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Abstract This paper presents a statistical mechanics concept for identification of behavioral
patterns in complex systems based on measurements (e.g., time series data) of macroscop-
ically observable parameters and their operational characteristics. The tools of statistical
mechanics, which provide a link between the microscopic (i.e., detailed) and macroscopic
(i.e., aggregated) properties of a complex system are used to capture the emerging infor-
mation and to identify the quasi-stationary evolution of behavioral patterns. The underlying
theory is built upon thermodynamic formalism of symbol sequences in the setting of a gen-
eralized Ising model (GIM) of lattice-spin systems. In this context, transfer matrix analysis
facilitates construction of pattern vectors from observed sequences. The proposed concept is
experimentally validated on a richly instrumented laboratory apparatus that is operated un-
der oscillating load for identification of evolving microstructural changes in polycrystalline
alloys.

Keywords Complex systems · Generalized Ising model · Lattice spin systems ·
Thermodynamic formalism · Pattern analysis

Nomenclature
B Block space of all n-blocks for all n ∈ N

B(n) n-block space
|B(n)| Size of n-block space
d(•, �) Distance between pattern vectors • and �
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Eθϕ Interaction energy of transition from qθ to qϕ

Fθϕ General Interaction energy function for transition from qθ to qϕ

H Hamiltonian for a dynamical system
� Number of block symbol transformations of a symbol sequence
M Mapping from the phase space to the symbol space
N(•) Frequency count of •
n Length of a symbol sequence
P(•) Probability of an event •
psj Pattern vector at slow-time epoch tsj
pref Pattern vector at the reference condition
Q Set of ε-equivalence classes
|Q| Number of ε-equivalence classes
Q[�] Set of ε-equivalence classes for a symbol sequence generated after � block symbol

transformations
qθ An ε-equivalence class
q

[�]
θ An ε-equivalence class for a symbol sequence generated after � block symbol

transformations
q

[�]
θk

An ε-equivalence class observed at time index k

r Order of the Markov process
S Shannon entropy of the symbol sequence
S Spin alphabet
|S| Spin alphabet size
sk Spin at lattice site k

T Transfer matrix
T Temperature of a dynamical system
T sj Transfer matrix generated at slow-time epoch tsj
T ref Transfer matrix generated at reference, i.e., the nominal condition
tsj Slow time epoch sj

U sj Pattern matrix derived from transfer matrix at slow-time epoch tsj
U ref Pattern matrix generated at reference, i.e., the nominal condition
u Input excitation vector of a dynamical system
x State vector in the phase space
xj State vector at (fast) time instant j
x0 Initial state vector
y Measurement vector
Z Partition function for a dynamical system
β Inverse of a temperature-like parameter for a dynamical system
γ Measurement model
δ Transition mapping from equivalence class to another
η Tolerance for the stopping rule
η (Non-additive) process noise
ϕ Map of a dynamical system
μ Macroscopic parameter indicating deviation from the reference condition
ν (Additive) measurement noise

 A compact region in the phase space
ξ A set of partitioning cells of 

π Entropy rate of a symbolic stochastic process
� Symbol alphabet that labels the partition segments
|�| Alphabet size
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�[i] Symbol alphabet used at ith block symbol transformation
|�[i]| Size of �[i]

σk A symbol at (fast scale) time index k←−σ (n)
k n-block ending at current time index k

�θϕ Strength classifier for transition from qθ to qϕ

χ The magnitude of shift of a window on a symbol sequence

1 Introduction

Statistical mechanics provides an elaborate explanation of emergence of macroscopic behav-
ior in a complex system, where the complexity accrues from the activities of its microscopic
constituents. The macroscopic and microscopic behavior could be linked by statistical pat-
terns that represent the probability distribution of microstates [1]. The concepts of statistical
mechanics, which were originally developed to study the collective properties of physical
systems (e.g., solids, liquids, and gases), have been extensively applied to investigate a di-
verse range of systems including chemical & biological (e.g., colloids, emulsions, liquid
crystals, complex fluids, polymers, bio-polymers and cellular structures) [2–4], economical
and sociological [5, 6], ecological [7], and a variety of network systems [8–10]. The funda-
mental principles of equilibrium statistical mechanics are used to investigate stationary and
quasi-stationary behavior of complex systems. This discipline is known as thermodynamic
formalism of complex systems [11–13] in the applied physics literature. Applications of sta-
tistical mechanics have been largely successful in the above studies, because it is possible
to identify a hierarchical structure based on the order and complexity associated with each
level of the hierarchy. Usually the top (i.e., macroscopic) level represents relatively simple
and aggregated behavior that emerges from the underlying complex behavior at the lower
(i.e., microscopic) level(s). In general, this hierarchy may consist of a multi-tier structure
with each tier having a different level of complexity. For example, in nuclear reactor sys-
tems, complexity varies on a multi-scale structure due to wide ranges of length, time and
energy scales. Since a hierarchical organization of complexity is commonly exhibited by
many natural and human-engineered complex systems, statistical mechanics serves as an
ideal conceptual platform to study these systems [12].
A critical issue in the theory of complex dynamical systems is to construct a mathematical

model to capture the essentials of the underlying process dynamics. Such a model must be
computationally tractable and preferably have a closed form solution. However, commonly
known dynamical systems (e.g., human-engineered complex systems) are often surmounted
by different problems that restrict applications of the fundamental laws of physics to achieve
the required modeling accuracy and precision. These problems include: (i) high dimension-
ality of the phase space, (ii) nonlinear and non-stationary (possibly chaotic) dynamics [14],
(iii) parametric or non-parametric uncertainties, (iv) random intrinsic or exogenous excita-
tions, and (v) environmental disturbances. The modeling efforts are further restricted if the
operating conditions are extended beyond the nominal operational envelopes due to transient
and emergency situations or due to natural evolution of anomalies [15]. (Note: an anomaly,
benign or malignant, in a dynamical system is defined as a deviation of its current behav-
ioral pattern from its nominal behavior pattern.) For example, no existing model in the cur-
rent state-of-the-art can capture the behavior of fatigue damage evolution in polycrystalline
alloys at the grain level [16] by solely relying on the basic fundamentals of physics. Fur-
thermore, the available models may not be able to provide a closed form solution in general;
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Fig. 1 Measurement of a
physical process by a set of
observable parameters

therefore, the model outputs have to be generated via numerical techniques (e.g., nonlin-
ear finite-element methods), which are often computationally expensive and infeasible for
real-time applications.
The above discussion evinces the need for alternative means of information extraction to

capture the underlying dynamics of complex systems. Instead of solely relying on approx-
imate mathematical models (possibly with no established error bounds), the information
sources must include adequate sensor data as time series of the critical observable para-
meters and their operational characteristics. Nevertheless, the sensor information should be
augmented, as necessary, by the information derived from the auxiliary analytical models of
the system if such models are available. Based on the information ensemble (e.g., combined
sensor-based and model-based), the problem is formulated as observation-based estimation
of the underlying dynamics of a complex system, as depicted in Fig. 1. This concept requires
identification of macroscopic properties from the underlying behavior exhibited by the ob-
served time series data [17]. To achieve this goal, the information contained in time series
data is compressed in terms of behavioral patterns that are represented by statistical distrib-
utions of critical parameters of the system. The resulting macroscopic information, derived
from these behavioral patterns, could be used for performance and degradation monitor-
ing, and decision & control under adverse conditions and emergency situations. Technical
literature has shown conceptual similarities between the disciplines of complex dynamical
systems and statistical mechanics [11–13, 18, 19], which suggest that the theory of ther-
modynamic formalism has the potential for extraction of the macroscopic properties of a
dynamical system from the observed information ensemble [20, 21].
The primary objective of this paper is to formulate a methodology, based on the princi-

ples of statistical mechanics, to construct behavioral patterns from the observed sensor data
that represent the evolving characteristics of the underlying process dynamics of the system.
As stated earlier, in absence of appropriate mathematical models, the concept of behavioral
pattern identification in complex systems is based on measurements (i.e., time series data) of
observable parameters. The methodology presented in this paper is built upon the principles
of lattice-spin systems in the setting of symbolic representations (i.e., symbol sequences) of
the underlying process dynamics. Such symbolic representations are generated by appropri-
ate partitioning of the observed time series data [22, 23] and are analogous in structure to
lattice-spin systems [1, 13, 24]. The construction of an Ising model from symbol sequences
facilitates formulation of a transfer matrix that is a Perron-Frobenius operator [13]. Subse-
quently, the pattern vector is derived from the transfer matrix, as the sum-normalized left
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eigenvector of the unity eigenvalue, to represent the underlying process dynamics of the
system. In this context, this paper formulates the pattern identification problem using the
tools of lattice spin systems to capture the stationary and quasi-statically evolving behavior
of the system. In this paper, the thermodynamic formalism of symbol sequences is based
on the generalized Ising model (GIM), i.e., the Potts model [25–28], that describes a lattice
spin system for a spin alphabet S with |S| ≥ 2. (Note: The Potts model is a generalization
of the Ising model [29, 30] that is restricted to the binary alphabet, i.e., |S| = 2).
The paper presents analytical relationships between the concepts of statistical mechanics

and symbolic dynamics and applies these multidisciplinary concepts to identify behavioral
patterns of complex dynamical systems. This paper addresses the needs of diverse research
communities in the disciplines of applied physics and related sciences, and has, therefore,
succinctly presented some of the fundamental details for self sufficiency and completeness.
The underlying theories, presented in this paper, have been experimentally validated on a
laboratory apparatus for early detection of gradually evolving microstructural damage in
polycrystalline alloys under oscillating load. Time series data have been collected from ul-
trasonic sensors on this apparatus. Based on these data sets, efficacy of pattern identification
method has been demonstrated in terms of early detection of behavioral pattern changes due
to (possible) evolution of anomalies. From these perspectives, major contributions of the
paper are delineated below:

• Analytical formulation of an analogy between the concepts of symbolic dynamics and
lattice spin systems.

