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Abstract: This article presents estimation of multiple faults in aircraft gas-turbine engines, based
on a statistical pattern recognition tool called symbolic dynamic filtering. The underlying con-
cept is formulated by statistical analysis of evidences to estimate anomalies (i.e. deviations from
the nominal values) in multiple critical parameters of the engine system; it also presents a
framework for sensor information fusion. The fault estimation algorithm is validated on a numer-
ical simulation test-bed that is built upon the NASA C-MAPSS model of a generic commercial
aircraft engine.
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1 INTRODUCTION

Aircraft propulsion system health monitoring is one of
the key issues regarding aviation safety. Current state
of the art of health monitoring involves a regular and
fixed schedule of inspection and maintenance, which
are essentially conservative in nature and hence may
not be cost effective. On the other hand, in unusual cir-
cumstances, the normal ground inspection schedule
may not be able to detect aggravation of hidden faults,
which may result in a permanent damage of the engine
or a potentially catastrophic accident. Hence, there is a
need for new technologies of health monitoring for air-
craft gas turbine engines, which can be pursued either
onboard during a flight or on the ground but without
the need for installation of additional sensors and/or
mounting the engine on a maintenance test facility.

Health monitoring of aircraft engines is tradition-
ally conducted in three major steps, namely, detection,
diagnosis, and prognosis. Detection involves iden-
tification of an existing fault in the system. Upon
detection of a fault, the role of diagnosis is to isolate
the fault type and location and to quantify the fault in
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a statistical sense. Given possible statistics of future
operating conditions and an expected component
deterioration profile, the role of prognosis is to esti-
mate the remaining life of the engine from the infor-
mation generated in the diagnosis step. Nevertheless,
an aircraft engine is a complex large-scale dynamical
system whose subsystems are interconnected physi-
cally as well as through feedback control loops. It is
a challenging task to detect, isolate, and estimate the
severity of the fault(s), which has been addressed by
many investigators over the last several decades.

Hoffman and van der Merwe [1] have shown that
traditional frequency-based methods may not be read-
ily applicable to estimate the evolution of multiple
faults in gas turbine engines; fault dictionaries have
been used to alleviate this problem, but they are often
infeasible to store in onboard applications because
of their large sizes [2]. Recent literature has reported
several other methods, such as those based on joint
state estimation [3], parity equations [4], and similarity
measures [5], for multiple parameter estimation.

Several model-based and data-driven techniques
have been reported in literature for fault detection,
diagnosis, and prognosis, which include statistical
linearization [6], Kalman filtering [7], unscented
Kalman filtering [8, 9], particle filtering (PF) [10],
Markov chain Monte Carlo [11], Bayesian net-
works [12], neural networks [1], maximum likelihood
estimation [13], wavelet-based tools [14], and genetic
algorithms [15].
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In general, faults in an aircraft engine are classified
into three major categories.

1. Loss of efficiency in subsystems (e.g. fan, compres-
sor, and turbines).

2. Sensor degradation (e.g. drift and fluctuations).
3. Actuator faults (e.g. sluggish response and excessive

dead band and hysteresis).

Specifically, this article addresses estimation of those
faults that cause efficiency degradation in engine
components.

For data-driven estimation of multiple faults, every
representative fault condition that is manifested by
a combination of different types of faults could be
unique in the multi-dimensional parameter space.
Hence, individual training patterns need to be stored
in a database. This requires intelligent information
compression for low memory requirement and low
computational complexity. On the other hand, in a
complex system such as an aircraft gas-turbine engine,
the patterns generated from a single sensor may
not carry sufficient information to identify multiple
parameters/faults because different combinations of
component faults may generate similar signatures in
a particular sensor observation.

Anomaly (i.e. deviation from the nominal condition)
detection algorithms, built upon on a statistical pat-
tern recognition tool called symbolic dynamic filtering
(SDF) [16], have been developed and experimentally
validated for real-time execution in different applica-
tions (e.g. electronic circuits [17] and fatigue damage
monitoring in polycrystalline alloys [18]). For such
applications, a framework for probabilistic identifi-
cation of a single system parameter is reported in
reference [17]. The anomaly detection algorithms,
constructed in the SDF setting, have shown superior
performance in terms of early detection of anomalies
and robustness to measurement noise by compari-
son with other existing techniques such as principal
component analysis, artificial neural networks, and
Bayesian techniques [19]. Very recently, the theory
of SDF-based single-parameter estimation has been
extended to multiple parameters along with experi-
mental validation in nonlinear electronic systems [20].
A key feature of this extension is fusion of statisti-
cal information to obtain a probabilistic estimate of
multiple parameters of the underlying system.

