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Abstract: This paper presents the development of a dynamic data-driven statistical method for:
(a) early detection of incipient faults and (b) parameter estimation for prognosis of forthcoming
failures and operational disruptions (e.g. flame extinction) in thermal pulse combustors. From
these perspectives, reduction in the tailpipe friction coefficient is estimated from time-series data
of pressure oscillations. The algorithms for parameter estimation are built upon the principles of
Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The proposed algo-
rithms have been tested on an experimentally validated simulation model of a generic thermal
pulse combustor.
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1 INTRODUCTION

Thermal pulse combustors have several advantages,
such as significantly higher thermal efficiency, higher
heat transfer rate, and lower pollutant emission, over
steady-flow combustors. On the other hand, pulse
combustors are prone to self-sustained pressure oscil-
lations due to strong coupling between thermo-fluid
dynamics in the combustor and the tailpipe [1].
Consequently, small parametric and non-parametric
changes in the combustion process may cause unpre-
dictable anomalies (i.e. deviations from the nominal
behaviour) and thereby lead to significant degrada-
tion in the combustor performance over time [2]. The
resulting evolution of anomalies is often very difficult
to detect from measurements of the process vari-
ables unless the embedded statistical information is
extracted via analytical tools of signal processing and
pattern identification [3, 4].

The desired goal of thermal pulse combustors is to
attain constant-amplitude self-sustained oscillations,
which is considered as the nominal behaviour [2].
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However, a change in the value of the friction coef-
ficient, possibly due to wear, fatigue, and corrosion,
results in progressive deterioration of flow conditions
that adversely affect the stable operation of the com-
bustor [5]. Results from an experimentally validated
model [1] show that even a slight variation in this
parameter may result in instabilities culminating in
flame extinction or a steady flame. The objective of
this paper is to estimate the tailpipe friction coefficient
of thermal pulse combustors via statistical analysis of
time-series data of pressure oscillations.

Pressure oscillation monitoring and estimation of
the tail-pipe friction coefficient for prediction of flame
extinction in thermal pulse combustors are addressed
in this paper as solutions of the following two inter-
related problems:

(a) the forward (analysis) problem of anomaly detec-
tion and generation of the respective statistical
information;

(b) the inverse (synthesis) problem of identifica-
tion of anomalous parameter(s) (e.g. statistical
quantification of the friction coefficient) through
assimilation and analysis of the above-mentioned
statistical information.

As a partial solution to the forward problem,
previous publications [6, 7] have reported detection
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of performance degradation in aircraft gas turbine
engines; however, estimation of the fault parameters
was not addressed. This paper addresses both the
forward and inverse problems for early detection of
combustion instability and estimation of the tailpipe
friction coefficient. The underlying concepts are tested
on an experimentally validated model of a generic
thermal pulse combustor model.

The paper is organized as follows. Section 2 briefly
describes the thermal pulse combustor kinetics and
presents a lumped parameter model. Section 3
reviews underlying concepts and essential features of
symbolic dynamic filtering (SDF) for anomaly detec-
tion [8]. Section 4 presents formulation of the forward
and inverse problems. Section 5 presents the results of
SDF-based anomaly detection and statistical analysis
for parameter estimation. The paper is summarized
and concluded in section 6 along with recommenda-
tions for future research.

2 MODEL OF A GENERIC THERMAL PULSE
COMBUSTOR

While the details of the non-linear dynamic model of
a generic thermal pulse combustor are available in
earlier publications [1, 9], this section presents a sum-
mary of the governing equations for completeness and
self-sufficiency of the paper.

The main feature of a thermal pulse combustor is
self-sustained pressure oscillations that accrue from
strong coupling between combustion dynamics and
gas flow in the tailpipe. The mechanism of thermal and
pressure pulses has been explained in literature [1].
The drag force is represented in the present model by
the tailpipe friction coefficient [10]. A schematic view
of the combustion zone and the tailpipe is shown in
Fig. 1.

The non-linear dynamic model is described in terms
of four first-order coupled differential equations,
resulting in four dimensionless state variables: tem-
perature (T̃ ), pressure (P̃), fuel mass fraction (Yf ) and

exit velocity (ũ)
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The combustion time (τc) is calculated based on
a single-step Arrhenius kinetics for stoichiometric
mixtures at inlet

Ṙf = −Bν0T 1/2ρ2Y 2
f exp(−Ta/T ) (6)

Equations (2) and (6) yield the chemical reaction time

τc =
[

B′�hc

CpT0

P̃2

T̃ 3/2
Y 2

f exp(−T̃ a/T̃ )

]−1

(7)

where the constant terms are merged into a single
parameter B′. An expression for Ze, needed to close the
system of equations, is obtained from the conservation
of mass within the tailpipe as

Ze = ρ0
ũ
τf

P̃e

T̃ e

(8)

The pressure and temperature in the tailpipe are
related to the combustor variables through isentropic

Fig. 1 Schematic of a generic thermal pulse combustor with specified inlet and tailpipe parameters
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Table 1 Model parameters

