
! ~Q

S
fqdg is defined

recursively as

8q 2 ~Q
[
fqdg, ~� �ðq, �Þ ¼ q ð5aÞ

8 ~qi, ~qk 2 ~Q, � 2 �� f0, 1g,

~� �ð ~qi, �Þ ¼ ~qk, iff 9 ~qk s:t: ð ~qi, �, ~qkÞ 2 ~�

~� �ð ~qi, �Þ ¼ qd, otherwise

(
ð5bÞ

8� 2 �� f0; 1g, ~� �ðqd, �Þ ¼ qd ð5cÞ

8 ~qi 2 ~Q, � 2 �� f0; 1g,! 2 ð�� f0, 1gÞ �;

~� �ð ~qi, �!Þ ¼ ~� �ð ~� �ð ~qi, �Þ,!Þ:
ð5dÞ

Note that Property 2 of Definition 11 (determinism) is
necessary for Equation 5b to make sense, i.e., to
guarantee that there is at most one ~qk that satisfies
ð ~qi, �, ~qkÞ 2 ~�.

Definition 15: There exists an one-to-one map
� : � � ! ð�� f0; 1gÞ � given by

�ð�Þ ¼ � ð6Þ

�ð!�Þ ¼
�ð!Þð�, 0Þ; if q!i ð�Þ is defined and q

!
i ð�Þ ¼ �

�ð!Þð�, 1Þ; otherwise:

(
ð7Þ

Lemma 3: Following Definition 11, let hGi, pii ¼
ð ~Q,�� f0; 1g, ~�, ~qiÞ be a marked realisation. Then

8x 2 � �ð ~� �ð ~qi,�ðxÞÞ ¼ ~qk 6¼ qd¼)x 2 Lðqi,MERGEð ~qkÞÞ,

ð8Þ

where qd and � are given in Definitions 14 and 15.

Proof: For jxj ¼ 0, the result follows from Definition
14 and 15 since ~� �ð ~qi,�ð�ÞÞ ¼ ~� �ð ~qi, �Þ ¼ ~qi and
�2L(qi, qi). Hence we consider jxj � 1. We use induc-
tion on the length of x. For jxj ¼ 1, we note that
~� �ð ~qi,�ðxÞÞ ¼ ~qk 6¼ qd implies that either
ð ~qi, ðx, 0Þ, ~qkÞ 2 ~� or ð ~qi, ðx, 1Þ, ~qkÞ 2 ~�. In either case,
Definition 11 implies �ðqi, xÞ ¼MERGEð ~qkÞ which in
turn implies x 2 Lðqi,MERGEð ~qkÞÞ.

Next we show that if Equation (8) is true for
jxj ¼ r2N, then it is also true for x� where � 2�. Let
jxj ¼ r2N and ~� �ð ~qi,�ðx�ÞÞ ¼ ~q‘ 6¼ qd. Then we have
~� �ð ~� �ð ~qi,�ðxÞÞ,�ð�ÞÞ ¼ ~q‘ 6¼ qd. Since ~� �ðqd, �Þ ¼ qd for
all � 2 ð�� f0; 1gÞ � and q‘ 6¼qd, it follows that

~� �ð ~qi,�ðxÞÞ ¼ ~qr 6¼ qd ð9Þ

) ~� �ð ~qr,�ð�ÞÞ ¼ ~q‘ ð10Þ

) � 2 LðMERGEð ~qrÞ,MERGEð ~q‘ÞÞ: ð11Þ

Equation (11) follows from the same argument as
given for the case jxj ¼ 1. Since jxj ¼ r, Equation (9)
implies

x 2 Lðqi,MERGEð ~qrÞÞ: ð12Þ

Finally, it follows from Equations (11) and (12) that
x� 2 Lðqi,MERGEð ~q‘ÞÞ. This completes the proof. œ

Lemma 4: Following Definition 11, let hGi, pii ¼
ð ~Q,�� f0; 1g, ~�, ~qiÞ be a marked realisation. Then

8x 2 � �ðx 2 LmðGiÞ() ~� �ð ~qi,�ðxÞÞ 6¼ qdÞ; ð13Þ

International Journal of Control 1631

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

where qd and � are given in Definitions 14 and 15.

Proof: For jxj ¼ 0, the result follows from noting
~� �ð ~qi,�ð�ÞÞ ¼ ~� �ð ~qi, �Þ ¼ ~qi 6¼ qd and � 2 LmðGiÞ. Hence,

we consider jx j � 1.

(Left to Right) Assume x 2 LmðGiÞ. We use induction

on the length of x. Let jxj ¼ 1. We have �(qi, x)¼ qk for

some qk2Q. Since MERGE is onto, Definition 11

implies either ð ~qi, ðx, 0Þ; q
I
‘ Þ 2

~� or ð ~qi, ðx, 1Þ; q
I
‘ Þ 2

~�
for some qI‘ 2

~Q with MERGEðqI‘ Þ ¼ qk. In either case,

we have ~� �ð ~qi,�ðxÞÞ ¼ qI‘ 6¼ qd.
Next we show that if Equation (13) is true from left

to right for jxj ¼ r2N, then it is also true for x� where

� 2�. To complete the induction, we choose an

arbitrary x 2 LmðGiÞ with jxj ¼ r2N such that
~� �ð ~qi,�ðxÞÞ ¼ ~qk 6¼ qd. Then for � 2� such that

x� 2 LmðGiÞ, we have

~� �ð ~qi,�ðx�ÞÞ ¼ ~� �ð ~� �ð ~qi,�ðxÞ, �Þ ¼ ~� �ð ~qk,�ð�ÞÞ 6¼ qd:

The last step is based on the same reasoning as for

jxj ¼ 1, except qi is replaced by qk.

(Right to Left) As before, we use induction on the

length of x. Let jxj ¼ 1 and ~� �ð ~qi,�ðxÞÞ ¼ ~qk 6¼ qd. It

follows from Definition 14 that ð ~qi,�ðxÞ, ~qkÞ 2 ~� which
in turn implies that either ð ~qi, ðx, 0Þ, ~qkÞ 2 ~� or

ð ~qi, ðx, 1Þ, ~qkÞ 2 ~� and hence �ðMERGEð ~qiÞ; xÞ ¼
MERGEð ~qkÞ, i.e., �ðqi, xÞ ¼MERGEð ~qkÞ implying

x 2 LmðGiÞ. Next we show that if Equation(13) is true

from right to left for jxj ¼ r2N, then it is also true for

x� where � 2�. Let ~� �ð ~qi,�ðx�ÞÞ ¼ ~qk 6¼ qd. Then we

have

~� �ð ~� �ð ~qi,�ðxÞÞ,�ð�ÞÞ ¼ ~qk 6¼ qd ð14Þ

) ~� �ð ~qi,�ðxÞÞ ¼ ~q‘ 6¼ qd for some ~q‘ 2 ~Q ð15Þ

) x 2 Lðqi,MERGEð ~q‘ÞÞ ðSee Lemma 3Þ: ð16Þ

Also, based on the reasoning for the case jxj ¼ 1, it

follows from Equations (14) and (15) that

~� �ð ~q‘,�ð�ÞÞ ¼ ~qk 6¼ qd) � 2 LmðG‘Þ

where MERGEð ~q‘Þ ¼ q‘: ð17Þ

Finally, it follows from Equations (16) and (17) that

x� 2 LmðGiÞ. This completes the proof. œ

Proposition 1: Every marked realisation hGi, pii ¼

ð ~Q,�� f0; 1g, ~�, ~qiÞ for a given DFSA Gi with

a specified unobservability map pi induces a right

invariant equivalence relation RhGi,pii
on �* defined by

8x, y 2 � �ðxRhGi, piiy, ð
~� �ð ~qi,�ðxÞÞ ¼ ~� �ð ~qi,�ðyÞÞÞÞ:

ð18Þ

Proof: It is readily seen that RhGi,pii
is an equivalence

relation on �*. For right invariance (Hopcroft et al.