In a two-part paper [21, 22], an SDF-based algorithm
for detection and isolation of faults in aircraft engine
subsystems has been reported. As described earlier,
the next step is to estimate the severity of detected
fault(s) for diagnosis. In this context, quantification of
simultaneously evolving faults in critical subsystems
pose the challenging task of multiple parameter esti-
mation in a dynamical system. This issue is addressed
in the present article that develops and validates a

statistical methodology, based on SDF, for estima-
tion of multiple faults in a gas turbine engine. The
major contributions of this article beyond our recent
work [21, 22] in the field of engine health monitoring
are listed below.

1. Estimation of (simultaneously occurring) multiple
faults in aircraft gas-turbine engines.

2. Formulation of a framework for sensor data fusion
as needed for estimation of multiple faults.

3. Data compression as pattern vectors of low-
dimension for feature-level sensor fusion as
needed for onboard vehicle health monitoring and
resilient control.

The article is organized in four sections including
the present section. Section 2 describes the multiple
fault estimation methodology along with a framework
of sensor information fusion in aircraft gas-turbine
engines. Section 3 validates the concept of multiple
fault estimation on the NASA simulation test-bed of
commercial aircraft engines (C-MAPSS) [23]. The arti-
cle is summarized and concluded in section 4 along
with recommendations for future work.

2 MULTIPLE FAULT ESTIMATION
METHODOLOGY

This section describes a statistical methodology
for multiple fault estimation in aircraft gas-turbine
engines along with a sensor fusion framework.

2.1 Problem statement

In general, the fault scenarios in major engine com-
ponents can be categorized into three different types
based on their mode of occurrence. These types are:
(a) gradual deterioration, (b) intermittent faults, and
(c) abrupt large faults. However, no matter what type
of fault occurs in a particular component, the problem
can be reduced to a parameter identification prob-
lem from the point of view of fault estimation as
presented below.

Let S denote a collection of (finitely many) data
points in the n-dimensional parameter space, where
the positive integer n is the number of parameters
that are to be estimated, i.e. S = {s0, s1, . . . , s|S|−1}, on
which the training process is executed. In the context
of gas-turbine engines, sk signifies a particular faulty
condition in the set of fault conditions S under con-
sideration. Let s0 denote the nominal condition of the
engine and Y be the set of sensors for the engine sys-
tem consisting of sensors yj for j = 1, 2, . . . , |Y|. Let �

be the convex hull of S, which represents the range
over which the parameters take values. It is noted that
� is a convex and compact subset of the separable
space R

n. The problem at hand is to statistically esti-
mate fault condition s ∈ �, given an experimental data
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set ϒ , i.e. to identify the conditional probability den-
sity f (s|ϒ). It is noted that s ∈ � may not be one of the
points in set S.

The multiple-fault estimation procedure is divided
into two steps, which are: (a) forward problem/
training and (b) inverse problem/testing, as shown
in Fig. 1. The following sections 2.2 and 2.3 describe
the two steps in detail.

2.2 Forward problem/training

In the forward problem, a database of patterns is cre-
ated at parameter values, sk , ∀k = 0, 1, . . . , (|S| − 1),
by collecting time-series data from sensors yj ∈ Y ,
as shown in Fig. 1. Generation of statistical patterns
from time series data is posed as a two-scale prob-
lem [16, 21]. The fast scale is related to the response
time of the process dynamics, over the span of which
the process is assumed to be quasi-stationary. The
slow scale is related to the time span over which devi-
ations (e.g. parametric or non-parametric changes)
may occur and exhibit non-stationary dynamics. In
the present context, time-series data are collected with
the system being quasi-stationary at a particular slow-
scale epoch sk . The procedural steps of the forward
problem are presented below.

1. Time series data acquisition on the fast scale from
the available sensors: time series data sets from each
sensor yj ∈ Y are collected for each epoch sk ∈ S.