• Generalized Ising model formalism for an rth (r ≥ 1) order Markov symbol sequence
derived from the observed data set.

• Construction of pattern identification algorithms based on transfer matrix analysis of gen-
eralized Ising models.

• Generalization of the pattern identification algorithms to include coarser representations
of dynamical system via block symbol transformations of the symbol sequence.

• Experimental validation of pertinent theoretical results on a laboratory apparatus.
The paper is organized in five sections, including the present section, and two appen-

dices. Section 2 presents a statistical mechanics perspective of dynamical systems. Section 3
briefly describes the basic concepts of symbolic dynamics and presents an analogy between
a lattice spin system and a symbolic representation of a statistically stationary dynamical
system. In this section, a generalized Ising model (GIM) formalism of symbol sequences is
presented and the transfer matrix method is adopted for pattern identification. Section 4 pro-
vides pertinent experimental results for validation of the concepts on a laboratory apparatus.
The paper is concluded in Sect. 5 along with recommendations for future research. Appen-
dix A presents the concepts of sliding block codes and Appendix B presents a stopping rule
to determine the lengths of symbol sequences as needed for generation of transfer matrices.

2 A Statistical Mechanics Perspective of Complex Dynamical Systems

As described in the previous section, this paper incorporates the principles of statistical
mechanics into the theory of complex dynamical systems for pattern identification. Before
embarking on the details, the following two issues are addressed:

Issue #1: Description of microscopic and macroscopic behaviors in dynamical systems in
the setting of Thermodynamic Formalism.



S. Gupta, A. Ray

Issue #2: Establishment of the link between microscopic and macroscopic behaviors in dy-
namical systems by using the tools of statistical mechanics.

To address the above issues, let us consider a typical dynamical system whose map is
given by:

xk+1 = ϕ(xk,uk,ηk); yk = γ (xk,uk) + υk (1)

where k is the discrete time index; ϕ describes the time evolution of state trajectories and
the structure of ϕ may slowly vary with time; γ represents the measurement model; x is the
state vector in the phase space; u is the input excitation vector; y is the measurement vector;
η is the (possibly non-additive) process noise; and υ is the additive measurement noise. Evo-
lution of the dynamical system generates a time series data set {. . . , xk,xk−1, . . . ,x0} of the
state vector x starting from an initial point x0. As discussed earlier in Sect. 1, the state vec-
tor x is usually hidden and the map ϕ is generally difficult to determine, especially for off-
nominal or anomalous systems. Therefore, the measurement set Y = {. . . ,yk,yk−1, . . . ,y0}
of selected observable outputs (e.g., sensor data) are used to provide insights into the neces-
sary details of the system, as illustrated in Fig. 1. Having said that, the concept of two-time-
scales in the analysis of dynamical systems need to be discussed.

Definition 2.1 The fast scale is defined to be the time scale over which the behavior of
the dynamical system is assumed to remain shift-invariant, i.e., the process has stationary
dynamics.

Definition 2.2 The slow scale is defined to be the time scale over which the system may
exhibit non-stationary dynamics.

In view of Definition 2.1, variations in the internal dynamics of the system are assumed
to be negligible on the fast scale. Since stationarity is assumed to be preserved on the fast
scale, it is best suited for acquisition of time series data from sensor and/or analytical mea-
surements (i.e., information derived from analytical models). In view of Definition 2.2, an
observable non-stationary behavior can be associated with the gradual evolution of the sys-
tem possibly due to gradual development of anomalies. In general, a long time span in the
fast scale is a tiny (i.e., possibly several orders of magnitude smaller) interval in the slow
scale. For example, evolution of fatigue damage in polycrystalline alloys may cause a de-
tectable change in the system dynamics on the slow scale (possibly in the order of hours or
months) while this damage behavior is essentially invariant on the fast scale (approximately
in the order of seconds or minutes). Nevertheless, the notion of fast and slow scales is de-
pendent on the specific application, loading conditions and operating environment. As such,
with the objective of monitoring the changes in a dynamical system, acquisition of time se-
ries data is performed on the fast scale at different slow-time epochs. A pictorial view of the
two-time scales concept is presented in Fig. 2.
The notion of fast and slow scales can also be extended to multidimensional data sets

(e.g., a two dimensional image data). Here, the notion of time is replaced by space. In such
cases, the fast scale is defined as the scale over which the space data represents the local
fluctuations in the region under observation. The statistical features of spatial fluctuations
in this local region remain invariant. On the other hand, the slow scale is defined to be the
scale over which the statistical features of spatial fluctuations may change. For example, in a
two-dimensional image of a natural geographical location, one natural feature (e.g., densely
populated tall trees) might be the characteristic of a local space that changes to another
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Fig. 2 Pictorial view of two time scales: (i) Slow scale of system evolution and (ii) Fast scale for data
acquisition and signal conditioning

natural feature (e.g., sporadic short bushes) over a slow scale in the image. This concept
of fast and slow scales is important in characterizing the local and global dynamics of a
system in time or space or both. In the sequel, observed data are referred to as time series
for convenience.

Remark 2.1 Steady state behavior of the dynamical system under consideration is assumed
to be stationary on the fast scale, which implies that the time series data obey the laws
of equilibrium statistical mechanics. In contrast, on the slow scale, the dynamical system
may be in a quasi-static equilibrium condition or in a non-equilibrium condition between
two slow-time epochs, depending on its evolution. In essence, the dynamical system may
deviate from the equilibrium at a particular slow-time epoch and attain another equilibrium
under evolving dynamics at a subsequent slow-time epoch.

Time series data collected on the fast scale contains microscopic (i.e., detailed) infor-
mation at each instant. The amount and quality of information in the time series data may
depend on the sensor and/or analytical measurements. As such, each data point in the time
series carries microscopic details that are rather irrelevant for understanding the behavior
patterns of a dynamical system. However, the data sequence as a whole represents macro-
scopic (i.e. aggregated) behavior of the dynamical system at the respective slow-time epoch.
The time series may contain several bursts of fast-scale data at a slow-time epoch. It is rea-
sonable to assume ergodicity [13] on the fast scale, i.e., convergence of the time average to
the ensemble average. In this context, the two issues, stated at the beginning of this section,
are addressed as follows:

Issue #1: While each data point of the fast scale time series contains the microscopic details,
the information derived from a time series, represents the ensemble average, i.e.,
the macroscopic behavior of the dynamical system, at a specific slow-time epoch.
The terms “microscopic” and “macroscopic” are understood as detailed behavior
and aggregated behavior of the dynamical system, respectively.

Issue #2: In statistical mechanics, the macroscopic behavior of a system is represented by
a few intensive parameters (e.g., pressure and temperature) that are derived from
the probability distributions of the microstates [1]. These probability distributions
are postulated based on the microscopic activities of individual particles and their
(possible) mutual interactions. In the inverse approach of statistical mechanics,
the objective is to estimate macroscopic model parameters of the system based
on the microscopic laws expressed by probability distributions over microstates.
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Fig. 3 Analogy between the
concepts of statistical mechanics
and dynamical systems

In general, mathematical models of complex dynamical systems might be difficult
(and often impossible) to identify, as discussed in Sect. 1. Therefore, an alternative
is to identify statistical patterns of the evolving dynamics based on observed time
series data from available sensors. The objective is to derive macroscopic (i.e.,
aggregated) behavior from the statistical patterns (e.g., probability distributions
and statistical correlations) that are generated from time series of observables (i.e.,
sensor outputs and/or analytical measurements [13, 15]). These statistical patterns
provide the required link between the microscopic and macroscopic behavior of a
complex dynamical system, as illustrated in Fig. 3.

There are several ways of constructing statistical patterns. In general, the link between
microscopic and macroscopic behavior in dynamical systems need not even be statistical
in nature. The macroscopic information could be derived by using several different pattern
identification algorithms [31]. This paper presents a statistical method of constructing the
link between microscopic and macroscopic behavior of dynamical systems by drawing an
analogy between the concepts of symbolic dynamics and lattice spin systems. This ther-
modynamic formalism is insightful for studying the properties of aggregated behavior that
arises from the underlying complexity in complex systems.