2001), we need to show that

8! 2 � �; ~� �ð ~qi,�ðx!ÞÞ ¼ ~� �ð ~qi,�ðy!ÞÞ: ð19Þ

For j!j ¼ 0, the result is immediate. Hence we consider

j! j � 1. First we note that ~� �ð ~qi,�ðxÞÞ ¼ ~� �ð ~qi,�ðyÞÞ
implies (see Definition 14) that either ~� �ð ~qi,�ðxÞÞ ¼
~� �ð ~qi,�ðyÞÞ ¼ ~qk for some ~qk 2 ~Q or
~� �ð ~qi,�ðxÞÞ ¼ ~� �ð ~qi, �ðyÞÞ ¼ qd. If ~� �ð ~qi,�ðxÞÞ ¼
~� �ð ~qi,�ðyÞÞ ¼ qd, then Equation (5c) in Definition 14

implies that 8! 2 � �; ~� �ð ~qi,�ðxÞÞ ¼ qd ¼) ~� �ð ~qi,�ðx!ÞÞ
¼ qd ¼ ~� �ð ~qi,�ðy!ÞÞ. Hence we assume ~� �ð ~qi,�ðxÞÞ ¼
~� �ð ~qi,�ðyÞÞ ¼ ~qk for some ~qk 2 ~Q. We use induction on

the length of !. Let j!j ¼ 1. Definition 11

implies �ðqi, xÞ ¼MERGEð ~qkÞ ¼ �ðqi, yÞ and hence

ðx! 2 LmðGiÞ , y! 2 LmðGiÞÞ. If x!, y! 62 LmðGiÞ,

then from Lemma 4, we have

~� �ð ~qi,�ðx!ÞÞ ¼ ~� �ð ~qi,�ðy!ÞÞ ¼ qd: ð20Þ

Otherwise if x!, y! 2 LmðGiÞ we have

�ðqi, x!Þ ¼ �ðqi, y!Þ ¼ �ðMERGEð ~qkÞ,!Þ ¼ q‘ 2 Q:

ð21Þ

Now, we claim �(x!)¼�(x)� and �(y!)¼�(y� where

� 2 fð!, 0Þ; ð!, 1Þg. The argument is as follows: Assume

if possible �(x!)¼�(x)(!, 0) and �(y!)¼�(y)(!, 1).
Since both q

x
i ð!Þ and q

y
i ð!Þ are defined (due to

x!, y! 2 LmðGiÞ), we have from Definition 15 that

q
x
i ð!Þ ¼ � while q

y
i ð!Þ ¼ !. It follows that both

ð ~qk; ð!, 0Þ, ~q‘1Þ 2 ~� and ð ~qk; ð!, 1Þ, ~q‘2Þ 2 ~� for some
~q‘1, ~q‘2 2MERGE

�1ðfq‘gÞ which contradicts Properties

2 and 3 of Definition 11. Note ~q‘1, ~q‘2 are not

necessarily distinct. Therefore, we have �(x!)¼�(x)�
and �(y!)¼�(y)� implying that

~� �ð ~qi,�ðx!ÞÞ ¼ ~� �ð ~qk, �Þ ¼ ~� �ð ~qi,�ðy!ÞÞ: ð22Þ

Equations (20) and (22) imply that Equation (19)

is true for j!j ¼ 1. Next we show that if Equation (19) is

true for all !2�* with j!j ¼ r2N, then it is also

true for !� where � 2�. Let j!j ¼ r2N. Then

we have ~� �ð ~qi,�ðx!�ÞÞ ¼ ~� �ð ~� �ð ~qi,�ðx!ÞÞ,�ð�ÞÞ ¼
~� �ð ~� �ð ~qi,�ðy!ÞÞ,�ð�ÞÞ ¼ ~� �ð ~qi,�ðy!�ÞÞ. This completes

the proof. œ

Proposition 2: For a marked realisation hGi, pii of a

DFSA Gi with a specified unobservability map pi,

1. N p is a refinement of N , i.e., N p�N .
2. If hGi, pii is a marked realisation of the plant

automaton Gi with an unobservability map pi,

then RhGi, pii � N p.
3. N p induces a marked realisation hGi, pii* with

RhGi, pii? ¼ N p.

1632 I. Chattopadhyay and A. Ray

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

4. hGi, pii* is the unique (up to a renaming of

states) minimal marked realisation in the sense

RhGi, pii � RhGi, pii? .

Proof:

1. It follows from Definitions 12 and 13 thatN p is

a refinement of N .
2. We need to show

8x, y 2 � �ðxRhGi, piiy) xN pyÞ

i:e: 8x, y 2 � � ~� �ð ~qi,�ðxÞÞ ¼ ~� �ð ~qi,�ðyÞ
� �� �

) xN pyÞ

Let x, y2�* with ~� �ð ~qi,�ðxÞÞ ¼ ~� �ð ~qi,�ðyÞÞ. As before,

two cases are possible: either (1) ~� �ð ~qi,�ðxÞÞ ¼
~� �ð ~qi,�ðyÞÞ ¼ ~qk for some ~qk 2 ~Q or (2) ~� �ð ~qi,�ðxÞÞ ¼
~� �ð ~qi,�ðyÞÞ ¼ qd. Note that MERGEð ~qiÞ ¼ qi. For for

Case (1), Lemma 3 implies

�ðqi, xÞ ¼ �ðqi, yÞ ¼MERGEð ~qkÞ 2 Q¼)xN y: ð23Þ

Now, we claim

8u 2 � �ðxu 2 LmðGiÞ) q
x
i ðuÞ ¼ q

y
i ðuÞÞ: ð24Þ

For juj ¼ 0, the result is immediate from noting

q
x
i ð�Þ ¼ q

y
i ð�Þ ¼ �. Hence we consider juj � 1. We use

induction on the length of u. Let juj ¼ 1. Assume

xu 2 LmðGiÞ and, if possible, let q
x
i ðuÞ ¼ u

V
q
y
i ðuÞ ¼ �.

Since � �ðqi, xÞ ¼ �
�ðqi, yÞ ¼MERGEð ~qkÞ and

xu 2 LmðGiÞ, there exists q‘2Q such that

�ðMERGEð ~qkÞ; uÞ ¼ q‘. Hence, it follows that

ð ~qk, ðu, 0Þ, q
I
‘1Þ 2

~�
V
ð ~qk; ðu; 1Þ; q

I
‘2Þ 2

~� where

MERGEðqI‘2Þ ¼MERGEðqI‘1Þ ¼ q‘. This contradicts

Properties 2 and 3 in Definition 11. Next we show

that if Equation (24) is true for all u2�* such that

juj ¼ r2N, then it is also true for u� where � 2�. Let

juj ¼ r2N and xu� 2 LmðGiÞ. Then we have

q
x
i ðu�Þ ¼ q

x
i ðuÞq

xu
i ð�Þ ¼ q

y
i ðuÞq

xu
i ð�Þ: ð25Þ

Since RhGi,pii
is right invariant (see Proposition 1),

we have ~� �ð ~qi,�ðxuÞÞ ¼ ~� �ð ~qi,�ðyuÞÞ. Hence it follows

from the same argument as given for the case juj ¼ 1,

that qxui ð�Þ ¼ q
yu
i ð�Þ. Hence, we have

q
x
i ðu�Þ ¼ q

y
i ðuÞq

xu
i ð�Þ ¼ q

y
i ðuÞq

yu
i ð�Þ ¼ q

y
i ðu�Þ: ð26Þ

This completes the induction. Equations (23) and (26)

implies that xN py. For Case (2), Lemma 4 implies

x, y 62 LmðGiÞ. Prefix closure of LmðGiÞ implies that

8u 2 � �ðxu; yu 62 LmðGiÞÞ which in turn implies xN y.

Since the condition 8u 2 � �ðxu 2 LmðGiÞ) q
x
i ðuÞ ¼

q
y
i ðuÞÞ is vacuously satisfied (since there is no such u),

we have xN py. This completes the proof.
3. Let Ep ¼ fEk : k 2 J � Ng be the set of equiva-

lence classes of N p where J is an appropriate

index set. We construct a labelled deterministic

transition system hGi, pii? ¼ ðE
p,�� f0; 1g,

~�, ~qiÞ as follows:

. ~qi ¼ Ei where �2Ei2E
p.

