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This article presents an algorithm for adaptive sensor activity scheduling (A-SAS) in
distributed sensor networks to enable detection and dynamic footprint tracking of
spatial-temporal events. The sensor network is modeled as a Markov random field on
a graph, where concepts of Statistical Mechanics are employed to stochastically
activate the sensor nodes. Using an Ising-like formulation, the sleep and wake modes
of a sensor node are modeled as spins with ferromagnetic neighborhood interactions;
and clique potentials are defined to characterize the node behavior. Individual sensor
nodes are designed to make local probabilistic decisions based on the most recently
sensed parameters and the expected behavior of their neighbors. These local
decisions evolve to globally meaningful ensemble behaviors of the sensor network
to adaptively organize for event detection and tracking. The proposed algorithm
naturally leads to a distributed implementation without the need for a centralized
control. The A-SAS algorithm has been validated for resource-aware target tracking
on a simulated sensor field of 600 nodes.
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1. Introduction

Recent advances in the technologies of microcomputers and wireless communications have

enabled usage of inexpensive and miniaturized sensor nodes [1–3] that can be densely

deployed in both benign and harsh environments as a sensor network for various applications.

Distributed sensor networks have been built for both military (e.g., target tracking in urban

terrain) and commercial (e.g., weather, habitat and pollution monitoring, and structural health

monitoring) applications [4–8]. Sensor network operations can be broadly classified as:

(i) data collection, and

(ii) event detection and tracking.
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Effective use of sensor networks requires resource-aware operation; once deployed,

energy sources of sensor nodes can seldom be replenished. When used for data collection

applications, sensor nodes are often operated on very low duty cycles (e.g., less than 1%

[6]) to achieve appreciable operational lifetimes. Although several methods and design

principles for power-aware communication and networking have been reported in recent

literature [9, 10], the resulting communication strategies are more useful for low duty-cycle

data collection applications because communication is the main source of energy con-

sumption. Therefore, these methods may not be sufficient if the cost of sensing becomes

significant relative to the cost of communications.

Sensor networks for event detection and tracking may not be able to afford a fixed low

duty-cycle operation because events of interest are often rare and unpredictable. Therefore,

sensor nodes need to be omni-active (i.e., (almost) always active), which makes the sensing

task a significant contributor to the energy costs. A naive solution to this problem is to have

a high duty cycle to achieve appreciable detection probability. Alternatively, a more

sophisticated hierarchical approach (e.g., passive vigilance) may maintain a selected

low-power sensor omni-active to trigger, as necessary, more energy-expensive sensors

that are kept in standby modes [11]. This concept is valid if event detection is possible based

only on the omni-active low-power sensor and the remaining sensors are required for

further classification of the event/target. In many cases, successful event detection may

require a high-power sensor or a combination of multiple sensors to be omni-active. An

example is a combination of a low-power infrared sensor for line of sight together with

audio and magnetic sensors for target tracking in an obstructed environment. However,

such a configuration would significantly increase the power consumption. Energy costs for

sensing are further aggravated and may prohibit continuous operation if active sensors

(e.g., radio detection and ranging (radar) sensors [12]) are in use. In one such application,

Arora et. al. [13] have used wireless sensor nodes equipped with a magnetometer and a

micropower radar for detection and tracking on an experimental facility.

This paper presents an innovative algorithm to enable resource-aware operation for event

detection and tracking. An adaptive sensor activity scheduling (A-SAS) algorithm is formu-

lated based on the concepts drawn from Statistical Mechanics and random fields on graphs.

The proposed A-SAS algorithm naturally leads to a distributed implementation on a sensor

network and thus eliminates the need for a centralized control for sensor activity scheduling.

The rest of the paper is organized as follows. Section 2 provides the rationale and

motivation for the presented work. The underlying problem is formulated in Section 3 and

Section 4 presents the details of the methodology. Section 5 validates the proposed concept

on a simulation test bed consisting of 600 sensor nodes. The paper is summarized and

concluded with recommendations for future work in Section 6. Appendix A briefly intro-

duces the measure-theoretic concept of a random field that has been used in the main body

of the paper. Appendix B presents a comparison of Markov and Gibbs random fields.

