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Abstract: This article presents a data-driven method of pattern identification for in-situ monitor-
ing of fatigue damage in polycrystalline alloys that are commonly used in aerospace structures.
The concept is built upon analytic signal space partitioning of ultrasonic data sequences for sym-
bolic dynamic filtering of the underlying information. The statistical patterns of evolving damage
are generated for real-time monitoring of the possible structural degradation under fatigue load.
The proposed method is capable of detecting small anomalies (i.e. deviations from the nominal
condition) in the material microstructure and thereby generating early warnings on damage ini-
tiation. The damage monitoring algorithm has been validated on time series data of ultrasonic
sensors from a fatigue test apparatus, where the behavioural pattern changes accrue because of
the evolving fatigue damage in polycrystalline alloys.
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1 INTRODUCTION

Reliability of aircraft structures deteriorates because of
gradual evolution of damage over a prolonged period
of operation. Fatigue damage is one of the most com-
monly encountered sources of structural degradation
in aerospace structures that are often made of poly-
crystalline alloys. Many model-based techniques have
been reported in recent literature related to structural
health monitoring [1]. Apparently, existing models
cannot adequately capture the dynamic behaviour of
fatigue damage at the grain level, solely based on the
fundamental principles of physics [2]. Therefore, it is
necessary to develop a sensor-based (i.e. data-driven)
damage detection and estimation scheme for real-
time damage monitoring and to make appropriate
decisions in collaboration with the available models
of damage growth.

Several techniques have been proposed in recent
literature for fatigue damage monitoring based on
various sensing devices (e.g. ultrasonics, acoustic
emission, and eddy currents) [3, 4]. The traditional
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analysis methods using an acoustic emission tech-
nique are used to correlate the signal parameters
(such as the acoustic-emission counts, the peak ampli-
tudes and the energy) with the defect formation
mechanisms and to provide a quantified estimate of
faults [5, 6]. However, the major drawback of acous-
tic emission technique is poor performance in noisy
environments where signal–noise separation becomes
a difficult task. Similarly, the presence of faults in
the material affect the eddy current flow patterns,
which can be detected for prediction and estima-
tion of the structural damage [7–9]. The advantages
of eddy current inspection technique include sensitiv-
ity to small cracks, portability of sensor equipment,
minimum part preparation, and non-contact eval-
uation. However, the major limitation of the eddy
current inspection technique is the depth of penetra-
tion; therefore, it can be used to detect only surface
and near-surface defects.

Recent studies have shown that ultrasonic signals
can be used to capture some of the minute defects
and small changes during the early stages of fatigue
damage, which may not be possible to detect by
an optical microscope [10–12]. Since the evolution
of material microstructural characteristics (e.g. dis-
locations and short cracks) influence the ultrasonic
impedance, a small fault in the specimen is likely to
change the signature of the ultrasonic signal at the
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receiver end [10, 13]. The long-wavelength (Rayleigh)
scattering of ultrasonic pulse propagating at the sur-
face of a sample under cycling loading has been used
to monitor small surface breaking crack [14].

A statistical pattern identification method, called
symbolic dynamic filtering (SDF) [15, 16], has been
recently formulated for anomaly detection in com-
plex systems. The SDF method is a pattern iden-
tification tool, based on the concepts of statistical
mechanics [17, 18], and is built upon a fixed-structure,
fixed-order Markov chain; it has been validated by
comparison with existing pattern recognition tech-
niques such as principal component analysis and arti-
ficial neural networks [10]. In this method, time series
data of sensors are converted from the time domain
to quasi-stationary symbolic sequences by symbolic
dynamic encoding [19]. This method of behavioural
pattern identification has been used to detect statis-
tical changes in the ultrasonic data generated from
a fatigue test apparatus for damage monitoring in
polycrystalline alloys. Benefits of the proposed tech-
nique for damage monitoring in aircraft structures are
summarized below.

1. In-situ measurement, detection, and monitoring of
fatigue damage.

2. Early detection of fatigue damage for condition-
based maintenance [20].

3. Capability for generation of timely information
obtained for life extending control [21].

The article is organized into five sections including
the present section. Section 2.2 presents the underly-
ing concepts of SDF for identification of behavioural
patterns due to slowly evolving fatigue damage in
mechanical structures. Section 4 describes the test
apparatus that serves as a platform for experimen-
tal validation of the proposed damage monitoring
method, and section 5 presents the results of experi-
mental validation. The article is concluded in section 6
along with recommendations for future research.

2 REVIEW OF SYMBOLIC DYNAMIC FILTERING

This section presents the underlying concepts of
SDF [15–18] that is used to identify statistical patterns
in the ultrasonic signals, that represents gradually
evolving fatigue damage in mechanical structures.
Specifically, the theories of analytic signal space parti-
tioning (ASSP) [22] and construction of a probabilistic
finite-state machine (PFSM) [15] are briefly reviewed.