. 9x 2 � �ððx 2 EkÞ
V
ðx� 2 EjÞ

V
ðqxi ð�Þ

¼ �ÞÞ) ðEk; ð�, 0Þ;EjÞ 2 ~�
. 9x 2 � �ððx 2 EkÞ

V
ðx� 2 EjÞ

V
ðqxi ð�Þ

¼ �ÞÞ) ðEk; ð�, 1Þ;EjÞ 2 ~�
. There are no other elements in ~�.

Next we show that hGi, pii* is a marked realisation in

the sense of Definition 11. Since N p�N , there exists a

surjective map � :Ep
!Q. This serves as the merging

map for hGi, pii*. Next we claim 9x 2 Ekððx� 2 EjÞ
V

ðqxi ð�Þ ¼ �ÞÞ) 8x 2 Ekððx� 2 EjÞ
V
ðqxi ð�Þ ¼ �ÞÞ. The

argument is as follows: Let x, y2Ek with x 6¼ y and

x� 2Ej. It follows form right invariance of N p (See

Lemma 2) that x�N py�! y� 2Ej. Also, xN py)

q
x
i ð�Þ ¼ q

y
i ð�Þ. Hence we conclude ðEk; ð�, 0Þ;EjÞ 2

~�) ðEk; ð�, 1Þ;ErÞ 62 ~�8Er 2 Ep. Similarly, ðEk; ð�, 1Þ,
EjÞ 2 ~�) ðEk; ð�, 0Þ;ErÞ 62 ~�8Er 2 Ep. Thus Properties

2 and 3 of Definition 11 are satisfied. Property 4

is satisfied by construction as follows. We note

that for h 2 LmðGiÞ, � 2 �, �ðEkÞ ¼ �ðqi, hÞ
V

�ðErÞ ¼

�ð�ðqi, hÞ, �Þ
V

q
h
i ð�Þ ¼ �, h 2 Ek; h� 2 Er and hence

we have ðEk; ð�, 0Þ;ErÞ 2 ~�. Similarly, if qhi ð�Þ ¼ � then

ðEk; ð�, 1Þ;ErÞ 2 ~�. Thus hGi, pii* is indeed a marked

realisation for plant Gi with the unobservability pi.

Finally, we show RhGi,pii*
¼N p. Since from item (2)

above we have RhGi,pii*
�N p, we only need to show the

converse, i.e., to show N p�RhGi,pii*
for which we need

to prove the following statement:

xN py) ~� � ~qi,�ðxÞð Þ ¼ ~� �ð ~qi,�ðyÞÞ
� �

: ð27Þ

First, we claim that

x 2 Ek) ~� �ð ~qi,�ðxÞÞ ¼ Ek: ð28Þ

We proceed by the method of induction. The result is

immediate for jxj ¼ 0, i.e., x¼ � from Definitions 14

and 15 by noting

~� �ð ~qi,�ð�ÞÞ ¼ ~� �ð ~qi, �Þ ¼ ~qi ¼ Ei ð29Þ

� 2 Ei (By Definition of Ep aboveÞ: ð30Þ

We assume that Equation (28) holds for all x2�* with

jxj � n for some n2N. The induction is then completed

by noting that for any string x� with jxj ¼ n and � 2�,

we have

x 2 Ek) ~� �ð ~qi,�ðxÞÞ ¼ Ek ð31Þ

)ðx� 2 Ej) 8y 2 Ekðy� 2 EjÞÞ ð32Þ

) ~� �ð ~qi,�ðx�ÞÞ ¼ ~� �ð ~� �ð ~qi,�ðxÞÞ,�ð�ÞÞ

¼ ~� �ðEk,�ð�ÞÞ ¼ Ej:

International Journal of Control 1633

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

Now, let x, y2�* such that xN py, i.e.,
ðxN y

V
ð8u 2 ��ðxu 2 L) ðqxi ðuÞ ¼ q

y
i ðuÞÞÞÞÞ.

It follows that x, y2Ek2E
p which in turn

implies from Equation (28) that ~� �ð ~qi,�ðxÞÞ ¼
~� �ð ~qi,�ðyÞÞ and hence we have xRhGi,pii*

y. This
completes the proof.

4. It is immediate from items (2) and (3) above
that for any arbitrary marked realisation
hGi, pii, we have RhGi,pii

�RhGi,pii*
. Assume

there exists a marked realisation hGi, pii1 such
that RhGi,pii1

¼RhGi,pii*
. From item (3) it follows

RhGi,pii1
¼N p. Hence there exists a bijective

mapping between the equivalence classes of
RhGi,pii1

and that of N p. Hence, hGi, pii* is the
minimal realisation unique up to renaming of
states. œ

Definition 16: The minimal marked realisation
hGi, pii* of a given DFSA Gi for an unobservability
map pi is referred to as the p-minimal realisation in the
sequel.

For state-independent unobservability in Figure 1, the
alphabet � can be partitioned into observable and
unobservable parts. Consequently, the projective
Nerode equivalence becomes equivalent to Nerode
equivalence. This is also true for state-dependent
unobservability because the observability of a symbol
is only dependent on the state of the automaton, from
which it is generated. This fact is restated in the
following proposition.

Proposition 3: For state-dependent unobservability,
N p¼N .

Proof: Let Ek be an equivalence class of the Nerode
equivalence relation N . State-dependent unobserva-
bility implies that if � 2� is defined from the state
corresponding to the equivalence class Ek, 8x, y 2 Ek,
q
x
i ð�Þ � q

y
i ð�Þ . Let the event � lead the automaton to a

state that corresponds to the equivalence class Ej.
Then, 8x, y 2 Ek; q

x
i ðuÞ � q

y
i ðuÞ 8u 2 � � such that

xu 2 L and hence; xN y)xN py8x, y 2 L,)N � N p

By Proposition 2, we have N p � N)

N � N p: œ

Remark 3: State-independent unobservability is a
special case of state-dependent unobservability and so
the result applies to the case of state independent
unobservability as well.

If the p-minimal realisation is infinite, then the
projective Nerode equivalence relation is not of finite
index. The rationale is that the projective Nerode
equivalence N p is a refinement of the Nerode
equivalence N . An equivalence class under N is
possibly split further under N p. If the jth equivalence
class of N is denoted by N j, and the total number of

splits that N j undergoes under N p is denoted by

[N j : p], then we have:

Lemma 5: hGi, pii? ", ð9j 2 IQ; s:t: ½N
j
: p	 "Þ

Proof: hGi, pii? " ()9qj 2 QðMERGE
�1ðfqjgÞ "Þ ()

9qj 2 Qð½N
j
: p	 "Þ œ

Proposition 4: Let REG denote the set of regular

languages for an DFSA Gi and let pi be an unobserva-

bility map and Op be the corresponding observed

language. If there exists a finite minimal realisation

hGi, pii*# induced by N p, then Op is regular. That is

hGi, pii? #) Op 2 REG.

Proof: A finite p-minimal realisation implies that the

observed language is regular. This is a well-known

result and the proof is sketched for the sake of

completion. Since hGi, pii* is finite, the marked transi-

tions can be replaced by �-transitions. The resultant

automaton is a finite state machine with �-transitions
which can be reduced to a DFSA by standard

algorithms (Hopcroft et al. 2001). œ

It follows from Proposition 3 that, under both

state-dependent and state-independent unobservabil-

ity, the observed language is regular. Nevertheless, the

observed language may be significantly more complex,

with the minimum number of states required for an

automaton realisation being a possibly exponential

function of the original number of states (Wong 1998).

We show that in more complex cases, the observed

language Op may be non-regular.

Definition 17: For a given DFSA Gi and an unobser-

vability map pi, the p-minimal realisation hGi, pii* is

said to satisfy the condition P1 if the following

statement is true.

8h 2 LmðGiÞ; 8� 2 �; 8u 2 � �

ððh�u 2 LmðGiÞÞ
^
ðqhi ð�Þ ¼ �Þ

� �
¼) q

h
i ð�uÞ ¼ �Þ

� �
Intuitively, P1 implies that once an unobservable

transition is encountered, all succeeding transitions are

unobservable.

Proposition 5: ðhGi, pii? "
V

P1Þ) ðOp 62 REGÞ

Proof: Since the p-minimal realisation hGi, pii*" is an

infinite realisation, it follows from Lemma 5, that

9qk2Q([N k : p]"), i.e., there exists a qk2G, which is

split into (countably) infinite number of states

fqk1 , qk2 , . . . , qkj , . . .g in hGi, pii* as illustrated in

Figure 5.
The strings h1, h2, . . . , hj, . . . that are assumed

to start from the initial state of the automaton.