2. Statistical Mechanics of Complex Networks

Recent literature in physics and related sciences suggests that there has been an increased

interest in the interdisciplinary field of complex networks—found in diverse areas such as

computer networks, sensor networks, social networks, biology, and chemistry. The unify-

ing characteristic across various disciplines has been the fact that systems such as the

internet and sensor networks can be described as a network of interacting complex

dynamical systems. The major challenge while addressing the common issues in these

systems is their high dimensionality and complex topological structures. This area has been
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traditionally investigated by using graph theory but recent work shows that tools of

Statistical Mechanics facilitate understanding and modeling of the complex organizational

characteristics in real-world complex networks. For example, by mapping nodes of a graph

to energy levels and edges as particles occupying that energy level, Bianconi and Barabasi

[14] have shown that complex networks follow Bose statistics and might undergo Bose-

Einstein condensation despite their irreversible and non-equilibrium nature. In another

article [15], Reichardt and Bornholdt have presented a fast community detection algorithm

using a q-state Potts model. A detailed review of articles in this area can be found in

[16, 17]. In this respect, the role played by Statistical Mechanics can be two-fold:

1) Understanding the topological structures behind the multitude of networks, found

in many real systems, whose structures lie in between a totally ordered one and

completely disordered.

2) Construction of algorithms, based on the above understanding, for control of local

behaviors that through mutual interaction yield desired ensemble characteristics

from a global perspective.

One of the important issues in the area of sensor networks is the judicious

re-distribution of available resources such as energy and communication bandwidth. This

paper makes use of the concepts of Statistical Mechanics and Markov Random Fields to

formulate an Ising-like model of the sensor network. Ising’s ferromagnetic spin model [18]

has been used to study critical phenomena (e.g., spontaneous magnetization) in various

systems. For example, its ability to model local and global influences on constituting units

that make a binary choice (�1) has been shown to characterize the behavior of systems in

diverse disciplines other than Statistical Mechanics, e.g., finance [19], biology [20], and

sociophysics [21]. Markov random fields have been traditionally used for image processing

[22], but their application to sensor networks [23], however, is a relatively new approach.

In this paper, a sensor network is modeled as a set of interacting nodes, where each

node is modeled as a random variable with two states—active and inactive. A Hamiltonian

based on clique potentials is constructed to model neighborhood interactions and time-

dependent external influences. A sensor node recursively predicts the likelihood of being

active or inactive based on perceived neighborhood influence and its most recently sensed

parameters. Based on this likelihood, a sensor node probabilistically activates/deactivates

itself while making only partial observations. Following the dynamics of a Markov random

process, every sensor node makes local decisions that result in meaningful ensemble

behaviors of the sensor network. This property is analogous to several multi-component

systems such as those in finance and biology, where the collective behavior of the system

emerges from the local decisions of interacting individual units that comprise it [24].

3. Problem Description

The problem addressed in this paper is to formulate a distributed algorithm for a sensor

network to enable resource-aware detection and tracking of rare and random events. The

task is to device entities (sensor nodes) that make local decisions leading to meaningful

emergent behaviors of the sensor network. The sensor nodes are assumed to be equipped

with relevant sensing transducers and data processing algorithms as needed for detection

and tracking of events under consideration. Events (e.g., appearance of a target) occur in the

sensor field at unpredictable locations and time instants, the task of the sensor network is to

enable event detection and tracking while conserving resources. Sensor nodes can com-

municate with their nearest neighbors through single-hop wireless communications. The
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following assumptions are made to isolate the problem considered in this paper from other

issues of a sensor network.

(i) Once deployed, the nodes can localize themselves and discover their nearest

neighbors.

(ii) The sensor nodes considered are static. For a mobile or a hybrid (i.e., static +

mobile) sensor network, periodic localization, and neighbor discovery would be

required.

(iii) Any communication to the data sink is handled by a dynamically selected cluster

head [25] (see Algorithm 2 later in Section 5-B).

(iv) Cluster heads talk to the data sink using short single-hop transmissions sending

only filtered and fused information. It must be noted that this communication

scheme is only a simplifying assumption and the proposed algorithm does not

prohibit multi-hop transmission by the cluster head to the data sink.

(v) Time synchronization is imperfect.

The accuracy of time synchronization is dictated solely by the required accuracy of event

localization and the data aggregation for detection and tracking. Although interesting and

challenging in their own right, issues such as localization, routing, and time synchronization

in sensor networks are beyond the scope of this paper. An encompassing approach that factors

in the details of all issues related to a sensor network is a topic of further research.

4. Algorithm Development

This section develops an algorithm of adaptive sensor activity scheduling (A-SAS) in

distributed sensor networks, where the sensor network is modeled as a Markov random

field on a graph. The sleep and wake modes of a sensor node are modeled as spins with

ferromagnetic neighborhood interactions in the Statistical Mechanics setting.

4.1. Framework and Notations

This sub-section presents framework and notations that are used in further formulation. The

sensor network is represented as a weighted graph. The choice of this framework is useful

as it allows to model and utilize the dependence structure in a sensor network.