Parameter Value Parameter Value

As 0.0167 m2 h 120W/m2 K
V 1.985 × 10−4 m3 P0 1 × 105 Pa
B′ 3.85 × 108 Ta 50 K
Cp 1200 J/kg K T0 300 K
Dtp 0.0178 m Tw 1000 K
Lc1 0.0119 m γ 1.27
Lc2 0.7434 m ρ0 1.12 kg/m3

Ltp 0.61 m tf 0.027 s
Yfi 0.06 �hc 4.6 × 107 J/kg

relations as

T̃ e = T̃ − ũ2L2
c2

2CpT0τ
2
f

, P̃e = P̃

(
T̃ e

T̃

)γ /(γ−1)

(9)

The above pulse combustor model follows the type
and geometry as reported in [1]; the kinetic parame-
ters of the model are listed in Table 1. To initiate the
reaction, the initial temperature is raised to five times
the ambient temperature. The choice of the initial time
step affects only the initial transients that last for a
period t � 0.2 s. The anomaly detection analysis, pre-
sented in this paper, is based on time series data of
combustor pressure oscillations in the time interval
of 1.0 � t � 1.2 s. The data sampling rate is ∼0.1 MHz.
Thus, the generated data set is sufficiently large for
post-processing analysis.

3 REVIEW OF SYMBOLIC DYNAMIC FILTERING

This section reviews the underlying concepts and
essential features of symbolic dynamic filtering (SDF)
for anomaly detection. While the details and applica-
tions of SDF are reported in previous publications [8,
11], the key features of the SDF procedure are briefly
summarized here for clarity and completeness of this
paper.

Detection of anomaly patterns is formulated as a
two-time-scale problem. The fast-time scale is related
to response time of the process dynamics (e.g. com-
bustor pressure oscillations). Over the span of a given
time-series data sequence, dynamic behaviour of the
system is assumed to remain invariant, i.e. the pro-
cess is quasi-stationary at the fast-time scale. In other
words, the variations in the behaviour of system
dynamics is assumed to be negligible on the fast-time
scale. The slow-time scale is related to the time span
over which parametric or non-parametric changes
may occur and exhibit non-stationary dynamics that
can be associated with the evolving anomalies (e.g.
degradation of the friction coefficient in the tailpipe
wall leading to flame extinction).

In general, a long time span in the fast scale is a tiny
(i.e. several order of magnitude smaller) interval in the

slow scale. For example, change in friction coefficient
in a pulse combustor, causing a detectable change in
the dynamics of the system, occurs on the slow scale
(possibly in the order of several hundreds of opera-
tion hours); the combustor behaviour is essentially
invariant on the fast scale over which data acquisition
is done (approximately in the order of milliseconds).
Nevertheless, the notion of fast- and slow-time scales
is dependent on the specific application, operating
conditions, and environment. The concept of two time
scales is illustrated in Fig. 2.

3.1 Symbolic dynamics, encoding, and state
machine

This section briefly describes the concepts of symbolic
dynamics, encoding non-linear system dynamics from
observed time-series data, state machine construc-
tion, and computation of the state probability vectors
that are representatives of the evolving characteristics
of the dynamical system.

Let � ∈ R
n be a compact (i.e. closed and bounded)

region, within which the trajectory of the dynamical
system is circumscribed as illustrated in Fig. 3. The
region � is partitioned into a finite number of (mutu-
ally exclusive and exhaustive) cells, so as to obtain a
coordinate grid. Let the cell, visited by the trajectory at
a time instant, be denoted as a random variable taking
a symbol value from the alphabet �. An orbit of the
dynamical system is described by the time-series data
as a sequence {x0, x1, . . . , xk , . . .}, where each xi ∈ �.
Thus, the trajectory of the orbit passes through or
touches one of the cells of the partition. Each initial
state x0 ∈ � generates a sequence of symbols defined
by a mapping from the phase space into the symbol
space as

x0 → s0s1s2 · · · sk · · · (10)

where each si, i = 0, 1, . . . , takes a symbol from the
alphabet �. The mapping in equation (10) is called
symbolic dynamics as it attributes a legal (i.e. phys-
ically admissible) symbol sequence to the system
dynamics starting from an initial state. Symbolic
dynamics can be viewed as coarse graining of the

Fig. 2 Pictorial view of the two time scales: slow-time
scale of anomaly evolution and fast-time scale of
data acquisition
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Fig. 3 Concept of symbolic dynamic filtering

phase space, which is subjected to (possible) loss of
information resulting from granular imprecision of
partitioning boxes. However, the essential robust fea-
tures (e.g. periodicity and chaotic behaviour of an
orbit) are expected to be preserved in the symbol
sequences through an appropriate partitioning of the
phase space [12, 13]. Figure 3 shows the conversion of
the symbol sequence into a finite-state machine and
generation of state probability vectors [8] as briefly
explained in the following section.

3.2 Summary of anomaly detection procedure

This section summarizes the anomaly detection algo-
rithms based on the SDF method [8, 11].