2. Wavelet/Hilbert transform preprocessing of the time-
series data: the wavelet or Hilbert transforms largely
alleviate the difficulties of phase-space partitioning
and are particularly effective with noisy data from
high-dimensional dynamical systems [24, 25].

3. Maximum entropy partitioning of the transformed
space at the reference condition of epoch s0: this
step enables transformation of the preprocessed
time series data from the continuous domain to
the symbol domain [16] by partitioning the trans-
formed phase space, where the data set from each
sensor yj , j = 1, . . . , |Y|, has its own alphabet; for
each sensor, a specific symbol is assigned to each
partition segment from the respective alphabet.
Maximum entropy partitioning [24, 25] is con-
structed separately for different sensor data sets at
epoch s0. These partitions are kept invariant for

Fig. 1 Outline of the fault estimation procedure

analysis at subsequent epochs s1, s2, . . . , s|S|−1 of
respective sensor data.

4. Construction of a probabilistic finite state automa-
ton at the reference condition s0 and computation of
state probabilities: probabilistic finite state automa-
ton (PFSA) are constructed for every sensor data
at epoch s0 and their structures remain invariant
for subsequent epochs of each sensor data. Let
the Nj be the number of states in the PFSA corre-
sponding to the sensor yj , j = 1, . . . , |Y|. The sum
of the probabilities of all states is equal to unity, i.e.∑Nj

i=1 p j
i (sk) = 1 ∀j ∈ {1, . . . , |Y|} ∀k ∈ {0, . . . , |S| − 1},

where p j
i (sk) denotes the probability of the ith state

of the PFSA constructed fron time series of jth
sensor at epoch sk ; at most Nj − 1, out of the Nj

elements of the state probability vector can be inde-
pendent. Therefore, the pattern for each sensor
labeled by j = 1, . . . , |Y| is represented by a (Nj −
1)-dimensional row vector p j � [p j

1 · · · p j
Nj−1] ∀j ∈

{1, . . . , |Y|}; this notation holds for all epochs sk ∀k ∈
{0, . . . , |S| − 1}.

5. Construction of the pattern database: a refer-
ence pattern array P(s0) is constructed by vertical
stacking of the reference row vectors, p j(s0), j ∈
{1, . . . , |Y|}, as shown below

P(s0) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(s0)

p2(s0)

· · ·
· · ·

p|Y|(s0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1
1(s0) · · · p1

N1−1(s0)

p2
1(s0) · · · p2

N2−1(s0)

· · ·
· · ·

p|Y|
1 (s0) · · · p|Y|

N|Y |−1(s0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Note that the individual rows in the array P may
have different lengths because the PFSA corres-
ponding to different sensors may have differ-
ent state cardinalities; hence, P should not be
viewed as a matrix but it is a two-dimensional
array of positive fractions, where the total num-
ber of elements is (N1 + · · · + N|Y| − |Y|). Similarly,
P(s1), P(s2), . . . , P(s|S|−1) are computed at epochs
s1, s2, . . . , s|S|−1 from the respective patterns. Note
that the structure of the PFSA at all epochs for
a particular sensor is identical while the pattern
arrays P(sk) are possibly different at different sk ∈ S
because of parametric or non-parametric changes
in the process.

6. Computation of pattern statistics: different units of
identically manufactured engines are different in
behaviour or performance; this inevitable uncer-
tainty is modelled as the process noise. Therefore,
several runs are performed for each fault condition,
with a certain value of process noise along with
an a priori determined sensor noise (e.g. calcu-
lated from instrumentation manufacturer’s spec-
ifications) to obtain the pattern vector statistics.
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Let the pattern array P(sk) be modelled as a ran-
dom array Q(sk), whose elements are ql

i (sk) that
is constructed from the ensemble of realizations
pl

i(sk). Considering up to second-order statistics,
elements of the random array Q(sk) are modelled
to have multivariate structures from the perspec-
tives of state machine construction in the SDF
setting, as explained later in Remark 1. Thus, for
each epoch sk , a mean pattern vector μ(sk) and a
corresponding covariance matrix �(sk) of the pat-
tern are calculated from the elements of Q(sk).
An element of μ(sk) is expressed as ml

i(sk), ∀l ∈
{1, 2, . . . , |Y|} and ∀i ∈ {1, 2, . . . , Nl − 1}, which sig-
nifies the mean values of pl