These strings are chosen so that if they are truly

followed in the automaton graph (i.e., without

1634 I. Chattopadhyay and A. Ray

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

considering unobservability), then they all lead to the
same state qk in Gi. This has been illustrated in the
lower part of the diagram in Figure 5. Such an infinite
set of strings exists; otherwise, the set
fqk1 , qk2 , . . . , qkj , . . .g must collapse to a finite set and
the condition hGi, pii*" will be violated. The fact that
one may choose h1, h2, . . . , hj, . . . follows from the
axiom of choice. Now, P1 implies that at most one
string from the set {h1, h2, . . . , hj, . . .} may have an
unobservable transition. The rationale is presented
below.

Let hj have at least one unobservable transition.
Then, all string suffixes initiating from qkj is
completely unobservable. Now, if there exists another
hl that has any unobservable transition, with hj 6¼ hl,
then the corresponding states qkj and qkl must
collapse; this violates the condition that hGi, pii* is a
minimal realisation. If such a string hj exists, which
has at least one unobservable transition, this string is
deleted from {h1, h2,. . .} and the corresponding state
qkj from fqk1 , qk2 , . . .g. Let us denote the new string set
{h1, h2,. . .} by H and the new state set fqk1 , qk2 , . . .g by
Q. Note that all elements of H are completely
observable, i.e., p(h)¼ h8h2H. Next, let us choose
two strings h1 and h2 from H. Since h1 and h2 lead to
the same state qk in the automaton Gi, we have
h1N h2. As h1 and h2 lead to different states in the
p-minimal realisation hGi, pii*, it follows h1jN ph2.
Now if L is the accepted language of the automaton,
ðh1N ph2Þ) ð9u 2 � � such that h1u, h2u 2 LÞ and
ðq

h1
i ðuÞ 6¼ q

h2
i ðuÞÞ.

Now, P1) ððq
h1
i ðuÞ ¼ !1Þ

V
ðq

h2
i ðuÞ ¼ !2ÞÞ, where

u�!1v1�!2v2, v1, v22�* with !1 6¼!2. This implies
that there exists !32�* such that either !2�!1!3 or
!1�!2!3. Assuming that !2�!1!3, it follows that

ððh1!1!3 62 OpÞ
V
ðh2!1!3 2 OpÞÞ. By the Nerode

equivalence relation, it is concluded that h1 and h2
lead to distinct states in any realisation for Op. Since h1
and h2 are two arbitrary stings in the set H, each
element of H must lead to a distinct state in any
realisation for Op. Infinite cardinality of H implies
Op 62REG. œ

Example 2: This example explains the logic of
Proposition 5. The following unobservability is
assumed in the automaton of Figure 6.

If n consecutive 1s are observed, the only suffixes
observable thereafter are at most n 0s.

The p-minimal realisation is shown in Figure 7, where
the unobservability map satisfies the P1 condition.
It is obvious that there is no way to collapse any state
in Figure 7. Hence, the p-minimal realisation is infinite.
The observed language Op is f1n0m : m � n and
m; n 2 Ng. Hence, Op 62REG is in accordance with
Proposition 5.

Next it is shown that an infinite p-minimal
realisation does not guarantee that the observed
language Op is non-regular.

Definition 18: For a given DFSA Gi and an unobser-
vability map pi, the p-minimal realisation hGi, pii* is
said to satisfy the condition PLoop if pi satisfies the
following criterion:

8h 2 LmðGiÞ, 8� 2 �; ðqh

i ð�Þ ¼ �

�
¼)ð9v1 2 � �; � 2 �; s:t:ðqh�i ðv1Þ ¼ �Þ^

ðq
h�v1
i ð�Þ ¼ �Þ

^
ðh N h�v1ÞÞ:

Figure 5. The minimal realisation is above while the under-
lying plant is below the double lines. State qk in the
underlying plant is split into infinitely many qk1, qk2, . . . in
the realisation. Strings h1, h2,. . . terminate on the same state
qk in the underlying plant. In the minimal realisation each hj
terminates on a distinct qkj.

Figure 6. The plant automaton.

Figure 7. p-minimal realisation with observable transitions
in solid lines.

International Journal of Control 1635

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

Remark 4: The condition PLoop implies that, under
the unobservability map p, only loops can be
unobservable. (Note: A loop means a string l such
that 8!2�*, starting from the initial state qi, satisfies
the condition !N!l.) This condition follows from the
requirement of PLoop that the first observable event
after an unobservable string s begins from the same
state that s is initiated from. Furthermore, the
unobservable string s cannot be unbounded. This
implies that as a plant traverses a loop l, only a
bounded number of such successive traversals can be
unobservable. If an arbitrary number of successive
traversals is unobservable, then PLoop is violated (i.e.,
there may not exist a � that can be checked from
Definition 18). This concept is illustrated in Figure 8.

Proposition 6: Let Gi be a DFSA with a specified
unobservability map pi. Then, PLoop() ðOp ¼ LmðGiÞÞ:

Proof: To prove PLoop¼)ðOp ¼ LmðGiÞ

�
, we proceed

as follows. Let LmðGiÞ ¼ L. It is given that PLoop)

ð8u 2 � �; piðuÞ � pið!1l
m!Þ ¼ !1l

n! 2 Op; with
m � n 2 NÞ, where !1,!, l2�*, and l is a loop. Since
l is a loop, ð!1l

m! 2 LÞ) ð!1l
k! 2 L8k � mÞ)

ð!1l
n! 2 LÞ. Hence, ðpðuÞ 2 OpÞ) ðpðuÞ 2 LÞ)

ðOpjLÞ. Also, ðð!1l
m! 2 LÞ

V
ð!1l

m! 7 �!!1l
n!Þ

V
PLoopÞ) ð9k 2 Nj!1l

mlk! 7 �!!1l
nþ1!Þ. Hence, by

induction, 9k
 2N such that ð!1l
mlk
! 7 �!!1l

m!Þ)
ðu 2 LÞ) ðu 2 OpÞ, i.e., LjOp. Therefore L�Op.

To prove the converse, let OP�L and let us assume
:PLoop. The scenario #1 is depicted in Figure 9 where
u1 is unobservable and v1 is observable. Furthermore, it
is assumed, without loss of generality, that h1 is
observable, where h1 starts from the initial state of
the plant. It follows that p(h1u1v1)¼ h1v12OP. Now,
OP�L implies that h1v12L. Hence, there must be
a loop v1 at the state qk1 as seen in the scenario #2 in
Figure 10. The same argument is applicable for any
other string !2 initiating from state qk2 . Hence, it
follows that 8! 2 � � ðh1u1! 2 LÞ , ðh1! 2 LÞ.
Hence, qk1 and qk2 collapse to the same state in the

minimal realisation of the language L, which implies
that u1 is a loop. The entire loop u1 cannot be
unobservable because then OP 6¼L. Hence,
(OP � LÞ ¼)PLoop. œ

Example 3: This example illustrates the concept
of Proposition 6. For the finite state automaton in
Figure 6, let us consider the following unobservability
scenario:

If n consecutive 1s are observed, n successive 0s (if
generated) are unobservable.

Note that the unobservability map is different from the
one in Example 2 although the automaton graph is
identical. The unobservability map in this case satisfies
PLoop. Since there is no way to collapse any state in the
marked realisation shown in Figure 11, the p-minimal
realisation is infinite. It is easy to verify that the
observed language Op��*. Hence Op�L, the plant
language, in accordance with Proposition 6.

Remark 5: Since the proof of Proposition 6 is
independent of the finiteness of the p-minimal realisa-
tion, it follows that ððhGi, pii?Þ "

V
PLoopÞ) ðOP � LÞ.

4. '-normal representation

This section investigates a uniform representation for
unobservability maps. As before, the plant is assumed

Figure 9. Scenario #1.

Figure 10. Scenario #2.

Figure 8. Situation under PLoop.

Figure 11. p-minimal realisation with observable transitions
in solid lines.