Let G , ðS;E;WÞ be a weighted graph, where S ¼ fs1; s2; . . . ; sNg, N 2 N is the set

of all nodes of the sensor network under consideration; nearest (i.e., single-hop) neighbors are

denoted by an edge ðsi; sjÞ 2 E which is a two-element subset of S representing communica-

tion and interdependence between nodes si and sj; and the function W : E! R yields

Wððsi; sjÞÞ ¼ wij as the strength of interaction between the nodes si and sj. The edges (si,
sj) or neighbor nodes are determined locally at each node. The strength of interaction wij is

dictated by factors such as physical distance between the sensor nodes. Internode distance, for

instance, can be locally determined by acoustic ranging using a sounder, an acoustic sensor and

a radio [26]. A node emits a tone using its sounder and simultaneously sends an RF packet over

the radio. Its neighbors assess the internode distance by estimating the time interval between

the receipts of the RF packet and the acoustic tone. The graph G is assumed to be undirected

(i.e., symmetric interactionswij) and simple (i.e., no self-loops and no multiple edges between

the same pair of nodes). However, in general, G can potentially be a directed graph when the

elements of E are 2-tuples and interactions between components are unsymmetrical.

It is noted that the graph G, representing the sensor network, is not maintained as a

whole at any central location. This framework is chosen only to facilitate further
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formulation. The algorithm eventually degenerates to localized computations with no need

for a central controller for scheduling node activities.

4.2. Random Fields on Graphs

LetF be a random field over the node set S defined as a family of random variablesF i [27]

(see Appendix A for details) as:

F ¼ fF i : �! Rd; i ¼ 1; 2; . . . ;Ng (1)

where the random variable F i ¼ Fðsi; �Þ is associated with the node si 2 S and N ¼ jSj.
The sample space � of F i is the set of all states (or labels) that any node si can take. The

cartesian product K , �N is called the configuration space. A configuration K 2 K over

the node set S is an ordered sequence (!1; !2; . . . ; !N) of N states (or labels) with !i 2 �
being the state of a node si. The corresponding configuration � 2 RNd such that

� ¼ ð�1; �2 . . . ; �NÞ ¼ ðF 1ð!1Þ;F 2ð!2Þ . . . ;FNð!NÞÞ (2)

with �i 2 Rd, is called a realization of the random field F .

Definition 4.1 (Markov Random Field). Let @ , f@igsi2S be the neighborhood system,

where @i ¼ fsk : ðsi; skÞ 2 Eg is the neighbor set for a node si. Then, with respect to @ (or

equivalently G), a random field is called a Markov Random Field (MRF) if and only if the

following conditions hold [28]:

1) Positivity: PðKÞ > 0;"K 2 K
2) Markov Property: Pð!ijKSnfigÞ ¼ Pð!ijK@iÞ

where KSnfig and K@i are configurations specified for the node set Snfig and @i respec-

tively; P is the probability measure over the random field F .

The first condition of positivity in Definition 4.1 ensures that the conditional prob-

abilities Pð!ijKSnfigÞ uniquely determine the joint probability PðKÞ [29]. The second

condition of Markov property ensures that the probability of a node being in a state depends

only on its neighbors (local property).

Definition 4.2 (Gibbs Random Field). A random field F on a graph G is called a Gibbs

random field if the probability measure P onF follows the Gibbs distribution1 [28] given as:

PðKÞ ¼ 1

ZN

expð��HðKÞÞ (3)

where

ZN ¼
X
K2K

expð��HðKÞÞ (4)

is the partition function and � is the inverse temperature in the thermodynamic analogy.

1Known as generalized canonical distribution in Statistical Mechanics, where it is derived as an
unbiased distribution of microstates subject macroscopic observations, such as energy [30].
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For an uncountable �, the partition function ZN becomes an integral, instead of the sum in

Equation (4) for which � is finite or countably infinite. Moreover, for a countably infinite or an

uncountable �, ZN is defined only when the sum (or integral) in Equation (4) is finite [29]

Definition 4.3. A node set c � S is called a clique if the graph induced by G on c is

complete, i.e., if any two nodes in c are mutual neighbors in G [31].

Definition 4.4. The Hamiltonian or the energy function for a configuration K is defined as:

HðKÞ ¼
X
c2C

VcðKÞ (5)

where Vc is the potential of a clique c; and C is the set of all cliques for graph G.

It is noteworthy that a Markov random field evolves as a localized process with

neighborhood interactions only (i.e., Markov condition). In contrast, Gibbs random field

describes global behavior relying on the joint probability measure P(K). Hammersley-

Cliffford Theorem [28], [29] establishes an equivalence between Markov and Gibbs

random fields (See Appendix B). Relying on this equivalence, the local behavior of a

sensor node is tuned to achieve global emergent patterns for sensor activity scheduling.