i(sk) generated from the
data sets of different runs. Similarly, an element of
the covariance matrix �(sk) is expressed as γ l�

ij (sk),
∀l, � ∈ {1, 2, . . . , |Y|} and ∀i ∈ {1, 2, . . . , Nl − 1}, and
∀j ∈ {1, 2, . . . , N� − 1}, which signifies the value of
cross-covariance between pl

i(sk) and p�
j (sk), which

is also generated from the data sets of different runs.
Note that, for l = �, the covariance matrix terms
yield correlation among the states i and j of the
PFSA generated from the same sensor data and,
for l �= �, the covariance matrix terms yield corre-
lation among the states i and j of different PFSA
corresponding to different sensors.

For the purpose of book-keeping in statistical calcu-
lations, each of the (two-dimensional) arrays P(sk) is
rearranged as a single row vector p(sk) by horizontally
concatenating the row vectors p j(sk), j ∈ {1, . . . , |Y|},
i.e. the random pattern array Q(sk) is rearranged as
the random pattern vector q(sk). The mean pattern
vector μ(sk) and covariance matrix �(sk) are con-
structed correspondingly. The covariance matrix �(sk)

is comprised of several blocks of elements. The square
diagonal blocks correspond to the covariance among
states of same sensor data, where as the off-diagonal
possibly non-square (due to possible different alpha-
bet size for different sensor data) blocks correspond to
the covariance among states of different sensor data.

Remark 1

The underlying dynamical system is modelled as an
irreducible Markov process through SDF, where the
state probability vector is the sum-normalized eigen-
vector of the state transition matrix corresponding
to the unique unity eigenvalue. Hence, no element
in the state probability vector is either 0 or equal to
1. However, due to process noise and sensor noise,
the random vector q(sk) fluctuates around its mean
μ(sk). Analysing the experimental data, the terms of
the covariance matrices of the random vectors q(sk)

were found to be very small compared to the mean.
Therefore, a parametric or non-parametric two-sided
uni-modal distribution should be adequate to model
the random vector q(sk). The choice of Gaussian

distribution for q would facilitate estimation of the
statistical parameters and involve only second-order
statistics. Also, the elements of q(sk) have to be posi-
tive, which is made possible by truncating the far end
of the Gaussian distribution tail on the left side. The
goodness of fit of the distribution as Gaussian still
remains valid at a very high significance level. For a
particular sensor yj summation of the elements q j

i (sk),
∀i ∈ {1, 2, . . . , Nj} has to be unity, which is achieved by
sumnormalization.

The (jointly Gaussian) conditional probability dis-
tribution of a random pattern vector q is given as

fq|�(p|sk) = 1
(2π)N /2|�(sk)|1/2

exp
{
−1

2
[p − μ(sk)]

× [�(sk)]−1[p − μ(sk)]T

}
(1)

where N = N1 + · · · + N|Y| − |Y|.

2.3 Inverse problem/testing

The objective here is to identify the probabilistic loca-
tion of the fault in the multi-dimensional parameter
space, i.e. identification of the unknown parameter
vector s ∈ �; however, it is possible that s /∈ S. There-
fore, for a particular test case, time series data are
collected from different sensors. The data are analysed
using the same symbolic dynamic filter constructed in
the forward problem/training (see section 2.2), and
the resulting row vector p is a realization of a ran-
dom pattern vector q. The density function f�|q(s|p)

is obtained as

f�|q(s|p) = fq|�(p|s)f�(s)
fq(p)

= fq|�(p|s)f�(s)
∫

�
fq|�(p|s̃)f�(s̃)ds̃

(2)

In the absence of a priori information, an assump-
tion is made that all operating conditions are equally
likely, i.e. f�(s) = f�(s̃) ∀s̃, s̃ ∈ �. With this assumption
of uniform probability, equation (2) reduces to

f�|q(s|p) = fq|�(p|s)
∫

�
fq|�(p|s̃)ds̃

(3)

It is noted that accuracy of the above distribution
would be improved if the actual prior mapping,
i.e. f�(s) is known. The integral in the denomina-
tor of equation (3) is approximated by a Reimann
sum as

f�|q(s|p) ≈ κ
fq|�(p|s)∑
S fq|�(p|s̃) (4)

where κ is a constant. This approximation converges
to the exact solution as the training set S approaches
a countable dense subset of � ⊂ R

n.
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The density function in equation (4) is now sampled
at the points sk in the training set S and the following
sampled density is constructed as to yield

f�|q(s|p)
∣∣

s=sk ≈ κ
fq|�(p|sk)∑
s̃∈S fq|�(p|s̃) ∀sk ∈ S (5)

The density functions in the numerator and
denominator of equation (5) are obtained from
equation (1), which were determined in the training
phase. It is noted that the nature of the density function
f�|q(sk|p) does not depend on the constant κ .