1636 I. Chattopadhyay and A. Ray

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

to be trim and the plant language regular. Specifically,

let Gi�h Q,�, �, qi,Qi be a trim (i.e., accessible and co-

accessible) finite-state automaton model that models

the discrete-event dynamics of a physical plant, where

Q¼ {qk : k2IQ} is the set of states. In addition to

trimness, we assume that the plant model satisfies the

following property

8qj 2 Q; 9� 2 �; such that �ðqj, �Þ is defined: ð33Þ

The above property ensures that every state has

at least one outgoing event defined. Note the outgoing

event can be a self loop. It follows that this can

be easily guaranteed by, if necessary, augmenting the

alphabet as

�aug ¼ � [f$g ðProperty AÞ

where $ is a symbol not in � and adding self-loops to

states which lack any outgoing event as illustrated in

Figure 12. We note that the above modification may be

necessary only for partial or incomplete automata.

Definition 19: For an event � 2�, the relative history

(H�) is defined as:

H� � f! 2 LmðGiÞ : �ð� �ðqi,!Þ, �Þ 2 Qg: ð34Þ

Definition 20: For an event � 2�, and a given state

qk2Q, the relative history at state qk, ðH�jqkÞ is

defined as.: H�jqk � f! 2 LmðGiÞ : � �ðqi,!Þ ¼ qk
V

�ð� �ðqi,!Þ, �Þ 2 Qg:

The following points are worth noting.

. We have

H� ¼
[
qk2Q

H�jqk ð35aÞ

LmðGiÞ ¼
[
�2�

H�: ð35bÞ

The second equality is valid for trim models that satisfy

the Property A described above and is necessary for the

development in the sequel.
. For �1, �22�, H�1 jqk and H�2 jqk are not

necessarily disjoint. In fact, it follows that if

both �1 and �2 are defined from the state qk,

we have H�1 jqk ¼H�2 jqk � Lðqi, qkÞ and if

there is no �1 defined from qk, then

H�1 jqk ¼ �.
. Thus, H�1 jqk 2 f�,Lðqi, qkÞg.

Definition 21: For a given alphabet

� ¼ f�0, . . . , �m�1g and an unobservability map p, the

�-normal phantom set L is a set of languages

fL�0 , . . . ;L�i , . . . ;L�m�1g such that, ð8�i 2 �ðL�i �

H�i ÞÞ
V
ðð8! 2H�i ðq

!
i ð�iÞ ¼ �ÞÞ , ð! 2 L�iÞÞ

Proposition 7 (S-normal Representation

Theorem): The �-normal phantom set L is uniquely

specified by the unobservability map p. Conversely, any

set of languages fL�0 , . . . ,L�m�1g which satisfies

L�i � H�i 8�i 2 � uniquely corresponds to an unob-

servability map p.

Proof: Let p be an unobservability map. If possible

let there be two �-normal phantom sets

L
1
¼ fL

1
�1
; . . . ;L1�i ; . . .g and L

2
¼ fL

2
�1
; . . . ;L2�i ; . . .g.

Now, ! 2 L1�i) q
!
i ð�iÞ ¼ �) ! 2 L2�i . Hence, L1�i �

L
2
�i
8�i 2 �. Similarly, L

2
�i
� L

1
�i
8�i 2 �. Hence,

L
1
¼L

2. For an arbitrary set of languages L ¼

fL�0 , . . . ,L�m�1g that satisfies L�i � H�i8�i 2 �,

we have,

LmðGiÞ ¼
[
�2�

H�

 !

¼) LmðGiÞ ¼
[
�2�

L�i [ðH�i n L�iÞ
� � !

: ð36Þ

Equation (36) allows us to define a map

} : � � ���! �
S
f�g as follows:

8! 2 � � with ! ¼ ��i for some �i 2 �; � 2 � �;

}ð�, �iÞ ¼
�i, if � 2 ðH�i n L�i Þ

�, if � 2 L�i :

�
The map } is well-defined because ðH�i n L�iÞ

T
L�i ¼ �. Next we define an induced mape} : � � �!� � as follows:

8!¼ �1 � � ��j � � ��m; with �j 2�,e}ð!Þ ¼}ð�,�1Þ � � �}ð�1 � � ��j�1,�jÞ � � �}ð�1 � � ��m�1,�mÞ:
e} satisfies the basic properties of an unobservability

map, namely, e}ð�Þ 2 f�, �g by definition of } ande}ð!�Þ ¼ e}ð!Þ}ð!, �Þ 2 �e}ð!Þ�,e}ð!Þ	. Hence, there

exists at least one unobservability map p � e} which

corresponds to L. Let, if possible, p1 and p2 be two

such maps with p1 6¼ p2. Now, ð p1 6¼ p2Þ ¼)ð9 ! 2 � �,

� 2 �; such that p1!ð�Þ 6¼ p2!ð�ÞÞ. Without loss of gen-

erality, it can be assumed that p1!ð�Þ ¼ � and p1!ð�Þ ¼ �.
Now, ðp1!ð�Þ ¼ �Þ ¼)ð! 2 L�Þ and ðp2!ð�Þ ¼ �Þ¼)
ð! 2 ðH� n L�ÞÞ. But 8�i 2 �ððH�i n L�iÞ

T
L�i ¼ �Þ

Figure 12. Augmenting trim plant automaton by addition of
self-loop.

International Journal of Control 1637

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

which implies p1 and p2 coincide everywhere (contra-
diction). Hence, p is unique. œ

Remark 6: It follows from Proposition 7 that the
�-normal phantom set L (See Definition 21) is in fact a
normal representation of the unobservability map p. In
section 3, it was proved that the p-minimal realisation
is unique. However, the normal form of Proposition 7
has the advantage that it admits a finite representation
for a much wider class of unobservability maps.
For example, it will be proved shortly that if any
element of the phantom set is just context free non-
regular and the rest are all regular, the p-minimal
realisation is infinite, whereas there exists many finite
descriptions for context free languages (e.g. context
free grammars) and hence a finite normal form for p
exists. The same argument works as long as all
elements of the phantom set are recursively
enumerable.

Example 3: An example illustrates the idea. Figure 13
represents a trim DFSA with LmðG1Þ ¼ f0; 1g

� with the
following property:

The unobservability map p is such that the first
0 generated is unobservable and so is every alternate
0 after that.

The p-minimal realisation is given in Figure 14. The
�-normal phantom set in this case is as follows:

L ¼ fL0;L1g where
L0 ¼ 1 �ð01 �01 �Þ �

L1 ¼ �:

�
L1 is empty since 1 is always observable. L0 is the
language of all strings having an even number of 0s
and hence the 0 generated after a history belonging
to 1 �ð01 �01 �Þ � will be unobservable according to the
map p. This applies to the first 0 generated, since
1 � 1 �ð01 �01 �Þ � � L0. Note that the p-minimal
realisation is finite and every element of L is regular.
It will be shown in the sequel that this is a general
result.
The following properties follow immediately from
definition:

. For a perfectly observable system, the
�-normal phantom set consists of ‘ copies of
the null set, where ‘ is the cardinality of the
alphabet, i.e., p ¼ je¼)L ¼ f�, . . . ,�g. This
follows from the fact that if an event � is
always observable, irrespective of its past, then
L�¼�.

. For a completely unobservable system,
L ¼ fH� : � 2 �g. This follows from the fact
that if an event � is always unobservable, then
the set of histories for which � is unobservable
is, in fact, the entire set of histories for the
event i.e. H� by definition.

. State independent unobservability can be

identified with the following case: L ¼ fL� :

L� 2 fH�,�gg. It is obvious that such a
phantom set implies that an event is either
always observable or always unobservable

which is precisely the requirement of state
independent unobservability. Note that all
elements of the phantom set are regular.

. State dependent unobservability can be iden-
tified with the following case: L ¼ fL� : L� ¼S

k2B��IQ
H�jqk

	
where B� is some arbitrary

subset of IQ. Note that B� can be empty and
hence L� can be empty as well. Also all
elements of the phantom set are still regular.

Next we prove that the p-minimal realisation is finite if

and only if all elements of the �-normal phantom set
are regular.