2.1 Two-time-scale formulation for damage
monitoring

The pattern identification of a quasi-stationary pro-
cess is recognized as a two-time-scale problem. The
fast-time scale refers to the local behaviour of the

system and is defined as the time scale over which
the dynamical behaviour of the system is assumed
to remain invariant, i.e. the process has stationary
dynamics. The slow-time scale, on the other hand,
refers to the long-term behaviour of the system,
where the patterns of the process dynamics might
deviate from those under the nominal conditions.
It is assumed that any observable non-stationary
behaviour pattern is associated with changes occur-
ring on the slow-time scale. In general, a long time
span in the fast-time scale is a tiny (i.e. several
orders of magnitude smaller) interval in the slow-
time scale. For example, evolution of fatigue dam-
age in structural materials (causing a detectable
change in the dynamics of the system) occurs on
the slow-time scale (possibly in the order of months
or years); fatigue damage behaviour is essentially
invariant on the fast-time scale (approximately in the
order of seconds or minutes). Time series data on
the fast-time scale are collected at different slow-
time scale epochs, simply referred to as epochs in
the sequel, to identify the evolving behavioural pat-
terns. The concept of two time scales is illustrated
in Fig. 1.

2.2 Symbolic dynamic encoding and pattern
identification

Let � be a compact (i.e. closed and bounded) region in
the (finite-dimensional) phase space, which contains
the trajectory of the dynamical system, as illustrated in
Fig. 2. The region � is partitioned as {�1, . . . , �|�|} con-
sisting of |�| mutually exclusive (i.e. �j ∩ �k = ∅ ∀j �=
k) and exhaustive (i.e.

⋃|�|
j=1 �j = �) cells, where � is

the symbol alphabet that labels the partition cells. A
trajectory of the dynamical system is described by the
discrete time series data as {x0, x1, x2, . . .}, where each
xi ∈ �. The trajectory passes through or touches one of
the cells of the partition; accordingly, the correspond-
ing symbol is assigned to each point xi of the trajectory
as defined by the mapping M : � → �. Therefore, a
sequence of symbols is generated from the trajectory
starting from an initial state x0 ∈ �, such that

x0 � s0s1s2, . . . , sj , . . . (1)

Fig. 1 Pictorial view of the two time scales: (a) slow time
scale of anomaly evolution and (b) fast time scale
for data acquisition and signal conditioning
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Fig. 2 Concept of phase space partitioning for symbol
sequence generation

where sk � M(xk) is the symbol generated at the
(fast scale) instant k. The symbols sk , k = 0, 1, . . . are
identified by an index set I : Z → {0, 1, 2, . . . |�| − 1},
i.e. I(k) = ik and sk = σik

where σik
∈ �. Equivalently,

equation (1) is expressed as

x0 � σi0σi1σi2 . . . σij . . . (2)

Figure 2 pictorially elucidates the concepts of par-
titioning a finite region of the phase space and the
mapping from the partitioned space into the symbol
alphabet, where the symbols are indicated by Greek
letters (e.g. α, β, γ , δ, . . .). This represents a spatial
and temporal discretization of the system dynamics
defined by the trajectories.

The partitioning of phase space for symbol sequence
generation is a crucial step in SDF. This article has
used ASSP, which is described in section 2.3. Once
the partitioning is done with total alphabet size |�|
at the nominal condition (epoch t0), it is kept con-
stant for all subsequent epochs {t1, t2, . . . , tk , . . .}, i.e.
the structure of the partition is fixed at the nominal
condition.

Figure 2 also shows conversion of the symbol
sequence into a finite-state machine and generation
of the state probability vectors at the current and
the reference conditions. The states of the finite-state
machine and the histograms in Fig. 2 are indicated
by numerics (i.e. 1, 2, 3, and 4); the necessary details
are provided in section 2.4. State probability vec-
tors p1, p2, . . . , pk . . . are obtained at slow time epochs
t1, t2, . . . , tk . . . , based on the respective time series
data. The state probability vectors are representative
of the damage evolving in the system. The quantifica-
tion of damage accumulation relative to the nominal
condition is obtained from a scalar valued function,
called damage measure ψ (section 3).