1. Time-series data acquisition at the nominal condi-
tion, at time epoch t0. Sensor data (e.g. time series
of pressure oscillations in a thermal pulse combus-
tor) are collected when the system is assumed to be
operating in the nominal condition.

2. Generation of wavelet transform coefficients, ob-
tained with an appropriate choice of the wavelet
basis [14]. A crucial step in SDF is partitioning of the
phase space for symbol sequence generation [13].
Since the structure of phase space may become
very complex for high-dimensional systems or may
even be unknown for unmodelled systems, an
alternative way is to extract information from the
time-series data of appropriate sensors. Once the
time-series data set is collected, it is transformed
to the wavelet domain by appropriate choice of
scale(s) and basis [11]. A wavelet-based partitioning
method [11] has been adopted for construction

of symbol sequences from the time-series data.
The wavelet transform [14] largely alleviates the
difficulties of phase-space partitioning in case of
high dimensions and is particularly effective for
noisy data from high-dimensional dynamical sys-
tems [11]

3. Maximum entropy partitioning of the wavelet space
at the nominal condition [11] and generation of
symbol sequence. In this method of data space parti-
tioning, the regions with more information are par-
titioned finer and those with sparse information are
partitioned coarser. This is achieved by maximizing
the Shannon entropy, which is defined as

S = −
|�|∑
i=1

pi log(pi)

where pi is the probability of the ith segment of
the partition and summation is taken over all seg-
ments. The partitioning is fixed for subsequent
time epochs. Each segment of the partitioning
is assigned a particular symbol and a symbol
sequence is generated.

4. Generation of statistical information at the reference
condition. A finite-state machine is constructed
from the symbol sequence for alphabet size |�|
and the window length D. (Note: the structure of
the finite-state machine is also fixed for subse-
quent slow-time epochs.) The probability vector p0

is calculated at the (slow-scale) time epoch t0 of
the nominal condition, whose elements represent
the state probabilities of the hidden Markov model
constructed from the symbol sequence [8]. As a
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consequence of maximum entropy, p0 has uniform
distribution, i.e. each element has equal probability
(see reference [11] for details).

5. Time-series data acquisition at subsequent slow-
time epochs of (possible) anomaly evolution.
Ensemble of data is collected from the same
sensor(s) as in the nominal condition at time
epoch t0, at subsequent (slow-scale) time epochs,
t1, t2, . . . tk , . . . , and converted to the wavelet
domain to generate respective symbol sequences
based on the fixed partitioning at the time epoch t0.

6. Generation of statistical information at (possi-
bly) anomalous conditions. The probability vec-
tors p1, p2, . . . , pk , . . . at (slow-scale) time epochs,
t1, t2, . . . tk , . . . are calculated from the respective
symbol sequences.

7. Computation of scalar anomaly measures. The
anomalies are quantified as pattern changes
(i.e. deviations from the nominal pattern) and
are characterized by a scalar-valued function,
called Anomaly Measure ψ . An appropriate dis-
tance function d(•, •) is chosen to calculate the
scalar anomaly measures ψ1, ψ2, . . . , ψk , . . . at time
epochs, t1, t2, . . . tk , . . . based on the distance of
these probability vectors with respect to the nomi-
nal condition (see reference [8] for details) such that

ψk ≡ d(pk , p0)

Capability of SDF has been demonstrated for
anomaly detection at early stages of gradually evolv-
ing anomalies by real-time experimental validation.
Application examples include active electronic cir-
cuits [15] and fatigue damage monitoring in polycrys-
talline alloys [16]. Applications of SDF have also been
reported for fault detection and isolation in gas tur-
bine engines [6, 7]. In this regard, major advantages of
SDF are listed below

(a) robustness to measurement noise and spurious
signals [11];

(b) adaptability to low-resolution sensing due to the
coarse graining in space partitions [8];

(c) capability for early detection of anomalies because
of sensitivity to signal distortion and real-time
execution on commercially available inexpensive
platforms [15].

4 FORMULATION OF FORWARD AND
INVERSE PROBLEMS

The issues of combustion instability monitoring and
estimation of the tailpipe friction coefficient are
addressed as two inter-related problems: 1) the for-
ward (or analysis) problem and 2) the inverse (or
synthesis) problem. In general, the forward problem
consists of prediction of anomalies from simulation

or experimental data, given a priori knowledge of the
underlying model parameters. In the absence of a
reliable model, this problem requires generation of
behavioural patterns of the system evolution through
off-line analysis of an ensemble of the observed time-
series data. On the other hand, the inverse problem
consists of off-line assimilation of the statistical infor-
mation produced in the forward problem, followed by
on-line estimation of the critical parameter(s) (such
as friction coefficient) that characterize the possible
anomalies based on the observed data. Inverse prob-
lems may become ill-posed and are challenging due
to the absence of a unique solution or non-existence
of an exact solution [17]. This section delineates the
objectives, description, and the solution procedure of
the forward and the inverse problems.