The probability mass functions are obtained by eval-
uating the probability density function in equation (5)
at points sk ∈ S.

P(sk|p) � f�|q(sk|p)∑|S|
j=1 f�|q(s j|p)

≈ fq|�(p|sk)∑|S|
j=1 fq|�(p|s j)

(6)

which is expressed in terms of equation (1) as

P(sk|p) ≈ [1/((2π)N /2|�(sk)|1/2)] exp(X (sk))∑|S|
l=1 [1/((2π)N /2|�(sl)|1/2)] exp(X (sl))

(7)

where X (•) = −( 1
2 )[p − μ(•)][�(•)]−1[p − μ(•)]T.

The above equation signifies a statistical pattern
matching by calculating the Mahalnobis distance [26]
between the test and the training patterns; therefore,
smaller the Mahalnobis distance, better is the match
between these two patterns.

It has been observed from experimental data that
fluctuations of the pattern vectors are very weakly
correlated among different symbols and different sen-
sors. Therefore, the jointly Gaussian distribution of
all fq|�(p|sk)’s can be reduced to the product of indi-
vidual Gaussian distributions fq|�(p j

i |sk) of different
symbols ∀j ∈ {1, 2, . . . , |Y|} and ∀i ∈ {1, 2, . . . , Nj − 1}.
Therefore, instead of using the multi-variate jointly
Gaussian distribution, univariate Gaussian distribu-
tion is used for each symbol, (the variance being
the corresponding diagonal element of the covari-
ance matrix) to calculate P(sk|p). Thus, equation (7)
is expressed as

∀j ∈ {1, 2, . . . , |Y|} and ∀i ∈ {1, 2, . . . , Nj − 1}
P(sk|p)

≈
∏

j

∏
i {1/[(2π)1/2(γ

jj
ii (sk))1/2]} exp[X j

i (sk)]∑|S|
l=1

∏
j

∏
i {1/[(2π)1/2(γ

jj
ii (sl))1/2]} exp[X j

i (sl)]
(8)

where X j
i (•) � {−( 1

2 )[p j
i − m j

i (•)][γ jj
ii (•)]−1[p j

i − m j
i

(•)]}.
Once the probability mass function P(sk|p) is

obtained, there can be different estimates ŝ ∈ �

depending upon the cost function of estimation. For
example, the median of the distribution yields the
estimated value by minimizing the root mean square
value of the deviations. Again, most likely parameter
value can be obtained from the mode of the distri-
bution. In this article, estimated mean is considered
that minimizes the average of the square of the abso-
lute deviations around the estimated point. Estimated
mean ŝ and estimated covariance matrix Ĉs of the
parameter (column) vector s are obtained directly
from P(sk|p) as

ŝ(p) �
|S|∑

k=1

sk P(sk|p) (9)

Ĉs(p) �
|S|∑

k=1

[
sk − ŝ(p)

]
P(sk|p)

[
sk − ŝ(p)

]T
(10)

Since the statistical information is available in the form
of probability mass functions, the third and higher
moments of the parameter vector can be estimated
in a similar way; however, third and higher moments
are redundant because the inherent distribution is
assumed to have a Gaussian structure that carries full
statistical information in the first two moments.