2.3 Analytic signal space partitioning

Symbol sequence generation is a crucial step in
SDF that requires partitioning of the phase space
of the dynamical system. Several partitioning tech-
niques have been proposed in the literature for symbol
sequence generation. Examples are symbolic false
nearest neighbour partitioning (SFNNP) [23], wavelet
space partitioning (WSP) [24], and ASSP [22]. A
major shortcoming of SFNNP is that it may become
extremely computation intensive if the dimension of
the phase space of the underlying dynamical sys-
tem is large. Furthermore, if the time series data are
noise corrupted, the symbolic false neighbours rapidly
grow in number and may erroneously require a large
symbol alphabet to capture pertinent information
on the system dynamics; WSP was introduced as an
alternative to SFNNP as the wavelet transform [25]
largely alleviates the above-mentioned shortcomings
of SFNNP and is particularly effective with noisy data
from high-dimensional dynamical systems. Although
significantly computationally faster than SFNNP and
thus suitable for real-time applications, WSP has sev-
eral shortcomings (e.g. selection of a wavelet basis
function and identification of appropriate scales).
ASSP [22] overcomes the shortcomings of WSP; there-
fore, ASSP is more appropriate than SFNNP and WSP
for online applications.

This article makes use of ASSP for symbol genera-
tion as needed in SDF-based damage monitoring in
mechanical structures under fatigue load. The role of
ASSP is to capture the relevant statistical information
for damage monitoring in real-time. The underlying
concept of ASSP is built upon the Hilbert transform
of observed real-valued data into the corresponding
complex-valued analytic signal. The time-dependent
analytic signal is represented as a trajectory in the
two-dimensional pseudo-phase space, which is par-
titioned to generate a symbol sequence. The symbol
sequences obtained at different time epochs represent
evolution of the dynamical behaviour that is identified
as damage patterns.

Hilbert transform H of a real-valued signal x(t) is
defined as

x̃(t) = (
Hx

)
(t) = 1

π

∫
R

x(τ )

t − τ
dτ (3)

That is, x̃(t) is the convolution of x(t) with 1/πt over
the real field R, whose Fourier transform is given as

(F x̃)(ξ) = −i sgn(ξ) (Fx)(ξ) (4)

where sgn(ξ) =
{

+1 if ξ > 0

−1 if ξ < 0

Given the Hilbert transform of a real-valued sig-
nal x(t), the corresponding complex-valued analytic
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signal A is defined as

(Ax)(t) = x(t) + i x̃(t) (5)

The construction of equation (5) is based on the fact
that the values of Fourier transform of a real-valued
function at negative frequencies are redundant due
to their Hermitian symmetry imposed by the trans-
form. Thus, the phase of the Hilbert transform x̃(t) is
in quadrature to the phase of x(t). That is, the analytic
signal can be expressed as(

Ax
)
(t) = ax(t) exp[iϕx(t)

]
(6)

where ax(t) and ϕx(t) are called the instantaneous
amplitude and instantaneous phase of (Ax)(t), respec-
tively. The amplitude and phase of an analytic signal
satisfy the following three physical properties.

1. Amplitude continuity: a small perturbation in x(t)
induces a small change in ax(t).

2. Phase independence of scale: scaling x(t) by a con-
stant c > 0 has no effects on ϕx(t) and multiplies
ax(t) by c.

3. Harmonic correspondence: a mono-frequency sig-
nal (i.e. a pure sinusoid a0cos(ω0t + ϕ0)) yields
ax(t) = a0 and ϕx(t) = ω0t + ϕ0 for all t .

Thus, for a mono-frequency signal, which is embed-
ded in a two-dimensional (2D) state space, a direct
parallel can be drawn between the phase plot and
the Hilbert transform plot. The procedure for ASSP
is formulated next. Let the observed signal be avail-
able as a real-valued time series of N data points.
Upon Hilbert transformation of this data sequence, a
pseudo-phase plot is constructed from the resulting
analytic signal by a bijective mapping of the com-
plex field onto R

2, i.e. by plotting the real and the
imaginary parts of the analytic signal on the x1 and
x2 axes, respectively. It is important to note that the
pseudo-phase space is always 2D, whereas the phase
space of the dynamical system is a representation of
the n-dimensional manifold, where n could be an
arbitrarily large positive integer.

The time-dependent analytic signal in equation (5)
is now represented as a (one-dimensional) trajectory
in the 2D pseudo-phase space. Let � be a compact
region in the pseudo-phase space, which encloses the
trajectory. The objective is to partition � into finitely
many mutually exclusive and exhaustive segments,
where each segment is labelled with a symbol or let-
ter. The segments are conveniently determined by the
magnitude and phase of the analytic signal as well as
based on the density of data points in these segments,
i.e. if the magnitude and phase of a data point of the
analytic signal lie within a segment or on its boundary,
then the data point is labelled with the corresponding
symbol. Thus, a symbol sequence is derived from the

(complex-valued) sequence of the analytic signal. The
set of (finitely many) symbols is called the alphabet �.