4.1 The forward problem

The objective of the forward (analysis) problem is to
extract behavioural information of the dynamic sys-
tem as it responds to parameter variations in the slow
scale as a result of evolving anomaly or anomalies.
Specifically, the forward problem aims at detecting
the deviations in the statistical patterns in the time-
series data, generated at different time epochs in the
slow-time scale, from the nominal behaviour pattern.
The solution procedure of the forward problem is
summarized below.

F1. Collection of fast-scale data at different slow-
scale time epochs to characterize the statistical
behaviour of the system with anomaly evolution.

F2. Analysis of these data sets using the SDF method
as discussed in section 3 to generate pattern vec-
tors defined by the probability distributions at the
corresponding slow-time epochs. The profile of
anomaly measure is then obtained from the evo-
lution of the statistical pattern vector with respect
to that at the nominal condition.

F3. Generation of a family of such anomaly measure
profiles by repeating the numerical experiments
or laboratory experiments under conditions sim-
ilar to the extent of inherent component and
parameter uncertainties. This procedure provides
a statistical description of anomaly evolution (i.e.
reduction of friction coefficient) in the presence
of parameter uncertainties (such as fluctuations
in combustor wall temperature) in the dynamical
system under observation. This step is required
in systems where there is a source of paramet-
ric or non-parametric uncertainty. In the case of
a pulse combustor, degradation in the tailpipe
friction coefficient is considered as the evolution
of anomaly and fluctuations in the combustor
wall temperature, and the fuel/air ratio inflow is
considered as possible sources of uncertainties.
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4.2 The inverse problem

The objective of the inverse problem is estimation of
the varying system parameter(s) that could be respon-
sible for anomaly growth. This issue is directly related
to the problem of failure prognosis. Although the
physics-based model of generic thermal pulse com-
bustors is experimentally validated, it is deterministic,
i.e. the model only represents mean-value characteris-
tics of the uncertain combustion dynamics. Therefore,
pertinent statistical information must be generated to
obtain reliable confidence bounds of the estimated
parameters, which is necessary for robust decision-
making and control. For parameter estimation in a
given combustor that has its own signature, it is nec-
essary to make decisions based on the measurement
data collected from this specific combustor and the
statistical information that has been already generated
off-line.

Analysis of the observed time-series data and infor-
mation derived from the forward problem are com-
bined to generate parameter estimates. For example,
in the current problem, degradation of flow character-
istics through the combustor tail-pipe due to change
in the friction coefficient has been selected as the
parameter for anomaly detection. However, uncer-
tainties such as fluctuations in the combustor wall
temperature lead to an ensemble of anomaly evo-
lution profiles under otherwise identical operating
conditions. Therefore, as a precursor to the solution
of the inverse problem, generation of an ensemble
of time-series data sets is required during the for-
ward problem for multiple numerical experiments
or laboratory experiments conducted under identical
operating conditions similar to the extent of inher-
ent component and parameter uncertainties. With the
current technique, estimates of the friction coefficient
can be obtained at a slow-time epoch within a cer-
tain confidence interval. The statistical information
derived from the ensemble of anomaly measure pro-
files, generated in the forward problem, are used to
obtain the estimates of the friction coefficient as time
evolves.The solution procedure of the inverse problem
consists of the following steps.

I1. Generation of a pattern matrix ϒ from the family
of anomaly measure profiles derived in step F3 of
the forward problem (see details in section 5.2.1).

I2. Hypothesis of a probability distribution for the
anomaly (for example, deviation in the friction
coefficient f ) by using statistical goodness of
fit [18], and estimation of the distribution param-
eters from the resulting pattern matrix.

I3. Collection of fast-scale data at the current slow-
scale time epoch as in step F1 of the forward
problem.

I4. Analysis of time-series data sets as described
in previous sections to calculate the anomaly

measure at the current time epoch. The proce-
dure is similar to step F2 of the forward problem.
As such, the information available at any partic-
ular instant is the value of the anomaly measure
calculated at that particular instant;

I5. Detection and estimation of an anomaly (if any)
based on the computed anomaly measure in step
I4 and the information derived in steps I1 and I2 of
the inverse problem.

5 CONCEPT VALIDATION, RESULTS, AND
DISCUSSION

This section presents a solution procedure for both
forward and inverse problems as well as generates and
discusses the pertinent results of statistical analysis.

5.1 Solution methodology of the forward problem
and results

As discussed earlier, the primary objective of the for-
ward problem is to identify the behavioural pattern
of damage evolution in a complex dynamical system
involving the uncertainties (if any) which can be both
parametric or non-parametric in nature. The solution
procedure of a part of the forward problem, i.e. early
detection of degradation of tailpipe friction coefficient
using SDF of pressure oscillations, is briefly reviewed
here for completeness.