3 Symbolic Dynamic Encoding and Thermodynamic Formalism

The tools of symbolic dynamics are often used to study the behavior of complex dynamical
systems [15, 22, 32–34]. In symbolic dynamics, the phase space of a dynamical system is
partitioned for representing its state trajectory with a symbol sequence. Let 
 ⊂ R

n be a
compact (i.e., closed and bounded) region in the (n-dimensional) phase space within which
the (statistically stationary) trajectory is circumscribed under a specific exogenous stimulus.
Encoding of 
 is accomplished by introducing a partition {ξ1, . . . , ξ|�|} consisting of |�|
mutually exclusive (i.e., ξj ∩ ξk = ∅ ∀j 	= k), and exhaustive (i.e.,

⋃|�|
j=1 ξj = 
) cells, where

� is the symbol alphabet that labels the partition segments (Note: 2 ≤ |�| < ∞). As the
system evolves in time (fast scale), the state trajectory travels through or touches various
cells in its phase space; accordingly the corresponding symbol is assigned to each point xi

of the trajectory as defined by the mapping M : 
 → �. Therefore, a symbol sequence is
generated from an initial state x0 ∈ 
, such that:

· · ·σk · · ·σ1σ0 � x0 (2)
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Fig. 4 Concept of phase space partitioning for symbol sequence generation

where σk � M(xk) is the symbol generated at the (fast scale) instant k. (Note: the direction
of forward time has been chosen to be towards the left in (2) for convenience.)
The mapping in (2) is called symbolic dynamics as it attributes a legal (i.e., physically ad-

missible) symbol sequence to the system dynamics starting from an initial state. (Note: The
partition is called a generating partition of the phase space 
 if every legal symbol sequence
uniquely determines a specific initial condition x0, i.e., every symbolic orbit uniquely iden-
tifies one continuous space orbit.) The pictorial display in Fig. 4 elucidates the concept of
partitioning a compact region of the phase space and mapping from the partitioned space
into the symbol alphabet.

3.1 Generation of a Symbol Sequence from Observed Data

A crucial step in symbolic dynamic encoding is partitioning of the phase space for symbol
sequence generation. Several partitioning techniques have been reported in literature to ad-
dress this issue [13]. Although the theory of phase-space partitioning is well developed for
one-dimensional mappings, few results are known for two and higher dimensional systems.
For example, the widely used method of symbolic false nearest-neighbors (SFNN) [23] may
become computation-intensive if the dimension of the phase space is large or if the available
data are noise-corrupted. Furthermore, the state trajectory of the system may be unknown in
case of systems for which a model as in (1) is not available.
As an alternative to phase space partitioning, the fast scale time series data set Y =

{. . . ,yk,yk−1, . . . ,y0} of selected observable outputs (e.g., sensor data) can be directly used
for symbolic dynamic encoding. In this regard, several techniques have been reported in
literature that suggest appropriate transformation of the signal before employing the parti-
tioning method for symbol generation to retrieve the relevant information from time series
data. One such technique is based on wavelet transform [35] of time series data, called the
wavelet-space partitioning (WSP) [15, 36] that is particularly effective with noisy data from
high-dimensional dynamical systems. Another reported technique is analytic-signal-space
partitioning (ASSP) [37] based on the Hilbert transform of time series data. Details of these
partitioning methods are readily available in literature [36, 37] and are not provided in this
paper.
The resulting transformed data can be partitioned using different methods. One such

method is uniform partitioning into equal sized cells. Other method is based on the principle
of maximization of the Shannon entropy [38]:

S = −
|�|∑
i=1

pi log(pi) (3)
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Fig. 5 Equivalence of the
one-dimensional structure of
Ising model and a symbolic
sequence with alphabet set � =
{0,1}

where pi is the probability of the ith segment of the partition. Uniform probability distrib-
ution is a consequence of maximum entropy partitioning that makes the partition coarser in
regions of low data density and finer in regions of high data density [36].

3.2 Lattice Spin System Formalism of the Symbol Sequence

The symbolic representation of stationary stochastic time series of observable parameters is
constructively similar to the structure of a lattice spin system such that, at an instant k in the
fast scale, the observed symbol σk ∈ � is analogous to a spin sk ∈ S at the lattice site k [24]
with the constraint that � and S must have the same cardinality. Since both � and S are
finite nonempty sets, it implies that |�| = |S| and |�| ∈ N, where N is the set of all pos-
itive integers. The generalized Ising model (GIM), i.e., the Potts model [25–27], describes
a lattice spin system using a spin alphabet S with |S| ≥ 2, whereas the Ising model [29,
30] is restricted to the binary spin alphabet, i.e., |S| = 2. Therefore, the GIM allows for a
larger alphabet for partitioning. The equivalence between symbolic representation of a dy-
namical system and a lattice spin system is illustrated in Fig. 5 for the simplest case of the
Ising model with S = {↑,↓}, which has one to one correspondence to the symbol sequence
generated with � = {0,1}. In general, spin systems can be translated into symbolic stochas-
tic processes and vice versa. Thus, the methods of statistical mechanics are applicable to
analysis of chaotic dynamical systems [13].
This section presents construction of an appropriate Hamiltonian in the setting of the

generalized Ising model (GIM) of symbol sequences generated from observed time series
data [21]. This thermodynamic formalism of dynamical systems enables information extrac-
tion in the form of statistical patterns that facilitate robust detection of gradually evolving
changes in the underlying process dynamics [15].

3.2.1 Equivalence classes of symbol sequences

Let us introduce the notion of equivalence classes on symbol sequences and the concept
of transition energies before constructing the Hamiltonian for a dynamical system. In this
regard, the following definitions are introduced.

Definition 3.1 A block is a finite string of symbols over an alphabet. A block of length
n ∈ N is called an n-block, where N is the set of all positive integers. An n-block is denoted
as ←−σ (n)

k � σk · · ·σk−n+1 that is a symbolic representation of a time series in the fast scale
starting at instant k−n+1 and ending at instant k. (The direction of arrow indicates forward
time.)

Definition 3.2 Let the block space B be the set of n-blocks over the symbol alphabet �

for all n ∈ N. In general, cardinality of B is ℵ0, which is the same as the cardinality of N;
however, some of the blocks may be physically inadmissible. A probability measure space
is defined as

(
B, A, P

)
, where B is the sample space; A is the event space that is a σ -

algebra [39] of B and contains the singleton sets of all physically admissible blocks; and P
is the probability measure such that P : A → [0,1]. The probability measure of each of the
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physically inadmissible blocks is assigned to be zero. (The blocks with zero probability are
not included in the analysis that follows.)

Definition 3.3 For a given r ∈ N, a symbolic sequence is called r-Markov if the conditional
probability of each symbol, in the alphabet �, depends only on the previous (at most) r

symbols in the following sense:

P(σk|σk−1σk−2 · · ·σk−rσk−r−1 · · · ) = P(σk|σk−1 · · ·σk−r ). (4)

Let us define the equivalence classes in the block space B and show how B is partitioned
under the Markov assumption into a finite set of equivalence classes. Let bθ and bϕ be two
blocks in block space B. [Notation: The Greek letter subscripts θ and ϕ of blocks bθ and
bϕ denote two arbitrary blocks in the block space B. In contrast, the subscripts i and j of
symbols σi and σj denote time instants in the fast scale.]

Definition 3.4 An equivalence class is defined such that bθ ∈ B and bϕ ∈ B belong to the
same class if the probabilities of their physically admissible transitions are identical in the
following sense:

P(b|bθ ) = P(b|bϕ) > 0 ∀b ∈ B. (5)

In a statistically stationary dynamical system [13], the probability measure P is an in-
variant. Therefore, for an r-Markov symbol sequence, Definitions 3.3 and 3.4 imply that, at
any time instant k, a past �-block ←−σ (�)

k−1 ∈ B, for all � ≥ r ≥ 1, belongs to the same equiv-
alence class as that of a past s-block ←−σ (s)

k−1 ∈ B, for all s ≥ r ≥ 1, if both contain the same
r-block ←−σ (r)

k−1 ∈ B of the most recent r symbols. Now the subspace of B, consisting of all
n-blocks with n ≥ r , is partitioned into a set of finitely many equivalence classes, which
is isomorphic to B(r) ⊂ B. The set B(r) is called the r-block space and its members are all
possible r-blocks; cardinality of B(r) is denoted as |B(r)| ≤ |�|r , where the inequality is a
consequence of the fact that some of the r-blocks in B(r) might be forbidden. Therefore, the
number of equivalence classes is at most |�(r)|. In the sequel, we analyze the r-block space
B(r) instead of the entire block space B based on the assumption that the stationary dynami-
cal system is r-Markov for a given r ∈ N. Let us now relax the condition in Definition (3.4)
by introducing a weaker notion of equivalence called ε-equivalence.

Definition 3.5 An ε-equivalence class is defined such that, for a given 0< ε � 1, the parti-
tioning B(r) is formed in the following sense.