The analytic signal is partitioned at nominal con-
dition using the principles of maximum entropy par-
titioning [24], which maximizes the entropy of the
partition that is characterized by the alphabet size |�|,
thereby imposing a uniform probability distribution
on the symbols. The maximum entropy partitioning is
generated by maximizing the Shannon entropy, which
is defined as

S = −
|�|−1∑

i=0

pi log(pi) (7)

where pi is the probability of a data point to be in the
ith partition segment. In this partitioning, regions with
rich information are partitioned into finer segments
than those with sparse information. Computationally,
the maximum entropy partition can be obtained by
sorting the data sequence in an ascending order. This
sorted data sequence is then partitioned into |�| equal
segments of length 	N/|�|
, where N is the length of
the data sequence and 	x
 is the greatest integer �
x. Each of these segments is assigned a symbol and
all data points in a given segment are assigned the
corresponding symbol.

The magnitude and phase of the analytic signal in
equation (5) are partitioned separately according to
uniform partitioning, maximum entropy partitioning,
or any other type of partitioning; the type of partition-
ing may depend on the characteristics of the physical
process. In essence, each point in the data set is rep-
resented by a pair of symbols – one belonging to the
alphabet �R based on the magnitude (i.e. in the radial
direction) and the other belonging to the alphabet �A

based on the phase (i.e. in the angular direction). The
analytic signal is converted into a one-dimensional
symbol sequence by associating each pair of symbols
into a symbol from a new alphabet � as

� �
{
(σi, σj) : σi ∈ �R, σj ∈ �A

}
and |�| = |�R| · |�A|

2.4 Construction of a probabilistic finite-state
machine

Once the symbol sequence is obtained, the next step
is the construction of a PFSM and calculation of the
respective state probability vector as depicted in the
lower part of Fig. 2 by the histograms. The partitioning
is performed at the reference condition.

A PFSM is then constructed, where the states of the
machine are defined corresponding to a given alpha-
bet set � and window length D. The alphabet size |�|
is the total number of partition segments, while the
window length D is the length of consecutive symbol
words [15], which are chosen as all possible words
of length D from the symbol sequence. Each state
belongs to an equivalence class of symbol words of
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length D, which is characterized by a word of length D
at the leading edge. Therefore, the number n of such
equivalence classes (i.e. states) is less than or equal to
the total permutations of the alphabet symbols within
words of length D. That is, n � |�|D; some of the states
may be forbidden, i.e. these states have zero probabil-
ity of occurrence. For example, if � = {α, β}, i.e. |�| = 2
and if D = 2, then the number of states is n � |�|D = 4,
and the possible states are words of length D = 2, i.e.
αα, αβ, βα, and ββ, as shown in Fig. 3.

The choice of |�| and D depends on specific appli-
cations and the noise level in the time series data
as well as on the available computation power and
memory availability. As stated earlier, a large alpha-
bet may be noise sensitive and a small alphabet could
miss the details of signal dynamics. Similarly, while a
larger value of D is more sensitive to signal distortion,
it would create a much larger number of states requir-
ing more computation power and increased length
of the data sets. In the results section of this article,
the analysis of time series data sets is done using the
window length equal to D = 1; consequently, the set
of states of finite-state machine is equivalent to the
symbol alphabet �. For ASSP with the selection of
the parameters |�R| = 6 and |�A| = 3, the PFSM has
n = 18 states if D = 1. With this choice of parameters,
the SDF algorithm is shown to be capable of detecting
fatigue damage evolution. However, other applica-
tions, such as 2D image processing, may require larger
values of the parameter D and hence possibly larger
number of states in the PFSM.

Using the symbol sequence generated from the time
series data, the state machine is constructed on the
principle of sliding block codes [19]. The window of
length D on a symbol sequence is shifted to the right
by one symbol, such that it retains the most recent
(D − 1) symbols of the previous state and appends it
with the new symbol at the extreme right. The sym-
bolic permutation in the current window gives rise
to a new state. The PFSM constructed in this fashion
is called the D-Markov machine [15], because of its
Markov properties.

Definition 1

A symbolic stationary process is called D-Markov if the
probability of the next symbol depends only on the

Fig. 3 Example of finite-state machine with D = 2 and
� = {α, β}

previous D symbols, i.e. P(sj|sj−1 . . . , sj−Dsj−D−1 . . .) =
P(sj|sj−1 . . . , sj−D).

The finite-state machine constructed above has
D-Markov properties because the probability of occur-
rence of symbol σ ∈ � on a particular state depends
only on the configuration of that state, i.e. the previ-
ous D symbols. The states of the machine are marked
with the corresponding symbolic word permutation
and the edges joining the states indicate the occur-
rence of a symbol σ . The occurrence of a symbol at a
state may keep the machine in the same state or move
it to a new state.