Proposition 8: 8� 2 �; ðL� 2 REGÞ()hGi, pii? # :

Proof: First we show, hGi, pii*")9� 2�, such that

L� 62REG. Assume hGi, pii*". This implies that the
projective Nerode equivalence relation is not of finite
index. Hence it follows that there exists
H ¼ fh1, h2, . . . , hr, . . .g with r2N such that 8hr, hj2H,

9u2�* such that qhri ðuÞ 6¼ q
hj
i ðuÞ. Now, finiteness of �

implies that for some � 2�, there exists an infinite set
H��H such that 8hr, hj2H�, 9u2�* with q

hru
i ð�Þ 6¼

q
hju
i ð�Þ. Denote the Nerode equivalence on �* induced

by L� by NL� . We note that xNL�y) 8u 2 � �ðxu 2

L� , yu 2 L�Þ. Let ~hr, ~hj 2 H�. Then we have ~hrNL�
~hj,

but for some u2�*, ~hru N jL�
~hju. Infinite cardinality of

H� implies NL� is of infinite index. Hence L� 62REG.
The converse follows immediately by noting that if

hGi, pii*#, then a finite state description for L� is
obtained by defining as accepting states all states
(of hGi, pii*) at which the event (�, 0) is defined
and replacing the labels (�, b) with �. (Note
b2 {0, 1}). This completes the proof. œ

Figure 14. p-minimal realisation: Unobservable transition in
dashed line.

Figure 13. Trim plant model.

1638 I. Chattopadhyay and A. Ray

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

Remark 7: Proposition 8 demonstrates that the

p-minimal realisation and the �-normal description

of unobservability maps are equivalent.
A classification of the unobservability maps in the

Chomsky sense can be done as shown in Table I. It is

to be noted that the plant language is regular in all

cases.

5. Decidability of state determinacy problem

For the purpose of this section, we consider a trim

deterministic finite state plant G�hQ,�, �,qi,Qmi with

�¼ {�0, . . . , �m�1} and a specified �-normal phantom

set L¼ {L0, . . . ,Lm�1}. Note that determinism implies

that for a given generated event sequence, the current

plant state is unique. However, given an observed

event sequence, the current plant state, in general,

belongs to a possible set of states.

Definition 22: The instantaneous description

Q : pðLðGiÞÞ �! 2Q is a map from the set of observed

event traces to the power set of finite state automaton

states Q, such that given an observed event trace !,
Qð!Þ � Q is the set of states that the underlying

deterministic finite state plant can possibly occupy at

the given instant.
Note, in the case of perfect observation, the

instantaneous description for any observed sequence

is a singleton state set.

Definition 23: Given an observed event sequence !
and a fixed state qj2Q, the state determinacy problem

is the determination of the truth value of the following

logical sentence:

Dðqj,!Þðqj 2 Qð!ÞÞ: ð37Þ

That is, given an observed event sequence, the state

determinacy problem is computation of the possible set

of current states . The simpler problem where the

observed sequence is the empty string is

Dðqj, �Þ :¼ DðqjÞ :¼ ðqj 2 Qð�ÞÞ: ð38Þ

In the sequel, we denote the former problem

(Equation 37) by DG and the latter by DE

(Equation 38).
Before we investigate decidability of DE and DG,

we need the concept of phantom reachability trees.

5.1. Construction of phantom reachability trees

Algorithm 1: Derivation of Phantom Reachability Tree T (qj)

Input: G,L,qj
Output: T(qj)
1. begin

2. Define the root node and label the root as qj; /
* Initiate

Tree Construction */
3. For each new node qk in the frontier of the current tree

do
4. Compute A¼CHILD(qk); /* Compute possible child

nodes */
5. For each (q‘, �)2A

6. If qk has an ancestor q‘ then
7. Delete (q‘, �) from A /* Avoid repetition in the

same ancestry (See Figure 15) /*
8. endif
9. endfor

10. For each (q‘, �)2A do

11. Compute the path !2�* from the root to q‘;
12. Compute DEL_NODE(q‘,!);
13. If DEL_NODE(q‘,!)¼� then

14. Delete (q‘,�) from A; /* Transitivity check
15. end if
16. For each remaining (qr, �)2A do

17. Create a node labelled qr connected by a edge
labelled � to qk;

18. endfor
19. endfor

20. Terminate if no new child nodes can be created;
21. endfor
22. end

Definition 24: Given a DFSA plant model

G0¼ (Q,�, �, q0,Qm) and a �-normal phantom set L,

we define the following:

. CHILD :Q! 2Q�� such that 8qk,qj2Q, � 2�,

ðqk, �Þ 2 CHILDðqjÞ

()9� 2 �j�ðqk, �Þ ¼ qj
^

qk 6¼ qj: ð39Þ

Figure 15. Tree: qj is an ancestor of qr; q‘ is not.

Table I. Hierarchy of unobservability maps.

All elements of L Regular
are regular unobservability

All elements of L Context free
are context free unobservability

All elements of L Context sensitive
are context sensitive unobservability

All elements of L Recursively enume-
are recursively enumerable rable unobservability

International Journal of Control 1639

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

. DEL NODE : Q�� � ! 2� � such that

8�i2�, qk2Q,

DEL NODEðqk, �1 . . . �mÞ

¼ H�m jqk�m�m�1 . . . �2
� �
\ L�1 \

\i¼m
i¼2

L�i�i�i�1 . . . �2

 !
: ð40Þ

We note that 8qk 2 Q, � 2 �DEL NODEðqk, �Þ ¼
H�jqk \ L�.
Algorithm 1 constructs a phantom reachability tree

T(qj) for a given state qj2Q.

Proposition 9:

1. 8qj2Q, T(qj) is finite.
2. q0 2TðqjÞ , qj 2 Qð�Þ. (Note, q0 is the initial

state of the underlying plant
G0¼ (Q,�, �, q0,Qm).)

Proof: For statement 1, we note that by Line 7 of

Algorithm 1, any path from the root to the tree frontier
has length bounded by Card(Q) (since each node label

occurs at most once in every path from the root). Also,

each node has at most Card(�) immediate children;

implying T(qj) is finite for any qj2Q. For statement 2,

we note that if q1!
�1

q2!
�2

q3, then it follows from

Definition 19 that H�1 jq1�1 �H�2 jq2 . Using this fact,

we note that if �1. . .�m is a path in the tree from
the root labelled qj to a node labelled q0, then we

have by construction: ðH�m jq0�m�m�1 . . . �2Þ \ L�1\
ð
Ti¼m

i¼2 L�i�i�i�1 . . . �2Þ 6¼ �()9q1, . . . , qm�2 2 Q with

ðL�m \H�m jq0Þ�m � � � �2
T
ðL�m�1 \H�m�1 jq1 Þ�m�1 � � �

�2
T
� � � � � �

T
ðL�2 \H�2 jqm�2Þ�2

T
L�1 \H�1 jqj 6¼

�()9 h 2 LðG0Þ such that h2L(q0, q0) and
q0!

�m
q1 !

�m�1
� � �!

�2
qm�2!

�1
qj with phð�mÞ ¼ �

V
ph�m�

ð�m�1Þph�m ð�m�1Þ ¼ �
V
� � �
V

ph�m����2ð�1Þ ¼ � Hence

T(qj) has a node labelled q0 iff exists a completely

unobservable path �m. . .�1 from q0 to qj, i.e.

qj 2 Qð�Þ. œ

Proposition 10: Given a DFSA plant model

and a �-normal phantom set L, DE is decidable if

LL such that 8L1,L2 2L,R 2 REG

ððL1

T
L2¼� is decidableÞ

V
ðL1

T
R¼� is decidableÞV

ð8! 2 � �;L1! 2LÞÞ, i.e. DE is decidable if the

�-normal phantom set belongs to a family of languages

L which is closed under concatenation with singleton

strings and for which the emptiness-checking problem for

intersection of elements in L and for intersection of

elements in L with regular languages can be effectively
solved.

Proof: The result follows immediately by noting that

these three properties guarantee that DEL_NODE(qj,!)
can be effectively computed, and hence the phantom

tree T(qj) can be constructed algorithmically for any
qj2Q. œ

Proposition 11: Let G0 be an arbitrary DFSA model
and L�L be the �-normal phantom set such that for
the language-family L, the emptiness-checking problem
for intersection of two arbitrary languages is undecid-
able. Then DE is undecidable for this class of L.