5.1.1 Data analysis using SDF

The governing equations of the pulse combustor
model (see reference [1]) are solved as a system of cou-
pled non-linear ordinary differential equations. Time-
series data of pressure oscillations are generated for
the time period 1.0 s � t � 1.2 s which gives enough
time for the initial transients to die out. The com-
bustor pressure exhibits self-sustained oscillations at
the tailpipe friction coefficient f = 0.0300 [1], which
is considered to be the desired nominal behaviour.
The friction coefficient is monotonically decreased at
decrements of �f = 0.0005 from the nominal value
of f = 0.0300 to represent a gradual reduction in the
drag force at consecutive slow-scale time epochs. Each
member of this ensemble of time-series data (at dif-
ferent values of f ) is analysed using the SDF-based
anomaly detection procedure to generate the cor-
responding state probability vectors {pk}. Anomaly
measures {ψk} are then calculated as distances from
the reference p0.

The alphabet size for partitioning and the window
depth are chosen to be |�| = 8 and D = 1, respec-
tively. The wavelet basis for the partitioning is chosen
to be MexicanHat ; this choice is made because of the
following facts.
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1. The characteristics of pressure wave signals are
such that the Mexican Hat basis yields an accept-
able solution with fewer coefficients in comparison
with different wavelet bases such as the Daubechies
family [11, 14].

2. The code for the Mexican Hat basis is available in
many commercial wavelet software libraries.

The length of each symbol sequence used in this paper
is 20 000, which satisfies the stopping rule presented
in reference [6] for tolerance η = 4.0 × 10−4 and the
number of states of the D-Markov machine, which is
equal to eight in this case.

5.1.2 Generation of statistical patterns

It is noted that, in a practical operation of the pulse
combustor, it is very difficult to maintain consis-
tent operating conditions, i.e. exact parameter values
devoid of fluctuations. For example, the combustor
wall temperature, fuel–air ratio, heat transfer coef-
ficient from the wall, and fuel–mass input to the
combustor are parameters that affect the dynamic
characteristics of the pulse combustor system, but it
is virtually impossible to control them accurately. Not-
ing this, it has been argued that a statistical description
of the anomaly measure is an appropriate indicator of
the anomaly state of the combustor.

To implement this logic, a family of anomaly
profiles were generated by repeating the simulation
experiments multiple times under varying operating
conditions. In the present simulation experiments,
combustor wall temperature was selected as the
source of system uncertainty. It has been shown by
extensive simulation and laboratory experimentation
[1] that corresponding to a wall temperature of 1000 K,
pressure oscillations of considerable amplitude are
observed in the combustion chamber. At lower wall
temperatures, the flame simply dies out, whereas at
higher temperatures, the oscillations stabilize to a
steady flame. This shows that the pulse combustor
dynamics are sensitive to the combustor wall temper-
ature. Moreover, in the operation of a pulse combustor,
fluctuations within ±0.2 per cent in the wall tem-
perature are expected even in very well-regulated
combustor systems.

To capture the effects of this uncertainty on the
system behaviour, and to investigate the robust-
ness of the SDF technique to such parameter fluc-
tuations, � = 50 simulation experiments have been
conducted on the simulation test-bed of a generic
pulse combustor [1] with the wall temperature vary-
ing from 998 to 1002 K around the nominal value of
1000 K. Each simulation experiment was conducted
for degrading friction coefficient values at different
slow-time epochs as described earlier. The SDF ana-
lysis of time-series data sets for different values of

Fig. 4 Ensemble of anomaly measure curves at different
wall temperatures

friction coefficient generated during each simulation
experiment provided an anomaly measure profile.
Figure 4 exhibits the family of profiles of the nor-
malized anomaly measures generated from � = 50
simulation experiments plotted against the friction
coefficient f . The region towards the right of f =
0.0260 (not shown in Fig. 4) is the flame extinction
region with no pressure oscillations and the region
towards the left (shown in Fig. 4) consists of self-
oscillations modes. Although the transition and flame
extinction regions offer insights into interesting phe-
nomena such as chaos and bifurcation, these regions
have not been investigated in the present work. The
rationale is that these phenomena are of no significant
consequence from the standpoint of early detection of
anomalies, which is the focus of this paper. For exam-
ple, from the perspectives of life-extending control and
resilient control, the operating region should maintain
a reasonably safe distance from the potential bifur-
cation points to avert potentially catastrophic events
such as flame extinction.

Richards et al. [1] have studied the effects of fric-
tion coefficient, heat loss from the combustion zone,
and flowrate on the performance of the combustor. It
would be an interesting study to determine and isolate
the effects of these multiple sources of uncertainties
and anomalies on the computed measure, and that is
part of the proposed future work.

The family of anomaly measure profiles, generated
in the forward problem, is used in the analysis of the
inverse problem to obtain an estimate of the friction
coefficient f at a particular time epoch as presented
below.

5.2 Solution methodology of the inverse problem
and results

The objective of the inverse problem is the iden-
tification of anomalies and estimation of the fault
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parameters based on the family of curves generated
in the forward problem. It is essential to detect the
evolving damage and to estimate the fault parame-
ters during the operating period of the mechanical
system, so that appropriate remedial action(s) can be
taken before the onset of widespread damage leading
to complete failure.