Definition 2

Let � be the set of all states of the finite-state machine.
Then, the probability of occurrence of symbols that
cause a transition from state ξj to state ξk under the
mapping δ : � × � → � is defined as

πjk = P
(
σ ∈ � | δ(ξj , σ) −→ ξk

)
;

∑
k

πjk = 1 (8)

Thus, for a D-Markov machine, the irreducible
stochastic matrix � ≡ [πij] describes all transition
probabilities between states such that it has at most
|�|D+1 non-zero entries. The definition above is equiv-
alent to an alternative representation such that

πjk ≡ P(ξk|ξj) = P(ξj , ξk)

P(ξj)
= P(σi0 · · · σiD−1σiD )

P(σi0 · · · σiD−1)
(9)

where the corresponding states are denoted by ξj ≡
σi0 · · · σiD−1 and ξk ≡ σi1 · · · σiD . This phenomenon is
a consequence of the PFSM construction based on
the principle of sliding block codes described above,
where the occurrence of a new symbol causes a
transition to another state or possibly the same state.

For computation of the state transition proba-
bilities from a given symbol sequence at a par-
ticular slow time epoch, a D-block (i.e. a window
of length D) is moved by counting occurrences of
symbol blocks σi0 · · · σiD−1σiD and σi0 · · · σiD−1 , which
are, respectively, denoted by N (σi0 · · · σiD−1σiD ) and
N (σi0 · · · σiD−1). Note that if N (σi0 · · · σiD−1) = 0, then the
state σi0 · · · σiD−1 ∈ � has zero probability of occurrence.
For N (σi0 · · · σiD−1) �= 0, the estimates of the transitions
probabilities are then obtained by these frequency
counts as follows

πjk ≈
N (σi0 · · · σiD−1σiD )

N (σi0 · · · σiD−1)
(10)

The symbol sequence generated from the time series
data at the reference condition, set as a benchmark, is
used to compute the state transition matrix �0 using
equation (10). The left eigenvector p0 corresponding to
the unique unit eigenvalue of the irreducible stochas-
tic matrix �0 is the probability vector whose elements
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are the stationary probabilities of the states belonging
to � [15]. Similarly, the state probability vector pk is
obtained from time series data at a (possibly) anoma-
lous condition. The partitioning of time series data and
the state machine structure should be the same in both
cases but the respective state transition matrices could
be different. The probability vectors p0 and pk are esti-
mates of the respective true probability vectors and are
treated as statistical patterns.

Behavioural pattern changes, if any, are detected at
time epoch tk with respect to the reference condition
at time epoch t0 by defining a scalar-valued damage
measure ψ , such that

ψk = f (pk , pk−1, . . . , p0) (11)

where f (•, •, . . . , •) is a path function of the evolu-
tion of the pattern vector p on the slow scale; further
details are provided in section 3. Another choice of
ψ is a distance function d(pk , p0) (e.g. the standard
Euclidean norm).

2.5 Summary of the SDF Method

1. Time series data acquisition from appropriate sen-
sor(s) at the epoch t0, i.e. the nominal condition,
when the system is assumed to be in the healthy
state (i.e. zero damage measure).

2. Generation of the analytic signal via the Hilbert
transform of the (real-valued) time series data.

3. Maximum entropy partitioning in the domain of
(complex-valued) analytic signal at the nominal
condition and generation of the corresponding
symbol sequence. The partitioning is fixed for
subsequent time epochs.

4. Construction of the PFSM and generation of the
state probability vector p0 at time epoch t0. Note
that p0 is a uniform distribution because of maxi-
mum entropy partitioning.

5. Collection of time series data at epochs t1, t2, . . . ,
tk , . . . , and their conversion to analytic signals to
generate respective symbolic sequences based on
the partitioning at time epoch t0.

6. Calculation of the corresponding probability vec-
tors p1, p2, . . . , pk , . . . , at epochs t1, t2, . . . , tk , . . . ,
from the respective symbolic sequences using the
finite-state machine constructed at time epoch t0.

7. Computation of the scalar damage measures
ψ1, ψ2, . . . , ψk , . . . , at epochs t1, t2, . . . , tk . . ..

Major advantages of SDF for damage detection
are listed below:
(a) robustness to measurement noise and spurious

disturbances [10];
(b) adaptability to low-resolution sensing because

of coarse graining in symbolization [15];
(c) capability for early detection of damage

because of sensitivity to signal distortion;

(d) real-time execution on commercially available
inexpensive platforms [10].