1. Each r-block in B(r) belongs to one and only one of the ε-equivalence classes.
2. If there are two (or more) r-blocks in an ε-equivalence class C ⊆ B(r), then∣∣P(b|bθ ) − P (b|bϕ)

∣∣ < ε ∀bθ , bϕ ∈ C ∀b ∈ B(r). (6)

The procedure for selection of such ε-equivalence classes falls in the category of clus-
tering methods that have been extensively studied in the Pattern Classification literature
(e.g., see citations in [31]). From the statistical mechanics perspective, clusters of r-blocks
as ε-equivalence classes is natural because there are finitely many clearly separated energy
bands [1] defined by ε, each of which may contain many r-blocks. Therefore, ε-equivalence
classes are formed as clusters of r-blocks, where each element of a cluster falls within an
energy band of width ε.
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Remark 3.1 A symbol sequence can be transformed via the block symbol transformation
(i.e, renormalization) before construction of the ε-equivalence classes. Therefore, in general,
the equivalence classes can be defined on a renormalized symbol sequence to generate a
coarser representation of the system. See Sect. 3.3 for details.

3.2.2 Thermodynamic Formalism of ε-Equivalence Classes

Let us denote each ε-equivalence class in B(r) as an energy state q ∈ Q, where |Q| ≤ |B(r)| ≤
|�|r . For a dynamical system, an observed r-block←−σ (r)

k on a symbol sequence at (fast scale)
time k belongs to an ε-equivalence class represented by a state q ∈ Q, i.e., q is a realization
of←−σ (r)

k . In other words, an energy state is a realization of an r-block on a symbol sequence.
As time evolves on fast scale, the symbol sequence gives rise to different r-blocks and
transitions take place from one energy state to another (see Remark 3.2 below).

Definition 3.6 The probability of transition from an energy state qθ ∈ Q to an energy state
qϕ ∈ Q under a transition δ : Q × � → Q is defined as

P(qϕ |qθ ) = Pr(σ ∈ � | δ(qθ , σ ) → qϕ);
∑

ϕ

P(qϕ |qθ ) = 1. (7)

Definition 3.7 The interaction energy of the transition from qθ ∈ Q to qϕ ∈ Q is defined in
terms of the respective transition probability as

Eθϕ ≡ E (qϕ |qθ ) � − ln[P(qϕ |qθ )]. (8)

The thermodynamic formalism of the interaction energy Eθϕ in Definition 3.7 is as fol-
lows:

(i) Interaction energy is always non-negative (i.e., Eθϕ ≥ 0) because 0≤ P(�|•) ≤ 1, which
signifies that the energy equivalence of transition from one ε-equivalence class to other
is always greater than or equal to zero.

(ii) State transition that has a lower probability requires relatively larger energy (i.e., less
reachable) and transitions that have higher probabilities require relatively smaller ener-
gies (i.e., more reachable) from the aspects of statistical mechanics.

(iii) Energy is non-commutative with respect to the interacting states, i.e., Eθϕ 	= Eϕθ for
θ 	= ϕ, in general.

(iv) All physically admissible transitions have non-zero probabilities and hence finite ener-
gies. In particular, if a transition is certain to happen (i.e., the transition probability is
equal to 1, then its energy vanishes (i.e., Eθϕ = 0). This implies that such a transition
requires no energy.

(v) All physically inadmissible transitions (e.g., transition to a forbidden r-block) have
zero probabilities and hence require infinite energies. These transitions are not observed
at a particular slow-time epoch and are not included in the analysis. However, they may
have non-zero probability of occurrence (with finite energy) at other slow-time epochs.
An r-block that is forbidden to appear at a slow-time epoch may appear at another
slow-time epoch due to possible changes that might have occurred in the dynamical
system. In essence, referring to Fig. 2, the dynamical system could be non-stationary
in the slow scale although it is assumed to be quasi-stationary in the fast scale.
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The definition of interaction energy in (8) is based on the conditional probability of a
symbol block given a past block. Therefore, if two symbol blocks that follow different past
blocks have the same conditional probabilities with respect to their own past blocks, then
they will have the same interaction energy.

Remark 3.2 A symbol sequence that is structured as a lattice consists of several r-blocks.
These blocks are constructed by shifting a window of length r by one symbol at a time.
Therefore, as time evolves different blocks (i.e., energy states) appear on the sequence and
transitions take place from one block to the other.

3.2.3 General Interaction Energy Functions

In general, the interaction energy between any two energy states (i.e., ε-equivalence classes)
qθ ∈ Q and qϕ ∈ Q depends on respective state transition probability and also on the strength
associated with that transition. This implies that a transition between any two states may
have a high probability of occurrence but still have a low significance due to a small interac-
tion strength. On the other hand, a transition may have a low probability but still have a high
significance due to a high interaction strength. For pattern identification, it is equivalent to
saying that certain transitions are more critical than the others for capturing small changes in
the dynamical system. For example, some transitions might occur very frequently (possibly)
due to measurement noise and therefore, a low strength to these transitions reduces noise.
On the other hand, transitions that occur relatively less frequently might be indicative of an
incipient fault in the dynamical system and therefore, a high strength to these transitions
enables early detection. Therefore, in general, the interaction energy Fθϕ between any two
ε-equivalence classes qθ and qϕ is defined as

Fθϕ ≡ F (qϕ|qθ ) � − ln[�(qϕ, qθ )P(qϕ |qθ )] (9)

where �(•, �) is the interaction strength function, such that 0 ≤ �(•, �) ≤ 1 assigns a
strength to a transition from � to •. Since these functions classify the strengths associated
with interactions between a pair of ε-equivalence classes, they are termed as Transition
Strength Classifiers. Transition strengths can be tuned to adjust the sensitivity of pattern
identification towards certain transitions and be chosen based on relative significance of pos-
sible transitions. Two simple examples of the interaction strength function � are presented
below.

�(qϕ, qθ ) = |ϑϕ − ϑθ |α∑|Q|
ϕ=1 |ϑϕ − ϑθ |α

, (10)

�(qϕ, qθ ) = |ϑϕϑθ |α∑|Q|
ϕ=1 |ϑϕϑθ |α

(11)

where α is a positive real; and ϑϕ and ϑθ are the non-negative weights associated with energy
states qϕ and qθ , respectively.

3.3 Block Symbol Transformation of the Symbol Sequence

The previous section described the lattice spin system formalism of a symbol sequence
using the notion of energy states (i.e., ε-equivalence classes) and the interaction energy be-
tween them. This formalism is based on symbol sequences that are generated from an alpha-
bet�. The interaction energy is defined between pairs of symbol blocks that appear adjacent



S. Gupta, A. Ray

to each other shifted by a single symbol on the symbol sequence. In general, the interactions
might have a longer range where the effects of local dynamics could be neglected. There-
fore, symbolic dynamic encoding of dynamical systems often includes construction of a new
alphabet, called elaborate alphabet [22], from blocks of symbols generated from the original
alphabet �. This approach is useful when the actual information from the data is concen-
trated in a relatively low frequency range and the information at higher frequencies are not
of significant interest; in other words, this approach is capable of capturing the dynamics
of long range interactions. For example, the important characteristics of a low-frequency
(i.e., long wavelength) signal might be observed in the correlation between different max-
ima rather than in the local dynamics around each maximum itself. If the critical properties
of a physical process depend on long-wavelength fluctuations [30], then irrelevant degrees
of freedom need to be eliminated by coarse graining of the data so that the effects of local
dynamics are diminished by averaging.
In statistical mechanics, the idea of block spin transformation has been introduced to

study the critical properties of Ising models. The block spin transformation is part of a theory
called the Renormalization Group transformation [40][30]. In block spin transformation of
an Ising model, an effective Hamiltonian is constructed using block spins, which is based
on interactions between blocks of spins rather than between individual spins. Following this
concept in dynamical systems, a set of symbols at local discrete-time indices that form a
block, are collectively assigned a new symbol on an elaborate alphabet �[1], which is called
the block symbol transformation. The core concept of renormalization is that a block in a
long symbol sequence is reduced to a single symbol [41] that is equivalent to coarse-graining
in time. This procedure can be repeated for generating several coarser representations of the
system.
The renormalization procedure of a symbol sequence consists of the following two steps.

(1) Grouping of symbols to form blocks.
(2) Transformation of blocks to new symbols in the elaborate alphabet, called degeneracy.

The block symbol transformation of a symbol sequence←−σ (n0)
j of length n0 is represented

by the following flow diagram.