2.4 Discussion on sensor fusion

The above formulation of the inverse problem uses
information from all the sensors yj for j = 1, 2, . . . , |Y|,
i.e. the information from all sensors are fused together
to estimate the fault level in the engine test case.
However, this fusion technique allows the user to
choose the number and the combination of sen-
sors to be used for the multiple fault estimation.
For example, let us assume that the user just wants
to use only one sensor, say, sensor y1. Then, only
blocks pertaining to y1 are to be selected from the
forward problem pattern database. Thus, elements
m j

i (sk) for j = 1 and ∀i ∈ {1, 2, . . . , N1 − 1} are selected
from μ(sk) and elements γ mn

xy (sk) for m, n = 1 and
∀x, y ∈ {1, 2, . . . , N1 − 1} are selected from �(sk) ∀sk ∈
S. In another example, both sensors s1 and s3 are to
be used. Then, elements m j

i (sk), ∀j ∈ {1, 3}, and ∀i ∈
{1, 2, . . . , Nj − 1} are selected from μ(sk) and elements
γ mn

xy (sk), ∀m, n ∈ {1, 3}, and ∀x ∈ {1, 2, . . . , Nm − 1}, and
∀y ∈ {1, 2, . . . , Nn − 1} are selected from �(sk) ∀sk ∈
S. It follows from the above two examples that the
elements of the test patterns need to be selected
corresponding to the sensors under consideration.

Remark 2

The current framework attempts to fuse information
from different sensors at feature level as opposed to the
frameworks of data level or decision level fusion. The
advantages of the present sensor information fusion
framework are delineated below.
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1. Data level fusion techniques often encounter scal-
ing problem while fusing information from sensors
of different modality. However, the present tech-
nique fuses the probability vector patterns, which
does not have any scaling issue.

2. Decision level fusion generally provides too coarse
diagnosis of faults and also requires in depth under-
standing of the physical system.

3. Multi-dimensionality of the parameter space has
been taken care of without the use of product
automata which leads to state explosion.

3 VALIDATION ON THE C-MAPSS TEST-BED

The C-MAPSS simulation test-bed, developed at
NASA, is built upon the model of a commercial-scale
two-spool turbofan engine and its control system.
While the details of the model are available in
reference [23], a brief outline of C-MAPSS is provided
here for completeness of the article. The engine under
consideration produces a thrust of ∼400 000 N and is
designed for operation at (a) altitudes from sea level
up to 12 200 m, (b) Mach numbers from 0 to 0.90, and
(c) sea-level temperatures from approximately −50 ◦C
to 50 ◦C. The throttle resolving angle (TRA) can be set
to any value in the range between 0◦ (minimum power)
and 100◦ (maximum power).

As seen in Figs 2(a) and (b), the simulation test-bed
of the gas turbine engine system consists of high-
pressure compressor (HPC), combustor, and high-
pressure turbine (HPT), which form the core of the
engine model; this subsystem is also referred to as
the gas generator. In the turbofan engine, the engine
core is surrounded by the fan and low-pressure com-
pressure (LPC) in the front and an additional low-
pressure turbine (LPT) at the rear; and fan, LPC
and LPT are mechanically connected by an addi-
tional shaft. The fan shaft passes through the core
shaft and because of this type of arrangement, the
engine is called a two spool engine. In contrast to
gas turbine engines for military aircraft [21, 22], a rel-
atively small part of the incoming air at the engine
inlet passes through the fan and continues on into
the core compressor and then into the combustor,
where it is mixed with fuel and combustion occurs;
therefore, this type of engine is known as a high-
bypass engine. The hot exhaust gas, called the core
airflow, passes through the core and LPT and then
exits through the nozzle; and the rest of the incom-
ing air passes through the fan and bypasses, or flows
around the engine. A gain-scheduled control system
is incorporated in the engine system, which consists
of (a) a fan-speed controller for a specified throttle-
resolver angle (TRA), (b) three high-limit regulators
that prevent the engine from exceeding its design lim-
its for core-spool speed, engine-pressure ratio, and
HPT exit temperature, (c) the fourth limit regulator

Fig. 2 C-MAPSS engine simulation test-bed: (a) gas tur-
bine engine schematic and (b) gas turbine engine
model configuration

that attempts to prevent the static pressure at the
HPC exit from dropping too low, (d) acceleration and
deceleration limiters for the core-spool speed, and
(e) a comprehensive logic structure that integrates
these control-system components in a manner sim-
ilar to that used in real engine controllers such that
integrator-windup problems are avoided. To achieve
fast execution of simulation runs, the sensors and
actuators are approximated to have instantaneous
response, no computational time delays, and no drift
and or bias. Given the inputs of TRA, altitude (a) and
Mach number (M ), the interactively controlled com-
ponent models at the simulation test-bed compute
non-linear dynamics of real-time turbofan engine
operation. Both steady-state and transient operations
are simulated in the continuous-time setting. Perfor-
mance maps are used to provide steady-state repre-
sentations of the engine’s rotating components. Fluid
momentum in the bypass duct and the augmentor,
mass and energy storage within control volumes, and
rotor inertias are also included to model transient
operations. The entire test-bed code is written on
Matlab and Simulink platform.