3 DAMAGE EVOLUTION AND MONITORING
ALGORITHM

The pattern changes are quantified as deviations
from the nominal behaviour (i.e. the probability dis-
tribution at the nominal condition). The resulting
anomalies (i.e. deviations of the evolving patterns from
the nominal pattern) are characterized by a scalar-
valued function, called damage measure ψ that is
quasi-static in the fast-time scale and is monotoni-
cally non-decreasing in the slow-time scale. The state
probability vector at any epoch corresponds to a sin-
gleton point on the unity-radius hypersphere, which
is a rhomboid in the topology of sum-normalization
(i.e. �1-norm [26]). Since all elements of a probability
vector are positive, the movements of the tip of the
probability vector are restricted on a simplex plane.
During fatigue damage evolution, the tip of the state
probability vector moves along a path on the surface of
this hypersphere. The initial starting point of the path
is the state probability vector p0 with uniform distri-
bution because of maximum entropy partitioning [24].
As the damage progresses, the probability distribution
changes; eventually when a very large crack is formed,
complete attenuation of the time series of ultrasonic
data occurs (see section 4) and consequently the tip of
the probability vector reaches a point where all states
have zero probabilities of occurrence except the ones
that correspond to least energy states. In the context
of an irreversible process, such as fatigue crack growth
phenomena, the damage measure is computed based
on the following assumptions.

1. Assumption 1: Damage evolution is an irreversible
process (i.e. with zero probability of self healing)
and implies the following conditions

ψ(t) � 0, ψ(t + δ) − ψ(t) � 0 ∀t � t0 ∀δ > 0

(12)

2. Assumption 2: Damage accumulation between two
epochs is a path function, i.e. dependent on the
path traversed to reach the target state from the
initial state.

The damage measure is derived in terms of the fol-
lowing distance function between the state probability
vectors at two epochs

d(p, p̃) = √
(p − p̃)T(p − p̃) (13)

A real positive parameter ε, associated with robust-
ness of the damage measure ψ for compensation of
measurement and computation noise, is identified
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by performing an experiment with a sample with no
notch, where qk is the state probability vector at the
kth observation. In the absence of any notch, there
is practically no stress augmentation and therefore
negligible fatigue damage increment. Any difference
between the state probability vectors at consecutive
observations is attributed to noise only. Accordingly,
the parameter ε is estimated as

ε ≈
(

1
N

N∑
k=1

d2(qk+1, qk)

)1/2

(14)

from N consecutive observations with N  1.
The algorithm for computation of the damage mea-

sure ψ is presented below:

(a) ψ0 = 0, δψ1 = 0, p̃ = p0, k = 1;
(b) if d(pk , p̃) > ε, then δψk = √

d2(pk , p̃) − ε2 and
p̃ = pk ;

(c) ψk = ψk−1 + δψk ;
(d) k ← k + 1, δψk = 0, go to step (b).

The above algorithm is executed in the following
way. The reference point p̃ is initialized to the start-
ing point p0 and the initial damage measure ψ0 is
set to 0. At an epoch tk , if the state probability vec-
tor changes such that, if the distance d(pk , p̃) is > ε as
specified in step (b), then the damage measure is incre-
mented by the amount

√
d2(pk , p̃) − ε2 because the

signal of damage increment and the noise are assumed
to be statistically independent. Consequently, the ref-
erence point is shifted to the current point pk . The
procedure is repeated at subsequent epochs and the
path length travelled by the tip of the state probability
vector represents the accumulated damage.

4 EXPERIMENTAL VALIDATION

The damage monitoring algorithm has been vali-
dated on time series data of ultrasonic sensors from a
fatigue test apparatus [13], where the behavioural pat-
tern changes accrue because of the evolving fatigue
damage in polycrystalline alloys.

The experimental apparatus, shown in Fig. 4, is a
special-purpose uniaxial fatigue testing machine [13],
which is operated under load control or strain con-
trol at speeds up to 12.5 Hz. A typical specimen, made
of 7075-T6 aluminium alloy, is shown in Fig. 5. The
specimen is 3 mm thick and 50 mm wide with a slot
on one side of 1.58 mm diameter and 4.57 mm length.
The notch is made to increase the stress concentration
factor in that region and it guarantees crack propa-
gation at the notch end. The fatigue test apparatus
is equipped with an ultrasonic flaw detector and a
travelling optical microscope for fault monitoring.

The travelling optical microscope, shown as part of
the test apparatus in Fig. 4, provides direct measure-
ments of the visible portion of a crack. The resolution

Fig. 4 Special-purpose fatigue test apparatus

Fig. 5 Cracked specimen with a side notch

of the optical microscope is about 2 μm at a work-
ing distance of 10–35 cm and the images are taken
at a magnification of 75×. The microscope is used to
monitor and measure crack length in the crack prop-
agation stage. Images of the specimen are taken by
the microscope at constant intervals. However, small
cracks are not detectable from the microscope. This
article analyses ultrasonic data to detect the small
cracks or the changes in material characteristics before
the formation of a single large crack that appears on
the surface.