←−σ (n0)
j → ←−σ (w)

j
←−σ (w)

j−χ
←−σ (w)

j−2χ · · ·
↓

←−σ (n1)

j ′ ← σj ′σj ′−1σj ′−2 · · ·

where j ′ is the transformed time index such that j ′ = j −n(χ −1);←−σ (n1)

j ′ is the transformed
symbol sequence of length n1; σj ′ is a symbol in �[1]; and 1 ≤ χ ≤ w is the magnitude of
shift of a window of size w.
The first step in the renormalization procedure is construction of symbol blocks that can

be overlapping or non-overlapping. A block is constructed from a window of length w on a
symbol sequence that is shifted by χ symbols at a time to obtain another block of length w.
For 1 ≤ χ < w, the blocks are overlapping and this construction represents a higher block
shift [22]. For χ = w, the blocks are non-overlapping, and this represents a higher power
shift [22]. In this case, a window on the symbol sequence is shifted to obtain a new block
that has no common elements with the previous block. The size of the window w depends
on the range of local interactions, while the magnitude of shift χ depends on the range of
interactions between symbol blocks. In general, a renormalized sequence can be constructed
from a symbol sequence that is structured as either overlapping or non-overlapping blocks.
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The second step assigns a new symbol to each block of length w such that a transformed
symbol sequence is generated from an elaborate alphabet �[1]. If |�[1]| = |B(w)| ≤ |�|w
is chosen for the above assignment, where B(w) is the space of w-blocks, then it merely
changes the nomenclature while preserving the order of symbols in a block because each
block configuration is assigned a different symbol; hence, complexity is not reduced. The
new elaborate alphabet should be chosen to achieve a higher level of approximation causing
degeneracy. A possible choice is to keep the alphabet size the same as the original one, i.e.,
|�[1]| = |�|, and to assign a symbol from �[1] to a block configuration bθ ∈ B(w) based on
a rule R : B(w) → �[1] (e.g., a symbol that occurs at the mth position in bθ ∈ B(w) that is
denoted by [bθ ]m). The advantage of this coarser representation of the system is reduction of
the irrelevant local dynamics using a small alphabet size that reduces the number of energy
states and the size of the transfer matrix (see Sect. 3.5).
In general, the block symbol transformation can be applied repeatedly any number of

times. A new alphabet �[i] (possibly �[i]=�) is used at any ith transformation, where a se-
quence←−σ (n�)

j ′ of length n� is generated after � subsequent transformations. The transformed
symbol sequence would have interactions between block symbols that are generated from
blocks on the original symbol sequence. These interactions lead to new equivalence classes
(see Remark 3.1) and their corresponding interaction energies, where the r-Markov dynam-
ics are assumed over the renormalized sequence. (Note: the value of r may vary over differ-
ent block symbol transformations.) Let us denote the set of energy states (i.e., ε-equivalence
classes) on a sequence, which has been renormalized � times, by Q[�], and the interaction
energy (see Sect. 3.2) between a pair of energy states, q [�]

θ ∈ Q[�] and q [�]
ϕ ∈ Q[�], by F [�]

θϕ

that has the same structure as in (9). The next section describes construction of a generalized
Ising model (GIM) using these energy states and their interactions on a symbol sequence.

3.4 Generalized Ising Model Construction

The local space-time behavior of a thermodynamic system’s constituents is described by
a Hamiltonian; an analogous approach for dynamical systems is presented here. As stated
earlier, it is often infeasible to construct a reliable mathematical model of a complex sys-
tem. Therefore, a Hamiltonian is constructed from the statistics derived from the observed
symbol sequences. Let an n0-block

←−σ (n0)
j be a symbolic stationary process generated by

partitioning the (fast scale) time series data Y = {yj ,yj−1, . . . ,yj−n0+1} that are observed at
a particular slow-time epoch (see Sect. 3.1). Let an n�-block

←−σ (n�)

j ′ be obtained after (pos-

sible) block symbol transformations of ←−σ (n0)
j . Since stationary (possibly Markov) symbol

chains are frequently used to construct statistical models of dynamical systems, the Hamil-
tonian for the symbol block ←−σ (n�)

j ′ ∈ B can be expressed as a function of the probability of

occurrence of ←−σ (n�)

j ′ . Let us split the symbol block
←−σ (n�)

j ′ ≡ σj ′σj ′−1 · · ·σj ′−n · · ·σj ′−n�+1
into an n-block ←−σ (n)

j ′ ≡ σj ′σj ′−1 · · ·σj ′−n+1 of most recent n symbols and an s-block
←−σ (s)

j ′−n
≡ σj ′−nσj ′−n−1 · · ·σj ′−n�+1 of the remaining symbols observed in the past, where

s = n� − n. It is assumed that the probability of n-block ←−σ (n)

j ′ ∈ B depends on the s-block
←−σ (s)

j ′−n
∈ B that has been observed in the past. The Hamiltonian, i.e., total energy associated

with a transition from←−σ (s)

j ′−n
to←−σ (n)

j ′ , is given as:

H � − ln[P(←−σ (n)

j ′ |←−σ (s)

j ′−n
)] (12)

where P(�|•) is the conditional probability of � given •. (Note: the subscript on σ indicates
the most recent fast time index and the superscript indicates length of the symbol sequence).
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The total interaction energy depends on the observed configurations of←−σ (n)

j ′ ∈ B and←−σ (s)

j ′−n∈ B; however, it is denoted as H for notational simplicity.
Equation (12) is now restructured as having neighborhood interactions in a generalized

Ising model (GIM) under Markovian assumption (see Definition 3.3). Subsequently, the
transfer matrix approach [1] is adopted for construction of statistical patterns and evaluation
of the macroscopic behavior of the system from the observed symbol sequences. Using the
Bayesian chain rule for a Markov process, the transition probability P(←−σ (n)

j ′ |←−σ (s)

j ′−n
) on right

hand side of (12) is expressed as:

P(←−σ (n)

j ′ |←−σ (s)

j ′−n
) = P(σj ′ |←−σ (n+s−1)

j ′−1 )P(σj ′−1|←−σ (n+s−2)
j ′−2 ) · · · P(σj ′−n+1|←−σ (s)

j ′−n
) (13)

= P(σj ′ |←−σ (r)

j ′−1)P(σj ′−1|←−σ (r)

j ′−2) · · · P(σj ′−n+1|←−σ (r)

j ′−n
) (14)

=
j ′∏

k=(j ′−n+1)
P(σk|←−σ (r)

k−1) (15)

where it suffices to know only the past r symbols for each transition under the r-Markovian
assumption (Note: s ≥ r). For any finite length adjacent symbol blocks ←−

x , ←−y , and ←−
z in

order, we have P(
←−
x |←−y ←−

z ) = P(
←−
x

←−
y |←−y ←−

z ). Using this relation for each term in (12),
setting j ′ = n − 1 without any loss of generality, and substituting the resulting expression
in (12), the Hamiltonian is factored into a sum of transition energies as:

H = −
n−1∑
k=0
ln[P(←−σ (r)

k |←−σ (r)

k−1)] ∀ r ≥ 1 (16)

where the symbol blocks←−σ (r)
k ≡ σk, . . . , σk−r+1 ≡ q

[�]
θk
and←−σ (r)

k−1 ≡ σk−1, . . . , σk−r ≡ q
[�]
θk−1

belong to the set Q[�] of ε-equivalence classes. An equivalent form of the Hamiltonian
in (16) is expressed as:

H = −
n−1∑
k=0
ln[P(q

[�]
θk

|q [�]
θk−1)] = −

n−1∑
k=0

E (q
[�]
θk

|q [�]
θk−1) (17)

where the interaction energy associated with each term in (17) contributes to the total energy
and depends only on the r nearest symbols in the past due to the Markov property. Therefore,
the above construction is analogous to the effect of r nearest neighbor interactions in a lattice
spin system, where the total energy is the sum of the interaction energies between spins and
their (effective) neighbors. For a standard Markov process (i.e., r = 1), (16) reduces to:

H = −
n−1∑
k=0
ln[P(σk|σk−1)] (18)

which is analogous to the structure of a generalized Ising model (GIM) with nearest neighbor
interactions [13]. Furthermore, using general interaction energy functions in (9), a general
form of the Hamiltonian in (16) is expressed as:

H = −
n−1∑
k=0
ln[�(q

[�]
θk

, q
[�]
θk−1)P(q

[�]
θk

|q [�]
θk−1)] = −

n−1∑
k=0

F (q
[�]
θk

|q [�]
θk−1). (19)
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Equation (19) has the structure of a generalized Ising model (GIM) with r-nearest neigh-
bor interactions on a renormalized symbol sequence. Each term is the interaction energy
(see (9)) between a symbol block q

[�]
θk

≡ ←−σ (r)
k ∈ Q[�] that is observed at time k and its pre-

ceding neighbor q
[�]
θk−1 ≡ ←−σ (r)

k−1 ∈ Q[�] that is observed at time k − 1. As time evolves, the
symbol sequence makes transitions from one equivalence class to another and gives rise to
different r-blocks.

Remark 3.3 Construction of the Hamiltonian in (19) is based on the assumption that the un-
derlying process is a stationary r-Markov chain. In general, for dynamical systems, where
the Markovian assumption is not valid, the above construction can be viewed as an approx-
imation of the process dynamics by an r-Markov model. This approximation could lead to
an inaccurate model of the underlying dynamics due to insufficient memory. On the other
hand, representation of the process dynamics by a very large-order Markov model is unde-
sirable because it would result in too many energy states. Having a large number of energy
states would require a long observation sequence for frequency counting (see Appendix B)
that may also lead to inaccuracy in the construction of transfer matrices for finite length
sequences. Therefore, one alternative is renormalization that reduces the number of energy
states by diminishing the effects of local dynamics.