In the simulation experiments, sets of time-series
data, collected in the fast scale of pressure oscilla-
tions, are generated at the desired slow-scale time
epochs and are analysed using SDF to compute the
anomaly measure. However, based on this derived
value of the anomaly measure, the friction coefficient
f cannot be exactly determined due to the variations
observed in the family of anomaly profiles as reported
in Fig. 4. Since a unique map from the measure val-
ues to the parameter space does not exist due to
inherent uncertainties in the combustion dynamics,
the friction coefficient f is treated as a random vari-
able, where the computed values can be treated as the
(noise-corrupted) observables.

5.2.1 Generation of the pattern matrix

It is seen from the family of profiles in Fig. 4 that the
lower bound for the anomaly measure at the criti-
cal value of the friction coefficient parameter (i.e. f =
0.026) is ψ = 0.15, which signifies a transition from the
self-excited oscillations to extinction. Hence, conser-
vatively, the working range for the friction-coefficient
estimation problem has been selected from the range
of ψ = 0–0.15 for generation of the pattern matrix. This
range of ψ is then partitioned into m = 100 uniformly
spaced intervals. The family of anomaly measure pro-
files shown in Fig. 4 is then arranged in the form of a
pattern matrix ϒ of dimension � × m, such that each
column of ϒ lists the values of the friction-factor f
measured for � samples at the corresponding anomaly
measure interval. As such, the elements of any partic-
ular column of ϒ thus describes the distribution of the
random variable f for the specific interval of anomaly
measure associated with that column.

5.2.2 Estimation of the friction coefficient with
confidence bounds

In order to provide statistical information about the
distribution of the friction coefficient f for different
values of the anomaly measure ψ , the two-parameter
lognormal distribution [19] is hypothesized for each
column of ϒ . The lognormal probability density func-
tion of the random variable f is defined as

pf (x) = 1√
2πσx

exp
(−(�n(x) − μ)2

2σ 2

)
U(x)

where U(•) is the standard Heaviside unit step func-
tion; and μ and σ are, respectively, the mean and stan-
dard deviation of the Gaussian distributed random
variable �n(f ). The rationale for selecting lognormal
distribution of f , as opposed to other distributions
(e.g. normal or Weibull), is stated below.

1. Lognormal distribution is one directional on the
positive axis.

2. The shape of lognormal distribution is suitable to
model gradual failures in mechanical structures.

3. Many standard statistical tools become available for
further analysis by modelling the random variable
�n(f ) as Gaussian.

This makes the lognormal distribution a natural
choice for failure analysis of the combustor tailpipe.

The goodness of fit of the estimated friction
coefficient f has been examined by both χ2 and
Kolmogorov–Smirnov (KS) tests [19] and the number
of bins were chosen to be r = 7 for statistical ana-
lysis of the data set in each column of ϒ , so that
each bin contains about seven data points. Thus, with
the two-parameter distribution (i.e. k = 2), the degree
of freedom for statistical goodness of fit becomes
r − k − 1 = 4. The χ2-test and the KS test showed that,
for all of the m = 100 anomaly measure intervals, the
hypothesis of the two-parameter lognormal distribu-
tion passed the 5 per cent significance level which is
a conventional standard; the hypothesis test passed
the 10 per cent significance level for 95 per cent of all
anomaly measure intervals. Details of these statistical
tests are provided in standard text books such as [19].

Once the lognormal distributions of the family of
friction coefficients are obtained, the interval bounds
at different confidence levels are computed from the
properties of the lognormal distribution [18, 19]. Con-
fidence level signifies the probability that the esti-
mated parameter will lie within the corresponding
confidence interval. As an example, for a confidence
level of 95 per cent, the probability that the actual
parameter will lie between the specified confidence
interval is 95 per cent.

5.2.3 Validation and discussion of the results

Table 2 lists the following statistical information on
evolution of the friction coefficient f for different
values of the anomaly measure ψ .

1. Two parameters μ and σ of the lognormal distribu-
tion of the friction coefficient f , which are, respec-
tively, the mean and standard deviation of �n(f ).
Then, the mean and variance of f are μf = exp(μ +
σ 2/2) and σ 2

f = (exp(σ 2) − 1)μ2
f , respectively.

2. Maximum-likelihood estimate f̂ = exp(μ − σ 2) of
the friction coefficient f , i.e. where the probability
density function pf attains the maximum value.
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Table 2 Probability distribution parameters of the friction coefficient at different confidence levels

Parameter estimates of
lognormal distribution Confidence interval bounds of f̂

Maximum-likelihood
Mean of Standard estimate of friction 75% confidence 85% confidence 95% confidence

Anomaly �n(f ) deviation of �n(f ) coefficient
measure (μ) (σ ) f̂ Lower Upper Lower Upper Lower Upper