The ultrasonic flaw detector functions by emit-
ting high-frequency (i.e. 5 MHz) sinusoidal ultrasonic
waves that travel through the specimen and return
back through the receiver transducers. The signal is
sent through the region of crack propagation and
received on the other side. Two angle beam transduc-
ers are placed at a distance of 10 mm from each side of
the notch, as shown in Fig. 6. The transducers are glued
to the specimen surface with a thin layer of grease
and a clamp is used to maintain a constant pressure
between the transducer and the specimen surface. The
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Fig. 6 Ultrasonic flaw detection scheme

transducers are made of piezoelectric material that
sends refracted shear wave to the specimen at an angle
of 45◦. Ultrasonic pulsar is synchronized with the load
cycle frequency (i.e. 12.5 Hz) such that it generates one
pulse at peak stress in each load cycle, which enables
the transducer to send a 5 MHz sine wave through the
specimen. The ultrasonic transducer at the other side
of the notch receives the transmitted ultrasonic wave
and sends it to the data acquisition board. The sig-
nal is recorded at 50 MHz sampling frequency. Since
material characteristics (e.g. voids, dislocations, and
short cracks) influence the ultrasonic impedance, a
small fault in the specimen is likely to change the
signature of the signal at the receiver end. A large num-
ber of internal defects develop before they coalesce
to form a single crack, which leads to the transition
from the crack initiation phase to the crack propaga-
tion phase. In the crack initiation phase, plastically
strained zones that consist of several small internal
defects are formed. A zone whose diameter is greater
than half of the ultrasonic wavelength is very likely to
interact with the ultrasonic wave; however, the average
size of the individual defects in this zone could be an
order of magnitude smaller than the zone diameter.

The fatigue tests were conducted at a constant
amplitude sinusoidal load for low-cycle fatigue, where
the maximum and minimum loads were kept constant
at 87 MPa and 4.85 MPa, respectively. For low-cycle
fatigue, the stress amplitude at the crack tip is suf-
ficiently high to observe the elasto-plastic behaviour
in the specimens under cyclic loading. A significant
amount of internal damage caused by multiple small
cracks, dislocations, and microstructural defects alters
the ultrasonic impedance, which results in signal dis-
tortion and attenuation at the receiver end. The crack
propagation stage starts when this internal damage
eventually develops into a single large crack. The slow-
time epochs for data analysis were chosen to be ∼1000
load cycles (i.e. ∼80 s) apart. At the onset of each slow-
time epoch, the ultrasonic data points were collected
on the fast-time scale of 50 cycles (i.e. ∼4 s at 12.5 Hz
frequency), which produced a string of 30 000 data
points. It is assumed that during this fast-time scale,
the system remains in a stationary condition and no
major changes occur in the fatigue crack behaviour.
The sets of time series data collected in this man-
ner at different epochs were analysed to calculate the
damage measures at those epochs.

5 RESULTS AND DISCUSSION

This section presents results of fatigue damage moni-
toring using SDF of ultrasonic data collected at differ-
ent slow-time epochs as described in section 4. Follow-
ing the SDF procedure, the symbol states are obtained
by maximum-entropy partitioning the analytic signal,
which results in uniform probability distribution at the
nominal condition, as shown in Fig. 7(a). The ana-
lytic signal space is partitioned into six segments in
the radial direction and three segments in the angular
direction, which amounts to having cardinality of the
symbol alphabet |�| = 6 × 3 = 18. For D = 1, the total
number of states is n = 18. Figures 7(a) to (f) show the
received ultrasonic data and histograms of probabil-
ity distribution at six different time epochs, exhibiting
gradual evolution of fatigue damage. The top plate in
each part of Fig. 7 shows a small segment (i.e. 300
points) of the complete set of ultrasonic data con-
taining 30 000 points that are collected at the receiver
end at a particular slow-time epoch. This set of 30 000
points data points is used for state probability vec-
tor generation using SDF. The corresponding bottom
plates show the evolution of the histograms because of
fatigue damage growth at different slow time epochs,
signifying how the probability distribution gradually
changes from uniform distribution at the nominal
condition. As seen in Fig. 7, the visual inspection of
ultrasonic data does not reveal much information dur-
ing early stages of fatigue damage; however, the SDF
method is able to capture small statistical changes in
the signal that are visible in the corresponding his-
tograms. These statistical changes are a result of the
interactions of the ultrasonic signal with the inter-
nally damaged region of the specimen. As the number
of load cycles increases and fatigue damage accumu-
lates, the probability histograms evolve with respect to
the nominal condition.