Proof: Assume there exists an algorithm for A for
solving DE for any arbitrary plant model such that the
�-normal phantom set LL. Further, we know that
for two arbitrary languages L1,L02L, L1\L0¼ ? � is
undecidable. We choose the plant model G0¼

({q0, q1, q2}, {0, 1}, �, q0, {q2}) as shown in Figure 16.
Let L1,L02L. We define L1

0 ¼L1 and L0
0 ¼L01. Now

assume the �-normal phantom map satisfies the
following criteria:

ðL1 \H1jq1 ¼ �Þ
^
ðL1 \H1jq2 ¼ �Þ^

ðL0 \H0jq0 ¼ �Þ
^
ðL0 \H0jq2 ¼ �Þ^

ðL1 ¼ L01Þ
^
ðL0 ¼ L00Þ: ð41Þ

Since, LL, we use algorithm A to answer
q2 2? Qð�Þ. We note that

q2 2? Qð�Þ � ðL1 \H1jq0Þ1
\
ðL0 \H0jq1 Þ ¼? �

� ðL11 \ L0Þ \H1jq01 ¼? �: ð42Þ

Since ðL1 \H1jq1 ¼ �Þ
V
ðL1 \H1jq2 ¼ �Þ, it follows

that L1 �H1jq0 implying

ðL11 \ L0Þ \H1jq01 ¼? � � ðL11 \ L0Þ ¼? �

� ðL011 \ L
0
0Þ ¼? � � ðL11 \ L01Þ ¼? � � ðL1 \ L0Þ

¼? �

Thus A allows us to decide the emptiness-check for
intersection of arbitrary languages in L implying no
such algorithm exists. œ

Corollary 1: DE and DG are undecidable for the class
of problems where L is a set of arbitrary context-free
languages.

Proof: For two arbitrary context-free languages
L1,L2,L1\L2¼ ? � is undecidable (Ramadge and
Wonham 1987; Ray 2005; Chattopadhyay and

Figure 16. Plant model for Proposition 5.3.

1640 I. Chattopadhyay and A. Ray

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

Ray 2007a). Hence it follows immediately from
Proposition 11 that DE is undecidable in this case.
We note that ‘‘DG is decidable’’ implies there exits an
algorithm that answers qj 2? Qð!Þ for all !2�*. Hence
one can use the same algorithm to answer qj 2? Qð�Þ i.e.
‘‘DG is decidable’’) ‘‘DE is decidable’’. Hence, by
contrapositive, ‘‘DE is not decidable’’) ‘‘DG is not
decidable‘‘. This completes the proof. œ

5.2. State determinacy for regular unobservability

It follows from Proposition 10 that DE is decidable
and in fact computable in polynomial time if LREG.
We show that for regular unobservability DG is
decidable as well. In case of regular unobservability,
the result of Proposition 10 can be applied to construct
a Petri net observer (Moody and Antsaklis 1998). The
advantage of using a Petri net description is the
compactness of representation and simplicity of the
online execution algorithm that we present next. We
are interested in computing the set of states that the
plant may possibly be in, given an observed sequence
of events. Our preference of a Petri net description over
a subset construction for finite state machines is
motivated by the following:

Algorithm 2:l Petri net observer for reg. unobservability

Input: hG, pi
Output: Petri net observer
1. begin
2. I. Create a place qj for each state qj in hG, pi;
3. II. The set of transition labels is �;
4. For each observable transition qj��

�
qk in hG, pi do

5. I. Set the initial state in hG, pi to qk;
6. II. Compute Qð�Þ;
7. III. Add a transition labelled � from the place qj

with output arcs to all places ql 2 Qð�Þ;
8. endfor
9. For each place qj in the net do
10. For each event � 2� do

11. If there is no transition with label � from qj then
12. I. Add a flush-out arc with label � from qj
13. endif

14. endfor

15. endfor
16. end

1. The Petri net formalism is natural, due to its
ability to model transitions of the type
q 1!j%

q2

&q3
, which reflects the condition ‘‘the

plant can possibly be in states q2 or q3 after an
observed transition from q1’’.

2. One can avoid introducing an exponentially
large number of ‘‘combined states’’ of the form
[q2, q3] as involved in the subset construction
and more importantly preserve the state
description of the underlying plant.

3. This lays the groundwork for future extension

to handle probabilistic models when occupancy

distributions over possibly occupied states can

be obtained i.e. make conclusions such as

‘‘the current state is q2 with probability 0.6

and q3 with probability 0.4’’ as opposed to ‘‘the

plant is now in the combined state [q2, q3]’’.

Since for regular unobservability, the p-minimal

realisation is finite, we can construct a Petri net with

flush-out arcs as given by Algorithm 2. Flush-out arcs

were introduced by Gribaudo et al. (2001) in the

context of fluid stochastic Petri nets. We apply this

notion to ordinary nets with similar meaning: a flush-

out arc is connected to a labelled transition, which, on

firing, removes a token from the input place (if the arc

weight is one).

Proposition 10: For regular unobservability,

1. Algorithm 2 has polynomial complexity.
2. Once the Petri net observer has been computed

off line, the current possible states for any

observed sequence can be computed by executing

Algorithm 3 online:

Algorithm 3: Online computation of possible states

input : Petri net observer, Observed sequence !¼ �1�2. . .�r
output: Qð!Þ
1. begin
2. I. Compute the initial marking for the observer as

follows:
3. a. Compute Qð�Þ;
4. b. Put a token in each place qj 2 Qð�Þ;
5. For j¼ 1 to r do
6. I. Fire all enabled transitions labelled as �j in the

observer;
7. For each place qj in the observer do
8. if number of tokens in qj>0 then

9. I. Normalise the number of tokens in qj to 1.
10. endif
11. endfor

12. endfor

13. II. Qð!Þ ¼ fqj jqj has one tokeng;
14. end

Proof: The complexity claim (Assertion 1) follows

immediately from noting that the only non-trivial

step is the computation of Qð�Þ which involves

performing the emptiness-check for arbitrary regular

languages which can be executed in polynomial time

(Ramadge and Wonham 1987; Ray 2005;

Chattopadhyay and Ray 2007a). For Assertion 2, we

note that the computation of the initial marking for the

observation net follows from the definition of Qð�Þ (See
Definition 22). If an event � is observed, Algorithm 2

implies that firing all � labelled transitions in the

International Journal of Control 1641

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

observer is equivalent to computing the set of states
that the plant may reach from each possible current
state. Furthermore, if qj is marked initially and � is not
defined from qj in the underlying plant, then observing
� implies that the plant was not in qk. This is taken care
of by the �-labelledppp flush-out arc in the observer
(exists by construction), which flushes out or eliminates
tokens from the place qj. We only want to tag places as
‘‘possibly occupied’’ or ‘‘not occupied’’ and do not
want token accumulation; hence the normalisation step
in Algorithm 3. Note that the firing sequence of the
enabled transitions is not important; however it is
important to only fire those transitions that were
enabled before initiating the firing sequence at each
step. œ

6. An example

This section presents a game between two players
PATROL (denoted by �) and INTRUDER (denoted
by �) as an example.

Remark 7: Having two players in the game suffices
to illustrate the underlying concepts and algorithms
without loss of generality, because the critical issue
here is complexity of the unobservability maps with
respect to the individual players instead of the
number of players. The algorithms described in the
previous sections pertain to individual agents
and their corresponding unobservability maps; the
algorithmic complexities (either explicit run-times or
their asymptotic estimates) have no dependence on
the number of agents involved in any particular
situation.