On a renormalized symbol sequence, a procedure based on entropy rate is used for selec-
tion of r because increasing r beyond a certain value usually does not lead to any appreciable
change in entropy; equivalently, the entropy rate would be very small. Given the current en-
ergy state, the entropy rate π of a symbolic stochastic process is defined as the uncertainty
in the next symbol.

π = −
|Q[�]|∑
θ=1

pθ

|�[�]|∑
ϕ=1

P(σϕ |q [�]
θ ) log2 P(σϕ |q [�]

θ ) (20)

where pθ is the probability of occurrence of an energy state q
[�]
θ ; and P(σϕ |q [�]

θ ) is the
probability of occurrence of a symbol σϕ ∈ �[�] at an energy state q

[�]
θ . Being a measure of

uncertainty, the entropy rate π in (20) monotonically decreases as r is increased. Beyond
a certain point, increasing r is unlikely lead to any appreciable change in the entropy rate
unless the process is heavily contaminated with white noise. This is the asymptotical entropy
rate and the corresponding r is selected for the r-Markov approximation.

3.5 Transfer Matrix Approach for Pattern Identification

The analytical solution of one-dimensional spin systems with finite-range interactions is de-
rived by expressing the partition function in terms of its finite-dimensional transfer matrix
such that all thermodynamic information is encoded in the transfer matrix [1, 13]. The so-
lution assumes cyclic periodic conditions, which are statistically justifiable for sufficiently
large data sequences [1]. In terms of quasi-static equilibria in statistical mechanics, the ef-
fects of boundary conditions are negligible in the thermodynamic limit, i.e., when the length
of the symbol sequence is sufficiently large (See Appendix B).

Definition 3.8 The partition function of a stationary r-Markov process is expressed as the
sum of the exponentials of the energy of all physically admissible n-blocks over the n-block
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space B(n), such that

Z �
|B(n)|∑
�=1

exp(−βH�) for n � r ≥ 1 (21)

where H� is the Hamiltonian defined in (19); � is the index of a particular n-block in the
block space B(n); and β > 0 is a parameter that represents the inverse temperature under
quasi-static equilibrium in the thermodynamic sense.

It follows from Definition 3.8 that the partition function represents the sum of energy ex-
ponentials of all possible symbol sequences of length n, i.e., an ensemble of n-blocks. Since
the transition probabilities between energy states are calculated from the symbol sequence
that is generated from time series data of measurements, the contribution of each possible
n-block towards the partition function is different. Therefore, the n-blocks that have lower
energies given by the corresponding Hamiltonians contribute more heavily to the partition
function as compared to n-blocks that have higher energies (see (21)).
It follows from (19) and (21) that:

Z =
|B(n)|∑
�=1

exp

(
β

n−1∑
k=0
ln[�(q

[�]
θk

, q
[�]
θk−1)P(q

[�]
θk

|q [�]
θk−1)]

)
(22)

=
|B(n)|∑
�=1

exp

(
n−1∑
k=0
ln[�β(q

[�]
θk

, q
[�]
θk−1)P β(q

[�]
θk

|q [�]
θk−1)]

)
(23)

=
|B(n)|∑
�=1

n−1∏
k=0

(�β(q
[�]
θk

, q
[�]
θk−1)P β(q

[�]
θk

|q [�]
θk−1)) (24)

=
|B(n)|∑
�=1

n−1∏
k=0

T
q

[�]
θk

,q
[�]
θk−1

(25)

where T
q

[�]
θk

,q
[�]
θk−1

� �β(q
[�]
θk

, q
[�]
θk−1)P β(q

[�]
θk

|q [�]
θk−1). Since all pairs q

[�]
θk

∈ Q[�] and q
[�]
θk−1 ∈ Q[�]

in (25) can (possibly) have at most |Q[�]| configurations, a |Q[�]| × |Q[�]| non-negative
transfer matrix T [13] is constructed as:

T �
[

T
]
ϕθ

= �β(q [�]
ϕ , q

[�]
θ )P β(q [�]

ϕ |q [�]
θ ) for θ,ϕ ∈ {0,1, . . . , |Q[�]| − 1} (26)

where both q
[�]
θ and q [�]

ϕ belong to Q[�] and denote the respective energy states (i.e., ε-
equivalence classes) generated from the renormalized sequence. Since the summation in (25)
is taken over all possible blocks in B(n), the transfer matrix in (26) is constructed to include
interactions between all ε-equivalence classes. The transfer matrix T encodes more infor-
mation about the statistical characteristics of the dynamical system than the scalar valued
partition function Z . It follows from Eq. (25) that Z is trace of the |Q[�]| × |Q[�]| non-
negative matrix (T )n [1, 13]. As an illustrative example, let �[�] = {0,1} be the alphabet
and let the interaction range be r = 2. Then, the total number of (possible) equivalence

classes is |Q[�]| = 4, where Q[�] = {←−00,←−10,←−01,←−11}. The |Q[�]| × |Q[�]| transfer matrix for
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this example is shown below:

T =

⎛
⎜⎜⎜⎜⎜⎝

T←−
00,

←−
00 T←−

10,
←−
00 T←−

01,
←−
00 T←−

11,
←−
00

T←−
00,

←−
10 T←−

10,
←−
10 T←−

01,
←−
10 T←−

11,
←−
10

T←−
00,

←−
01 T←−

10,
←−
01 T←−

01,
←−
01 T←−

11,
←−
01

T←−
00,

←−
11 T←−

10,
←−
11 T←−

01,
←−
11 T←−

11,
←−
11

⎞
⎟⎟⎟⎟⎟⎠ .

For � = 0, q [0]
θ ≡ qθ ∈ Q and q [0]

ϕ ≡ qϕ ∈ Q represent ε-equivalence classes generated
from the original sequence without the block symbol transformation and the transfer matrix
T reduces to the original |Q| × |Q| matrix.
For dynamical systems, the inverse temperature β ∼ 1/T in (26) plays the role of a

sensitivity parameter [13]. If β → 0, the temperature T tends to ∞ in the thermodynamic
sense, implying that the increase in randomness would render all permissible transitions
to be equally probable in the transfer matrix T . This phenomenon leads to maximum un-
certainty and the information content obtained from T is minimized. On the contrary, as
β is increased, the temperature T of the system decreases; consequently, the uncertainty
is reduced and more information and new facets of the system are revealed; however, if
β becomes too large (i.e., the temperature approaches absolute zero in the thermodynamic
sense), the most relevant information tends to mask other information and this is also un-
desirable. The parameter β can scan the structure of the transfer matrix T . Therefore, the
transfer matrix T can be adjusted with an appropriate choice of the parameter β based on the
desired sensitivity. If all transitions are assigned equal strength, then setting β = 1 reduces
the transfer matrix T to a transition matrix that consists of the probabilities of all possible
transitions between different energy states.

3.5.1 Calculation of the Transfer Matrix for Pattern Identification

The construction of transfer matrix T requires calculation of the transition probabilities
between all energy states (i.e., ε-equivalence classes) in set Q[�] (see (26)). The transition
probabilities can be calculated based on the principle of sliding block codes [22]. An energy
state q

[�]
θ ∈ Q[�] changes to another energy state q [�]

ϕ ∈ Q[�] upon occurrence of a symbol
σ ∈ �[�]. On a given symbol sequence (possibly renormalized, i.e., � > 0), a window of
length r is shifted to the left (i.e., forward time direction) by one symbol at a time, such
that it retains the last (r − 1) symbols of the previous window and appends the new symbol
at the tip. The symbolic permutation of length r in the current window gives rise to a new
energy state. The counts of occurrences of word sequences σq

[�]
θ and q

[�]
θ are kept that are

respectively denoted byN(σq
[�]
θ ) andN(q

[�]
θ ). Note that ifN(q

[�]
θ ) = 0, then the energy state

q
[�]
θ ∈ Q[�] has zero probability of occurrence. For N(q

[�]
θ ) > 0, the transitions probabilities

are obtained by these frequency counts as follows:

P(q [�]
ϕ |q [�]

θ ) ≡ P(q [�]
ϕ , q

[�]
θ )

P(q
[�]
θ )

= P(σq
[�]
θ )

P(q
[�]
θ )

⇒ P(q [�]
ϕ |q [�]

θ ) ≈ N(σq
[�]
θ )

N(q
[�]
θ )

. (27)

For implementation purposes, the state transition probabilities can be calculated via con-
struction of a probabilistic finite state automata (PFSA) [42], whose states are the energy
states (i.e., the ε-equivalence classes) and the edges denote the transitions from one energy
state to the other upon occurrence of a new symbol. Therefore, the arc probabilities of the



S. Gupta, A. Ray

PFSA represent the transition probabilities between different energy states, which are gener-
ated from a symbol sequence over the PFSA. Once the transition probabilities are obtained,
the elements of the transfer matrix are calculated via (26). The information content in the
transfer matrix depends on the block symbol transformation of the original symbol sequence
generated from the observed time series data and the interaction range r between symbols
on the renormalized sequence.