As indicated earlier, this article addresses estima-
tion of those faults that cause efficiency degradation
in engine components. In the current configuration of
the C-MAPSS simulation test-bed, there are 13 health
parameter inputs, namely, efficiency health parame-
ters (ψ), flow health parameters (ζ ), and pressure ratio
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modifiers, that simulates the effects of faults and/or
degradation in the engine components. Ten, out of
these 13 health parameters, are selected to modify
efficiency (η) and flow (φ) which are defined [27] as:

(a) η � the ratio of actual enthalpy change and ideal
enthalpy change;

(b) φ � the ratio of tip rotor velocity and axial fluid
flow velocity.

For the engine’s five rotating components (i.e. Fan,
LPC, HPC, HPT, and LPT), the ten health parameters
are: (a) fan (ψF, ζF), (b) LPC (ψLPC, ζLPC), (c) HPC (ψHPC,
ζHPC), (d) HPT (ψHPT, ζHPT), and (e) LPT (ψLPT, ζLPT).
Table 1 lists the (commercially available) sensors and
their locations (see Fig. 2(b)) that have been used for
multiple fault estimation in C-MAPSS engine test-bed.

3.1 Results and discussions

Time series data have been collected for different
sensors under persistent excitation of TRA inputs
that have truncated triangular profiles with the mean
value of 80◦, fluctuations within ±2◦ and frequency of
0.056 Hz as shown in Fig. 3. The ambient conditions
are chosen to be at the sea level (i.e. altitude a = 0.0
and Mach number M = 0.0) when the engine is on the
ground for fault monitoring and maintenance by the
engineering personnel. The engine simulation is con-
ducted at a frequency of 66.67 Hz (i.e. inter-sample
time of 15 ms) and the length of the simulation time
window is 150 s, which generate 10 000 data points for
each training or test case.

Table 1 Required engine system sensors

Sensors Description

P24 LPC exit/HPC inlet pressure
T24 LPC exit/HPC inlet temperature
Ps30 HPC exit static pressure
T30 HPC exit/burner inlet temperature
T50 LPT exit temperature
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Fig. 4 Fault estimation in fan-LPC based on Ps30 sensor:
(a) surface plot of fault estimation and (b) contour
plot of fault estimation

An engine component C is considered in nomi-
nal condition when both ψC and ζC are equal to 1.
Fault is injected in the component C by simultane-
ously reducing both ψC and ζC by same amount in the
results reported in this article. Although the algorithm
described above, does not have any restriction on
the dimension of the parameter space, the result
presented here considers simultaneous degradation
of two different components. Section 3.1.1 describes
a fault condition, where Fan and LPC are degraded
simultaneously, whereas section 3.1.2 analyses simul-
taneous degradation in HPT and LPT. For both training
(i.e. forward problem) and testing (i.e. inverse prob-
lem), time series data from all sensors, listed in Table 1,
are generated with ψ and ζ ranging from 1.0 to 0.96
(i.e. 4 per cent relative loss in efficiency) in steps
of 0.005 for the engine components under consid-
eration. For SDF analysis, the number of states in
the PFSA is selected to be 15 for each sensor after
preprocessing the time series data by Hilbert trans-
form and pattern vectors are generated for each of
the possible fault conditions. Fifty repetitions of each
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Fig. 5 Fault estimation in HPT–LPT based on Ps30

sensor: (a) surface plot of fault estimation and (b)
contour plot of fault estimation

simulation have been conducted to generate pat-
tern vector statistics with injected process and sensor
noise. For testing (i.e. inverse problem), fault condi-
tions are chosen within the range of training data such
that they do not coincide with the training grid points.
The results of multiple-fault estimation are presented
in the following two sections along with discussions
on sensor fusion.