The top plate, as seen in Fig. 7(a), shows the
ultrasonic data at the nominal condition, which is
chosen after the start of the experiment when electro-
hydraulic response of the apparatus has come to a
steady state. At this condition, the damage measure
is taken to be zero, which is considered as the refer-
ence point with the available information on potential
damage being minimal. This is reflected in the uniform
distribution (i.e. maximum entropy) as seen from the
histogram at the bottom plate of plate pair (a). The
top plates of Figs 7(b) and (c) at ∼15 and ∼22 kilocy-
cles, respectively, do not show conspicuous changes in
the ultrasonic profiles by visual inspection; however,
close inspection does indicate that some distortions
have appeared in the signal. The corresponding bot-
tom plates do exhibit deviations from the uniform
probability distribution in both radial and angular
directions. This is an evidence that the analytical mea-
surements, based on ultrasonic sensor data, produce
damage information during crack initiation.
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Received ultrasonic signal and corresponding probability distribution of symbolic states
at different epochs: (a) nominal condition after 0 kilocycles; (b) internally damaged after
15 kilocycles; (c) internally Damaged after 22 kilocycles; (d) crack appearance at surface
after 32 kilocycles; (e) developed crack after 40 kilocycles; and (f) broken specimen after 45
kilocycles

The top plate of Fig. 7(d) at ∼32 kilocycles exhibits
noticeable difference in the ultrasonic profile with
respect to the nominal condition. This is due to the
appearance of ∼200 μm crack on the specimen sur-
face, which may be considered as the boundary of the
crack initiation and propagation phases. This small
surface crack indicates that a significant portion of
the crack or multiple small cracks might have already
developed underneath the surface before they started
spreading on the surface. The histogram of proba-
bility distribution in the corresponding bottom plate
shows further deviation from the uniform distribution.
The top plate of Fig. 7(e) at ∼40 kilocycles exhibits
significant distortion of the ultrasonic signal. This is
because of the development of a single large crack

in its propagation phase. The corresponding bottom
plate shows the histogram of the probability distri-
bution which is significantly different from those in
Figs 7(a) to (d). The top plate of Fig. 7(f) at ∼45 kilo-
cycles exhibits complete attenuation of the ultrasonic
signals because of the development of a significantly
large crack. The corresponding bottom plate confirms
this finding.

In this article, the fatigue damage phenomenon in
polycrystalline alloys is broadly classified into two
phases: (a) crack initiation, where the dislocations
combine to initiate a crack and (b) crack propagation,
where the (possibly widely coalesced) crack is propa-
gated. The crack propagation phase is relatively easier
to monitor than the crack initiation phase, because the
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Fig. 8 Evolution of fatigue damage – crack initiation and
crack propagation

surface damage could be clearly observed. In contrast,
the crack initiation phase may not be detectable easily
under an optical microscope; hence, it needs sensor-
based monitoring with the aid of efficient and reliable
signal processing tools. Figures 7(a) to (c) correspond
to the crack initiation phase, (d) and (e) correspond to
the crack propagation phase, and (f) corresponds to
the fractured specimen. In the crack initiation phase,
changes in the ultrasonic signal are mainly due to
microstructural changes within the material. Before
appearance of optically visible crack the areas at the
tip of the notch goes through significant elasto-plastic
deformation. The changes in probability distribution
are quantified as described in section 3. The damage
measure versus the number of load cycles is shown
in Fig. 8. The plot is divided into two phases, crack
initiation and crack propagation before and after 32
kilocycles, respectively. The damage rate in the crack
initiation phase is low because the changes inside the
material are at the microstructure level, while the dam-
age rate is much higher in the crack propagation phase.
The curve in Fig. 8 shows that damage evolution at an
early stage can be detected to enable maintenance and
take necessary control actions. It is emphasized that
the anomaly measure is relative to the nominal con-
dition, which is fixed in advance and should not be
confused with the actual damage at an absolute level.
However, inferring fatigue damage from the observed
anomaly measure is an inverse problem that is a topic
of future research.

6 CONCLUSIONS AND FUTURE WORK

This article presents an application of ASSP [22] for
SDF-based fatigue damage monitoring in aerospace
structures, made of polycrystalline alloys. The dam-
age monitoring method is validated on a fatigue test

apparatus for time series of ultrasonic data from a
specimen of 7075-T6 aluminium alloy. The results
demonstrate that the proposed method is suitable for
early detection of fatigue damage. It is also capable
of quantifying the damage rate in real time and of
revealing certain key features of the fatigue damage
evolution mechanism in polycrystalline materials.

The proposed method is a step towards building
a reliable instrumentation and control system for
early detection of fatigue damage and real-time esti-
mation of remaining useful fatigue life in aerospace
structures. Although there are many other research
issues, the following tasks are recommended for
future work.

1. Estimation of the remaining life of the structure by
formulating the problem in a stochastic setting [11].

2. Development of real-time control strategies for
damage mitigation based on the statistical patterns
inferred from sensor data by SDF.
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