0.0125 −3.5193 1.9162 × 10−3 0.029 62 0.029 56 0.029 69 0.029 54 0.029 70 0.029 51 0.029 73
0.0250 −3.5284 2.2490 × 10−3 0.029 35 0.029 28 0.029 43 0.029 26 0.029 45 0.029 22 0.029 48
0.0375 −3.5357 3.5640 × 10−3 0.029 14 0.029 02 0.029 26 0.028 99 0.029 29 0.028 94 0.029 34
0.0500 −3.5418 3.6366 × 10−3 0.028 96 0.028 84 0.029 08 0.028 81 0.029 11 0.028 76 0.029 17
0.0625 −3.5477 3.7828 × 10−3 0.028 79 0.028 67 0.028 92 0.028 64 0.028 95 0.028 58 0.029 01
0.0750 −3.5541 3.4618 × 10−3 0.028 61 0.028 50 0.028 72 0.028 47 0.028 75 0.028 42 0.028 80
0.0875 −3.5611 3.6418 × 10−3 0.028 41 0.028 29 0.028 53 0.028 26 0.028 59 0.028 21 0.028 61
0.1000 −3.5695 3.2168 × 10−3 0.028 17 0.028 07 0.028 28 0.028 04 0.028 30 0.027 99 0.028 35
0.1125 −3.5816 6.3905 × 10−3 0.027 83 0.027 63 0.028 04 0.027 58 0.028 09 0.027 49 0.028 18
0.1250 −3.5974 10.5580 × 10−3 0.027 40 0.027 06 0.027 73 0.026 98 0.027 81 0.026 83 0.027 97
0.1375 −3.6127 10.4300 × 10−3 0.026 98 0.026 66 0.027 30 0.026 58 0.027 39 0.026 43 0.027 54
0.1500 −3.6253 8.7480 × 10−3 0.026 64 0.026 37 0.026 91 0.026 31 0.026 98 0.026 19 0.027 10

Maximum-likelihood estimate f̂ = exp(μ − σ 2), mean μf = exp(μ + σ 2/2), and variance σ 2
f = (exp(σ 2) − 1)μ2

f .

3. Confidence interval bounds for the friction coeffi-
cient f , at three different confidence levels of 95, 85,
and 75 per cent.

Figure 5 exhibits the plots of confidence interval
bounds at these three confidence levels along with the
plot of the mean of the friction coefficient f . Figure 5
also shows the plots of the anomaly measure ψ for
three additional test cases, marked as validation runs
1, 2, and 3. These three test cases are not included in
� = 50 test cases that generated the results in Table 2.
It is seen that the profiles of these test cases lie within
the 85 per cent confidence interval for the entire range
of the anomaly measure.

For the computed anomaly measure ψ at a (slow-
scale) time epoch, Table 2 yields an estimate of
the mean and standard deviation of the lognormal-
distributed friction coefficient f . For example, if the
computed value of ψ corresponds to one of the pre-
selected values of anomaly that have been used for
generating the pattern matrix ϒ , then mean and stan-
dard deviation of f can be directly generated from
Table 2. In general, these parameters can be computed
as a function of ψ by interpolation of the columns of
the pattern matrix ϒ .

For the purpose of illustration, the interval bounds
at 95 per cent confidence level are shown in Fig. 5 at
anomaly measure ψ = 0.05; the corresponding lower

Fig. 5 Anomaly evolution and estimation of the friction coefficient
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bound is 0.028 76 and the upper bound is 0.029 17.
An estimate f̂ of the friction coefficient is chosen as
the maximum-likelihood estimate, i.e. at the point of
maximum probability, as seen in Table 2. It should be
noted that, unlike the normal distribution, the mean
for lognormal distribution does not correspond to the
point of maximum probability. Specifically, for log-

normal distribution, f̂ /μf = exp(−3/2σ 2) < 1. Since f̂
may serve as a control parameter for mitigation of
flame extinction and other failures, it is logical to have
a more conservative estimate at the point of maximum
probability rather than the mean. In general, an esti-
mate f̂ of the friction coefficient should be chosen by
the problem at hand.

As reported in Fig. 5, the variance of the esti-
mate f̂ of friction coefficient grows with decreasing
friction-coefficient, as indicated by the width of confi-
dence intervals for any particular value of the anomaly
measure. This observation is explained by the fact
that, with decreasing friction coefficient, the com-
bustor system slowly approaches a highly oscillatory
near-extinction regime, characterized by increasingly
chaos-like pressure fluctuations. As a result, the con-
fidence in the estimated friction coefficient from
such data is expected to deteriorate. However, near
the nominal condition, the pressure fluctuations are
much more well-behaved, which yields a reasonably
accurate estimate of the combustor’s health status,
and consequently an early warning on probability of
flame extinction can be issued with a high level of
confidence.

The information from Table 2 and Fig. 5 (including
the estimate of f and different confidence intervals)
can be utilized to monitor the combustor tailpipe fric-
tion coefficient and to generate early warnings of flame
extinction.