3.1.1 Fault estimation in Fan and LPC

A test pattern is generated for a given fault con-
dition, ψF = ζF = 0.973 and ψLPC = ζLPC = 0.981. The
three-dimensional plot in Fig. 4(a) shows the bivariate
probability distribution of the estimated fault condi-
tion, followed by a close-up view of the contour plots
in Fig. 4(b), where the results are generated from time
series of a single sensor, namely, Ps30. The estimates
lie within the ±3σ bound around the estimated mean
(see equation (9)), where the variance σ 2 is obtained as
a diagonal element of the estimated covariance matrix
Ĉs (see equation (10)). In this case, the estimates range
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Fig. 6 Fault estimation in HPT–LPT based on T24 sensor:
(a) surface plot of fault estimation and (b) contour
plot of fault estimation

from 0.9606 to 0.9704 for ψF and ζF, and from 0.9805 to
0.9813 for ψLPC and ζLPC, respectively. This indicates
that the correct region is located in the parameter
space, which assigns highest probability to the nearest
training grid point.

3.1.2 Fault estimation in HPT-LPT

This example shows the result for a fault condi-
tion, ψHPT = ζHPT = 0.977 and ψLPT = ζLPT = 0.985. In
contrast to the previous example of fan and LPC, the
plots in Figs 5(a) and (b) show that there is an ambi-
guity in estimation when using information from only
one sensor, namely Ps30. Although, it identifies the cor-
rect region with significant probability, another fault
condition is seen to be identified with higher proba-
bility. Similar is the result if sensor T24 is used, as seen
in Figs 6(a) and (b). To resolve this ambiguity, the sen-
sor information fusion framework makes use of both
Ps30 and T24 to correctly identify the fault in the param-
eter space without any ambiguity, as seen in Figs 7(a)
and (b). The estimates lie in the ranges (±3σ bound)

Proc. IMechE Vol. 223 Part G: J. Aerospace Engineering JAERO481 © IMechE 2009



Statistical estimation of multiple faults in aircraft gas turbine engines 423

0.96
0.97

0.98
0.99

0.10

0.96
0.97

0.98
0.99

1.00

0

0.5

1

LPT EfficiencyHPT Efficiency

P
ro

b
ab

ili
ty

(a)

LPT Efficiency

H
P

T
 E

ff
ic

ie
n

cy

0.960.970.980.991.00

0.96

0.97

0.98

0.99

1.00 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Fig. 7 Fault estimation in HPT–LPT based on Ps30 and
T24 sensors: (a) surface plot of fault estimation
and (b) contour plot of fault estimation

of 0.9747 to 0.9753 for ψHPT and ζHPT and 0.9847 to
0.9853 for ψLPT and ζLPT, respectively; in this case, high-
est probability is assigned to the training grid point
that is nearest to the test point.

4 SUMMARY, CONCLUSIONS, AND FUTURE
WORK

This article presents a SDF-based methodology for
multiple-fault estimation in aircraft gas turbine
engines. It also proposes and validates a sensor-
information-fusion framework to alleviate certain
problems of data-level (i.e. related to scaling) and
decision-level (i.e. resolution of detection) techniques
for information fusion. The proposed fault estimation
tool is sensor-data-driven and is apparently applica-
ble for early detection of multiple faults for prognosis
of catastrophic failures in aircraft gas turbine engines.
The underlying algorithm can be implemented on
small microprocessors as it enables compression of
information into pattern vectors of low dimension
for real-time execution on limited-memory platforms.

While there are many other issues that need to be
addressed before the proposed estimation method can
be considered for real-life applications in commer-
cial aircraft, the following research topics are being
currently pursued.

1. Validation of the proposed method for fault esti-
mation of a larger number (i.e. more than two) of
components in gas turbine engines.

2. Identification of the mode (e.g. gradual deterio-
ration, intermittently occurring, and abrupt large)
of multiple fault evolution as an extension of the
earlier work on single faults [28].

3. Extension of the fault estimation problem under
different types of non-linearities (e.g. dead band
and hysteresis in actuators) with structured and
unstructured uncertainties.

4. Usage of a priori information about the likelihood
of the test fault condition.

5. Extension of fault estimation to fault prognosis by
using usual deterioration profiles of the compo-
nents with respect to cycles of operation.

6. Development of a better damage injection model.
7. Optimal sensor selection based on the estimation

results of the whole parameter space.
8. Incorporation of other fault types, such as sensor

faults and actuator faults.
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