Remark 3.4 In general, the generalized Ising models (GIMs) can be constructed from a
diverse range of block symbol transformations via different block widths w and shifts χ .
Higher block symbol transformations reveal coarser dynamics of the system. Furthermore,
the interaction range r can be varied to generate a diverse range of interactions. Such GIMs
can be constructed in a hierarchical structure to provide rich information on the underlying
dynamics of the complex system.

The transfer matrix T is calculated from the (fast scale) symbol sequences at different
slow-time epochs ts0 ,ts1 , . . . , tsn . The renormalized symbol sequence obtained from the ob-
served time series data under the reference condition (e.g., time epoch ts0 ) generates the
transfer matrix T ref . At subsequent slow-time epochs, ts1 ,ts2 , . . . , tsn , symbol sequences are
generated from the corresponding time series data sets, that, in turn, are used to generate the
transfer matrices T s1 , T s2 , . . . , T sn , respectively. The partitioning is kept invariant as that of
the reference condition at the time epoch ts0 . If the quasi-stationary dynamics of the sys-
tem change (possibly due to growth of anomalies) on the slow scale, the goal is to identify
these changes from the statistical patterns of the observed symbol sequences. Therefore, the
evolution of T on a slow scale with respect to the nominal condition (i.e., time epoch ts0 )
represents the gradual growth of (parametric or non-parametric) changes in the dynamical
system. For pattern identification, the transfer matrix T is converted to a stochastic matrix
U by unity sum-normalization of its rows using the following transformation:

U = D T (28)

where D is a diagonal matrix, such that Dθ,θ = 1/
∑|Q[�]|

ϕ=1 Tϕ,θ for θ = 1, . . . , |Q[�]|. The
left eigenvector p, called the pattern vector, is obtained corresponding to the (unique) unit
eigenvalue of the (irreducible) stochastic matrix U [43]. The generated pattern vectors are
robust to measurement noise and spurious disturbances, because transformation of the raw
signal to symbol sequences (see Sect. 3.1) attenuates noise via signal preprocessing and
coarse graining of the data. Furthermore, the statistical analysis to generate the pattern vec-
tors eliminates infrequent disturbances.

3.5.2 Calculation of a Macroscopic Parameter

Behavioral pattern changes, if any, are detected at time epoch tsj with respect to the reference
condition at ts0 by defining a macroscopic scalar parameter ψ , such that

ψsj = f (psj ,psj−1 , . . . ,pref ) (29)

where f (•,•, . . . ,•) is a path function of the evolution of the pattern vector p on the slow
scale, where psj and pref are pattern vectors generated from the irreducible stochastic ma-
trices U sj and U ref , respectively. Another choice of a macroscopic parameter ψ is a relative
function d(psj ,pref ) that defines a distance (e.g., the standard Euclidean norm, the L1 norm,
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and Kullback distance [44]) between the pattern vector psj and the nominal pattern vector
pref . In general, an analytical variable derived from the statistical pattern vectors can serve
as a macroscopic parameter for dynamical systems and can be chosen based on desired
sensitivity related to the particular application.

4 Experimental Validation of the Pattern Identification Algorithm

This section presents experimental validation of the pattern identification concept on a labo-
ratory apparatus for real-time monitoring of the effects of evolving microstructural changes
in polycrystalline alloys based on in situ ultrasonic sensing [45, 46]. In the current state-of-
the-art, no existing model, solely based on the fundamental principles of physics [1], can
adequately capture the dynamical behavior of fatigue damage at the grain level. Although
microstructural damage can be qualitatively assessed by electron microscopy, there exists
no precise method for real-time quantitative evaluation of gradually evolving microstruc-
tural changes relative to the nominal (i.e., reference) condition. This section presents some
of the experimental results generated from the observed ultrasonic data.
The test apparatus is loaded with a specimen of 7075-T6 aluminum alloy that is subjected

to tensile-tensile cyclic loading at 12 Hz with the maximum and minimum load amplitudes
of 85 MPa and 4.85 MPa under the regulation of computer-controlled electro-hydraulic
servo-valves [47]. The specimen is 3 mm thick and 50 mm wide, and has a semi-circular
notch of 1.58 mm× 4.7 mm one side. A piezoelectric transducer is used to inject 10 MHz
ultrasonic waves in a specimen and a receiver transducer is placed on the other side of notch
to measure the transmitted signal after it has traveled through the region of microstructural
damage. Similar to the propagation of any wave, discontinuities in the propagation medium
of ultrasonic waves cause additive and destructive interference. Since material character-
istics (e.g., voids, dislocations and short cracks) influence ultrasonic impedance, a small
irregularity in the specimen is likely to change the signature of the signal at the receiver
end. Since ultrasonic waves have a very small wavelength (relative to the dimension of mi-
crostructural flaws), very small irregularities can be detected. Therefore, the received signal
can be used to capture minute details and small changes during the early stages of fatigue
damage, which may not possible to detect by an optical microscope.
For data acquisition, the slow time epochs were chosen to be 1000 load cycles (i.e.,

∼80 s) apart and a string of 10,000 data points was collected at every slow time epoch. The
nominal condition at the slow time epoch ts0 was chosen to be ∼ 1 kilocycle to ensure that
the electro-hydraulic system of the test apparatus had come to a steady state. Following the
pattern identification algorithm, the ultrasonic data was transformed to a symbol sequence
using the Analytic-signal-space partitioning (ASSP) [37] based on the maximum entropy
principle [36] with an alphabet size of |�| = 8. Following Sect. 3.3, the symbol sequence
was renormalized by setting χ = w = 2 (i.e., a higher power shift). A block of width w was
assigned the symbol that corresponds to the higher element of the partition as the new block
symbol such that �[1] = �. The nearest-neighbor (i.e., r = 1) interactions were considered
for generation of the transfer matrix and β was chosen to be equal to one. Furthermore, unity
strength was assigned to each state transition. With this selection, the pattern identification
tool was able to capture the anomalies significantly earlier than through usage of the in-situ
traveling optical microscope. Increasing the value of |�| further did not improve the results
and increasing the value of r created a large number of energy states, many of these states
having very small or zero probabilities. The advantage of having a small number of energy
states is fast computation on an inexpensive processor as well as robustness to noise and
spurious disturbances.
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Fig. 6 An example of damage evolution in mechanical systems and measurement using ultrasonic signals

The evolution of fatigue damage is exhibited at different slow time epochs in Fig. 6 that
shows four pairs of plots from (a) to (d). In each pair, the top plot displays the surface im-
age of the test specimen, as seen by the optical microscope at a certain time epoch; and the
bottom plot displays the (processed) ultrasonic time series data collected at the correspond-
ing time epoch. (Note: Only 300 data points are shown in each image, however, the actual
data string consists of 10,000 points that was used for analysis at each slow time epoch.)
The image in Fig. 6(a) shows the nominal condition at∼1 kilocycle when there is negligible
damage in the specimen. The image in Fig. 6(b) shows the specimen surface at 18 kilocycles
before the appearance of crack on the surface. Apparently, this image does not yet have any
indication of surface crack although the corresponding bottom plate does exhibit a deviation
from the ultrasonic data at the nominal condition in Fig. 6(a). The image in Fig. 6(c) exhibits
noticeable appearance of a crack on the specimen surface at 23 kilocycles, which is often
considered as the boundary of crack initiation and crack propagation phases in the fracture
mechanics literature [21]. The appearance of a large surface crack indicates that a significant
portion of the crack or multiple small cracks might have already developed underneath the
surface before they started spreading on the surface. At the onset of the crack propagation
phase, the fatigue damage progresses relatively faster and shows rapid development of a
large crack. The image in Fig. 6(d) exhibits a fully developed crack at 40 kilocycles. The
corresponding bottom plate shows the ultrasonic data that is almost zero due to complete
attenuation.
Figure 7 shows the evolution of the macroscopic parameter that is generated from (29) by

analyzing the ultrasonic data sets at different slow time epochs. The function f in (29) was
chosen to be a cumulative sum of the incremental damage measured by the Euclidean dis-
tance between adjacent pattern vectors [45]. A sharp change in the slope of the macroscopic
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Fig. 7 Evolution of the
macroscopic parameter

parameter indicates the onset of crack propagation phase, which occurs upon appearance
of a surface crack at ∼23 kilocycles and could be perceived as a first-order phase transi-
tion [40]. (Note: the notion of equilibrium statistical mechanics does not hold for phase
transitions.) It is observed that small changes can be detected significantly before the optical
microscope can capture a surface crack. The slope of the anomaly measure represents the
damage growth rate while the magnitude indicates the accumulated fatigue damage starting
from the nominal condition. The critical information lies in the crack initiation phase where
no crack was visible on the surface. This is the region where microstructural damage such
as multiple small cracks possibly caused small changes in the ultrasonic signal profile. In
the crack propagation phase the macroscopic parameter shows a significantly faster growth
as compared to the slow growth during crack initiation.