The game is played in three rooms as shown in
Figure 17. Rooms R1 and R2 are homes for
PATROL and INTRUDER respectively. The objec-
tive for INTRUDER is to remove targets (shown as
black dots) from room H without being intercepted
by PATROL. If INTRUDER operates in stealth
mode, PATROL cannot detect his entrance in room
H. However, it is costly for INTRUDER to
engage stealth mode. Further, it is costly for
PATROL to wait in room H; it is cheaper for her

to retreat to home. Also, PATROL can always detect
INTRUDER entering H if she already is in H. Both
players must attempt to achieve respective objectives
preferably at the minimum mission cost. We explore
strategies for PATROL for different strategies
employed by INTRUDER. First, assume
INTRUDER chooses to operate always under
stealth (bearing a high mission cost). The p-minimal
realisation of the plant with the unobservable transi-
tion in a dashed line is shown on the left side of
Figure 19. The interpretation of the states and events
are shown in Table 2. The unobservability map is
regular; the p-minimal realisation is finite and for the
ordered alphabet �¼ {e, r, a}, the �-normal
phantom set is given by L ¼ fL1 ¼ fall strings
terminating at state 00g, � , �

	
. (Note that all ele-

ments are regular.). PATROL applies Algorithm 2 to
construct the Petri net observer as shown on the right
of Figure 19. The flush-out arcs are in dotted.
Assuming 00 to be the initial state in the underlying
plant, the initial marking in the observer is computed
to be {1, 1, 0, 0} with the places ordered as
00, 01, 11, 10. PATROL can now keep track of the
possible states by firing observed events in the
constructed Petri net, e.g.

f1, 1, 0, 0g!
r
f1, 1, 0, 0g!

a
f0, 0, 1, 0g!

r
f1, 1, 0, 0g ! � � �

ð43Þ

Figure 17. The game.

Figure 18. Sequential token distributions (first few possibi-
lities) for the Petri net observer in situation 1.

Table 2. State and event descriptions.

STATES

00 Players at respective homes
01 INTRUDER in H, PATROL at home
11 Both players in H
10 INTRUDER at home, PATROL in H

EVENTS
e INTRUDER enters H
r INTRUDER enters R2
a PATROL switches room

1642 I. Chattopadhyay and A. Ray

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

and take appropriate actions. The first few possibi-
lities are shown in Figure 18. A reachability analysis
of the Petri net observer shows that neither of the
states {1, 0, –, –} and {0, 1, –, –} is reachable, which
concurs with the situation that PATROL must always
wait in H (i.e., can never detect INTRUDER from
home) or risk losing the targets (and hence the game).
Next let us assume that INTRUDER chooses to
employ a cheaper strategy, engaging stealth mode at
every even chance. The unobservability map for
PATROL is still regular and the p-minimal realisation
is shown in Figure 20.

Note, that the state 01 has been split into 01 and
01. The phantom set in this case is given by
L ¼ fL2, � ,�g where L2¼ {all strings terminating at
state 01}. Note that L2 is a regular subset of L1 as
described for the previous situation. computes the
observer, shown in Figure 21, and proceeds as before.
However, in the current situation, PATROL can
reduce her mission cost by selectively retreating to
home. If INTRUDER chooses to employ a stealth
strategy that makes some elements of the phantom set
context-free, PATROL is no longer able to effectively
track INTRUDER due to the undecidability result of
Proposition 11. Note that in each case, PATROL is
aware of INTRUDER’s strategy in the form of the
unobservability map, however, the usability of that
information is dependent on the complexity of the
unobservability situation.

7. Summary, conclusions and future work

This paper addresses the problem of partial observa-

tion in discrete-event supervisory systems, specifically

attempting to relax the assumption that unobserva-

bility only introduces bounded memory in the

observed process. A formal framework has been

established for generalised projections in DES and

theoretical results have been presented that are

necessary for further research in the area. It has

been shown that the unobservability situations

analysed in the reported literature form a special

case, namely that of state-dependent and state

independent regular unobservability. Furthermore,

the normal representation of unobservability maps,

introduced in this paper, allow for finite and compact

representations of projections that introduce

unbounded memory in the observed plant. The

problem of observation based estimation of the

possible set of current states in a finite state plant is

shown to be solvable in polynomial time for regular

unobservability maps and undecidable for more

complex unobservability situations.
The work reported in this paper raises the following

issues that future work should address.

. How does a more complex underlying plant

model affect the state determinacy problem?

In particular, is the state determinacy problem

decidable for non-regular plants with regular

unobservability maps?
. Is the state determinacy analysis extensible to

probabilistic underlying models? In particular,

does the negative decidability result change for

context-free unobservability if the underlying

plant is a probabilistic finite state language

generator?

The first of the above two issues is critical for

modelling and analysis of plants that cannot be

adequately represented by finite state systems.

Examples of such infinite-memory models (e.g. Petri

nets) are plentiful in the literature. Positive decidability

for Petri nets with unobservable transitions could

be very useful for controller design, where the

Figure 20. p-minimal realisation for situation 2.

Figure 21. Constructed Petri net observer for situation 2.

Figure 19. p-minimal realisation (left) and corresponding
Petri net observer (right) in situation 1.

International Journal of Control 1643

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

unobservability situation is simple (e.g., regular).

On the other hand, negative decidability is likely to

make the task of controller design more complex and

may require sensor redundancy.
The second of the above two issues is important for

extension of the results, presented in this paper, to

plants that have event probabilities associated with

state transitions. Since probabilistic finite state

machines are closely related to finite state Markov

chains, extension of the current analysis to probabil-

istic models may lead to valuable insights in controlling

partially observable Markov decision processes

(POMDP).

Acknowledgements

This work has been supported in part by the U.S. Army
Research Laboratory and the U.S. Army Research Office
under Grant Nos. W911NF-07-1-0376 and W911NF-06-
1-0469.

References

Chattopadhyay, I., and Ray, A. (2007a), ‘Language-

measure-theoretic Optimal Control of Probabilistic

Finite-state Systems,’ International Journal of Control, 80,

1271–1290.

Chattopadhyay, I., and Ray, A., (2007b), ‘Generalised

Projections in Finite State Automata & Decidability of

State Determinacy’, in American Control Conference,

New York City: NY, pp. 5664–5669.
Gribaudo, M., Sereno, M., Horvath, A., and Bobbio, A.

(2001), ‘Fluid Stochastic Petri Nets Augmented with

Flush-out Arcs: Modelling and Analysis,’ Discrete Event

Dynamic Systems, 11, 97–117.

Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2001),
Introduction to Automata Theory, Languages, and

Computation (2nd ed.), Boston, MA: Addison-Wesley.
Jiang, S., Kumar, R., and Garcia, H. (2003a), ‘Diagnosis of
Repeated Failures in Discrete Event Systems,’ IEEE
Transactions on Robotics and Automation, 19, 301–323.

Jiang, S., Kumar, R., and Garcia, H. (2003b), ‘Optimal
Sensor Selection for Discrete Event Systems Under Partial
Observation,’ IEEE Transactions on Automatic Control, 48,

369–381.
Leeuwen, J.V. (1990), Handbook of Theoretical Computer
Sc.: Formal Models and Semantics (Vol. B), Cambridge,

MA: Elsevier.
Lin, F., and Wonham, W.M. (1988a), ‘Decentralised Control
and Coordination of Discrete Event Systems with Partial
Observation,’ Inf. Sci., 44, 199–224.

Lin, F., and Wonham, W.M. (1988b), ‘On Observability of
Discrete-event Systems,’ Inf. Sci., 44, 173–198.

Moody, J.O., and Antsaklis, P.J. (1998), Supervisory Control

of Discrete Event Systems using Petri Nets, Boston, MA:
Kluwer Academic.

Ramadge, P.J., and Wonham, W.M. (1987), ‘Supervisory

Control of a Class of Discrete Event Processes,’ SIAM
Journal of Control and Optimization, 25, 206–230.

Ray, A. (2005), ‘Signed Real Measure of Regular Languages

for Discrete-event Supervisory control,’ International
Journal of Control, 78, 949–967.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen,
K., and Teneketzis, D. (1995), ‘Diagnosability of Discrete

Event System,’ IEEE Transactions on Automatic Control,
40, 1555–1575.

Wong, K. (1998), ‘On the Complexity of Projections of

Discrete-event Systems,’ IEEE Workshop on Discrete Event
Systems, Cagliari, Italy, 201–208.

Wong, K., and Wonham, W. (2004), ‘The Computation of

Observers in Discrete-event Systems,’ Discrete Event
Dynamic Systems, 14, 55–107.

Wonham, W. (2001), Control of Discrete-event Systems,

Department of Electrical Engineering, University of
Toronto, Ontario, Canada.

1644 I. Chattopadhyay and A. Ray

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
5
:
4
6

1
0

A
u
g
u
s
t

2
0
0
8