6 SUMMARY, CONCLUSIONS, AND FUTURE
WORK

Recent literature has reported potential applications
of SDF [8] for early detection of forthcoming fail-
ures in human-engineered complex systems [16]. The
work reported in this paper formulates and validates
a dynamic data-driven statistical method for anomaly
detection in thermal pulse combustors and estima-
tion of the tailpipe friction coefficient as a failure
precursor; the objective is the prognosis of forthcom-
ing operational disruptions (e.g. flame extinction) well
in advance of their occurrence. The detection proce-
dure is demonstrated by simulation on an experimen-
tally validated model of a thermal pulse combustor [1].
The algorithm of the SDF-based anomaly detection
is built upon the principles of Information Theory,
Symbolic Dynamics, and Statistical Pattern Recogni-
tion. Specifically, the paper delineates a method of

utilizing time series of pressure oscillation signals for
estimating the friction coefficient of the tailpipe wall of
thermal pulse combustors, along with corresponding
statistical confidence bounds.

The friction coefficient is a representation of the
drag force in the tailpipe, which can be directly mea-
sured using sensors (e.g. load cell or strain gauge)
and hence this parameter estimation method can
be experimentally validated. Since the transition to
unstable combustion dynamics, resulting from varia-
tions in several different parameters, is found to follow
similar routes, SDF is potentially a useful tool for
detecting various types of anomalies in experimental
combustors.

Further theoretical, computational, and experimen-
tal work is necessary before the SDF-based anomaly
detection tool can be considered for incorpora-
tion into the instrumentation and control system of
commercial-scale pulse combustors. For example, the
lumped parameter model needs to be calibrated by a
computational fluid dynamic (CFD) model of a ther-
mal pulse combustor before experimental validation
of anomaly detection is planned and executed on a
laboratory-scale combustor.

From the perspectives of anomaly detection in com-
bustion and other complex dynamical systems, future
research is recommended in the following areas:

(a) comparative evaluation of SDF with existing pat-
tern recognition tools;

(b) identification and estimation of multiple param-
eters in the presence of multi-source multi-time-
scale anomalies;

(c) quality assurance and automated calibration of
the sensor time-series data;

(d) application of the above algorithms to informa-
tion-based real-time control.
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APPENDIX

Notation

Ae tailpipe cross-sectional area (m2)
As combustor surface area (m2)

B pre-exponential factor for single step
chemical kinetics (m3kg−1K−1/2s−1)

Cp specific heat at constant pressure (J/kg K)
D window length on a symbolic sequence
Dtp diameter of the tailpipe (m)
f friction coefficient (dimensionless)

f̂ maximum-likelihood estimate of friction
coefficient

h convective heat transfer coefficient
(W/m2 K)

k number of parameters in a statistical
distribution

� number of simulations performed
Lc1 (V/As), first characteristic length (m)
Lc2 (V/Ae), second characteristic length (m)
Ltp length of the tailpipe (m)
m number of partitions used to form the

pattern matrix
ṁe mass flowrate at combustor exit (kg/s)
ṁi mass flowrate at combustor inlet (kg/s)
pj probability of jth segment of partition
p0 probability vector at nominal condition
pk probability vector at kth (slow-scale) time

epoch
P pressure in the combustion zone (Pa)
P̃ (P/P0), normalized pressure (dimensionless)
Pe pressure at the tailpipe entrance (Pa)
P̃e (Pe/P0), normalized tailpipe pressure

(dimensionless)
P0 ambient pressure (Pa)
r number of bins in histogram construction
R (γ − 1)Cp/γ , gas constant (J/kg K)
Ṙf fuel reaction rate (kg/m3 s)
S Shannon entropy of the symbol sequence
SDF symbolic dynamic filtering
t time in the fast scale of process dynamics
tk kth time epoch in the slow scale
T temperature in the combustion zone (K)
T̃ (T/T0), normalized temperature

(dimensionless)
Ta activation temperature (K)
Te temperature at the tailpipe entrance (K)
T̃ e (Te/T0), normalized tailpipe temperature

(dimensionless)
Tw wall temperature in the combustion

zone (K)
T̃ w (Tw/T0), normalized wall temperature

(dimensionless)
T0 ambient temperature (K)
u gas velocity in the tailpipe (m/s)
ũ u/(Lc2/τf ) (dimensionless)
V volume of the combustor (m3)
Yf average fuel mass fraction in the combustor

chamber (dimensionless)
Yfi fuel mass fraction at the combustor inlet

(dimensionless)
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Ze (ṁe/V ) (kg/m3 s)
Zi (ṁi/V ) (kg/m3 s

γ ratio of specific heats (dimensionless)
�f decrement in f from one slow-time epoch to

another
�hc enthalpy of combustion (J/kg)
η tolerance in steady-state probability

variation
μ mean of a random variable
ν0 stoichiometric oxygen–fuel ratio by mass

(dimensionless)

ρ density in the combustion zone (kg/m3)
ρ0 ambient density (kg/m3)
σ standard deviation of a random

variable
� alphabet or set of symbols for partitioning
|�| cardinality of the alphabet �

τc characteristic chemical reaction time (s)
τf characteristic flow time (s)
τh characteristic heat transfer time (s)
ϒ pattern matrix
χ2 statistical test
ψk anomaly measure at kth time epoch
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