5 Summary, Conclusions, and Recommendations for Future Work

The paper presents a theoretical concept of data-driven pattern identification in dy-
namical systems based on the principles of statistical mechanics. Potentially, this concept
of pattern identification is of paramount importance to diverse disciplines (e.g., electro-
mechanical, aerospace, sensor network, environmental, biological, and sociological sys-
tems) related to applied physics and engineering science. These dynamical systems may
gradually evolve over a slow time scale until occurrence of major disruptions. The nom-
inal behavior of such dynamical systems are assumed to follow the laws of equilibrium
thermodynamics and the disruptive conditions (e.g., onset of chaos in the vicinity of bi-
furcation) could be perceived to be analogous to phase transitions and other forms of non-
equilibrium thermodynamics. While large disruptions are usually conspicuous, this paper
addresses identification of gradually evolving patterns in complex systems.
Analytical relationships have been formulated to construct analogies between the con-

cepts of statistical mechanics and symbolic dynamics for pattern identification. The under-
lying theory is formulated to construct macroscopic patterns from symbol sequences that are
generated from observed time series data. In particular, the concepts of lattice spin systems
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are used for construction of pattern identification algorithms based on transfer matrix analy-
sis of the generalized Ising model (GIM) of a symbol sequence. These algorithms include
coarser representations of the dynamical system via block symbol transformations of the
original system for reduced complexity. Pertinent results are experimentally validated on a
computer-controlled and richly instrumented laboratory apparatus under oscillating load for
behavior pattern changes due to gradual evolution of fatigue damage in a polycrystalline
alloy.
Further theoretical, computational, and experimental research is necessary before the

concepts, presented in this paper, can be applied to real-life environments. Specifically, the
following research areas are recommended as topics of future work.

• Extension of one-dimensional spin system models to multidimensional spin system mod-
els for data fusion and pattern identification in multidimensional data sets (e.g., two-
dimensional images).

• Extension of the pattern identification method in non-stationary signals using the concepts
of non-equilibrium statistical mechanics.

• Pattern identification of global behavioral changes in large-scale multi-agent systems
(e.g., sensor networks and robot swarms).

• Application of the Renormalization Group theory for identification of (first and higher
order) phase transitions and the associated critical phenomena in complex dynamical sys-
tems.

• Selection of an appropriate order parameter (i.e, the macroscopic variable) based on the
desired sensitivity of change detection.

Acknowledgements The authors would like to thank the anonymous reviewers whose thoughtful com-
ments and suggestions have improved the quality of the paper.

Appendix A: Sliding Block Codes

The shift space formalism is a systematic way to study the properties of dynamical sys-
tems encoded through symbolic dynamics. The different shift spaces provide increasingly
powerful classes of models that can be used to generate statistical patterns for behavior
identification in complex systems as presented in this paper.

Definition A.1 Let� be a (finite) alphabet. The full �-shift is the collection of all bi-infinite
sequences of symbols from � and is denoted by:

�Z = {υ = {υi}i∈Z : υi ∈ � ∀i ∈ Z}. (30)

Definition A.2 The shift map ζ on the full shift �Z maps a point υ to a point τ = ζ(υ)

whose ith coordinate is τi = υi+1.

A block is a finite sequence of symbols over �. Let υ ∈ �Z and b be a block over �.
Then b occurs in υ if there exists indices i and j such that b = υ[j,i] = υjυj−1 · · ·υi . Note
that the empty block ε occurs in every υ .

Definition A.3 Let F be a collection of blocks, i.e., (finite) sequences of symbols over �.
For any such F , let us define XF to be the subset of sequences in �Z, which do not contain
any block in F . A shift space is a subset X of a full shift �Z such that X = XF for some
collection F of forbidden blocks over �.
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For a given shift space, the collection F is at most countable (i.e., finite or countably
infinite) and is non-unique (i.e., there may be many such F ’s describing the shift space). As
subshifts of full shifts, these spaces share a common feature called shift invariance. Since
the constraints on points are given in terms of forbidden blocks alone and do not involve the
coordinate at which a block might be forbidden, it follows that if υ ∈ XF , then so are its
shifts ζ(υ) and ζ−1(υ). Therefore, ζ(XF ) = XF , which is a necessary condition for a subset
of �Z to be a shift space. This property introduces the concept of shift dynamical systems.

Definition A.4 Let X be a shift space and ζX : X → X be the shift map. Then (X, ζX) is
known as a shift dynamical system.

The shift dynamical system mirrors the dynamics of the original dynamical system from
which it is generated (by symbolic dynamics). Several examples of shift spaces are given in
[22]. Rather than describing a shift space by specifying the forbidden blocks, it can also be
specified by allowed blocks.

Definition A.5 LetX be a subset of a full shift, and let B(n)(X) denote the set of all n-blocks
(i.e., blocks of length n) that occur in X. The language of the shift space X is defined by
block space B(X) as:

B(X) =
∞⋃

n=0
B(n)(X). (31)

Sliding Block Codes Let X be a shift space over the alphabet �, then υ ∈ X can be trans-
formed into a new sequence υ ′ = · · ·υ ′

1υ
′
−1υ

′
0 · · · over another alphabet �′ as follows. Fix

integers m and n such that −m ≤ n. To compute υ ′
i of the transformed sequence, we use a

function � that depends on the “window" of coordinates of υ from i − m to i + n. Here,
� : B(m+n+1)(X) → �′ is a fixed block map, called a (m + n + 1)-block map, from the
allowed (m + n + 1)-blocks in X to symbols in �′. Therefore,

υ ′
i = �(υi+n · · ·υi−m+1υi−m) = �(υ[i+n,i−m]). (32)

Definition A.6 Let � be a block map as defined in (32). Then the map ψ : X → (�′)Z

defined by υ ′ = ψ(υ) with υ ′
i given by (32) is called the sliding block code induced by �

with memory m and anticipation n.

Definition A.7 Let X and Y be shift spaces, and ψ : X → Y be a sliding block code.

• If ψ : X → Y is onto, then φ is called a factor code from X onto Y .
• If ψ : X → Y is one-to-one, then φ is called an embedding of X into Y .
• If ψ : X → Y has a inverse (i.e., there exists a sliding block code φ : Y → X such that

φ(ψ(υ)) = υ ∀υ ∈ X and φ(ψ(γ )) = γ ∀ γ ∈ Y ), then ψ is called a conjugacy from X

to Y .

If there exists a conjugacy from X to Y , then Y can be viewed as a copy of X, sharing
all properties of X. Therefore, a conjugacy is often called topological conjugacy in litera-
ture [22].
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Appendix B: Stopping Rule for Determining Symbol Sequence Length

This section presents a stopping rule that is necessary to find a lower bound on the length
of symbol sequences required for parameter identification of the state transition matrix �

that is equal to the transfer matrix T for uniform strengths and for β = 1. The idea is to
have sufficiently large symbol sequence such that the state transition matrix � is saturated.
The stopping rule [48] is based on the properties of irreducible stochastic matrices [43]. The
state transition matrix is constructed at the λ iteration step (i.e., from a symbol sequence of
length λ) as�(λ) that is anm×m irreducible stochastic matrix under stationary conditions.
Similarly, the state probability vector p(λ) ≡ [p1(λ) p2(λ) · · · pm(λ)] is obtained as

pi(λ) = λi∑m

j=1 λi

(33)

where λi is the number of r-blocks representing the ith equivalence class such that(∑m

j=1 λj

) + r − 1= λ is the total length of the data sequence under symbolization.
The stopping rule makes use of the Perron-Frobenius Theorem [43] to establish a rela-

tion between the vector p(λ) and the matrix �(λ). Since the matrix �(λ) is stochastic and
irreducible, there exists a unique unit eigenvalue and the corresponding left eigenvector p(λ)

(normalized to unity in the sense of absolute sum). The left eigenvector p(λ) represents the
probability vector, provided that the matrix parameters have converged after a sufficiently
large number of iterations. That is,

p(λ) = p(λ)�(λ) as λ → ∞. (34)

Following (33), the absolute error between successive iterations is obtained such that

‖(p(λ) − p(λ + 1))‖∞ = ‖p(λ)(I − �(λ))‖∞ ≤ 1

λ
(35)

where ‖ • ‖∞ is the max norm of the finite-dimensional vector •.
To calculate the stopping point λs , a tolerance of η (0 < η � 1) is specified for the

relative error such that:

‖(p(λ) − p(λ + 1))‖∞
‖(p(λ))‖∞

≤ η ∀ λ ≥ λs. (36)

The objective is to obtain the least conservative estimate for λs such that the dominant
elements of the probability vector have smaller relative errors than the remaining elements.
Since the minimum possible value of ‖(p(λ))‖∞ for all λ is 1

m
, where m is the dimension of

p(λ), the best worst case value of the stopping point is obtained from (35) and (36) as:

λs ≡ int
(

m

η

)
(37)

where int(•) is the integer part of the real number •.
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