4.3. Ising Model Formulation for a Sensor Network

This subsection formulates the Ising model of a sensor network, which is represented as a

Markov random field on a graph G. The rationale is that the behavior of a sensor node

would depend strongly on its nearest neighbors and would be relatively unaffected by the

decisions of a distant node. Sensor nodes are represented as binary random variables and

clique potentials to model node behavior are defined. The goal here is to achieve desired

sensor network activity through a distributed probabilistic approach as explained below.

A sensor si is represented as a function si : P ! Rn that maps the physical space P of

observable parameters into the measurement space Rn. Often the attributes of a sensor data

sequence - metadata - such as signal amplitude, frequency spectrum, wavelet coefficients, or

their statistical signature, are used to create a scalar measure � by comparing with known

typical attributes for an event. This measure � is then used for event detection and classifica-

tion. For example, statistical feature extraction and information-theoretic approaches have

been shown to create an anomaly measure for damage detection and tracking in electrome-

chanical systems [32, 33]. Instead of directly incorporating sensor data sequences belonging

to the space Rn, construction of clique potentials for G is based on such a scalar measure �.

The state (or label) set is chosen to be discrete with � ¼ factive; inactiveg. The

random field F in Equation (1)) is defined as:

F i : �! f�1;þ1g;"i ¼ 1; 2; . . . ;N (6)

withF iðactiveÞ ¼ þ1 andF iðinactiveÞ ¼ �1 for all i. In the Ising-mode analog f�1;þ1g
would correspond to the set of spins. Note that the number of possible configurations is

j�jjSj for a discrete �. Thus, even for a small label set and an appreciable size of the sensor

network, j�jjSj can be extremely large. The sensor network needs to be organized in

configurations that enable detection and tracking while conserving resources as much as

practicable. The proposed methodology achieves this objective by making use of a dis-

tributed approach that is computationally efficient.
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The clique potentials are defined as

Vc ¼
�Bð��i Þ�i ; jcj ¼ 1; si 2 c
�wij�i�̂j ; jcj ¼ 2; c ¼ ðsi; sjÞ

0 ; jcj > 2

8<
: (7)

where jcj is the cardinality of the clique c;��i is the time �-dependent scalar measure from

node si;Bð��i Þ is an a priori defined function of ��i ; and �̂j is the expected value of �j. The

choice of the function Bð��i Þ and its effect on performance are discussed later in this section.

Note that the clique potential for jcj ¼ 2 is anisotropic2 and Vcð�i; �jÞ 6¼ Vcð�j; �iÞ.
Cliques of size more than two would require keeping track of neighbors of neighbors,

which becomes cumbersome for a large jcj. Therefore, from the implementation perspec-

tive, cliques with size greater than 2 are not considered in this formulation and hence

Vc ; 0 for jcj > 2. However, higher order cliques potentials are necessary in some

scenarios for more complex sensor network behaviors; this is a topic of future research.

The Hamiltonian that represents the energy of a configuration K is now written in

terms of the potentials Vc as:

HðKÞ ¼ �
X
jcj ¼ 1

ðc ¼ siÞ

Bð��i Þ�i �
X
jcj ¼ 2

ðc ¼ ðsi; sjÞÞ

wij�i�̂j (8)

where, in the Ising-model analogy, Bð��i Þ corresponds to the external magnetic field and wij
to the coupling constant [18]. Each wij is assumed to be strictly positive, which is analogous

to ferromagnetic influences in the thermodynamic sense [30]. That is, being in the same spin

state as its neighbors is energetically favorable for a sensor node. However, due to the

anisotropy of the clique potential, the interaction term in Equation (8) depends on the

expected neighbor spin �̂j rather than its current value �j. This formulation has a practical

significance from the perspectives of a sensor network. For example, the current value of �j
for a neighbor could be unknown or erroneous due to data latency and simultaneous and

unsynchronized operations of a sensor network. It is shown later in Equation (13) that the

computation of state probabilities for a sensor node si is independent of the current state of its

neighbors; this property enables nodes to make simultaneous transitions based on the

expected neighbor behavior. Moreover, this formulation is meaningful even in the presence

of a perfect (i.e., time-synchronized and zero latency) network. It allows a node to distinguish

between a neighbor whose current state (possibly low probable) is a simple realization of the

random variable �j, and one that has a bias towards certain state.

For a given configuration K, the conditional probability Pð!ijKSnfigÞ (see Equation (3)

and Equation (5)) is expressed as:

Pð!ijKSnfigÞ ¼
exp ��

P
c2Ci VcðKÞ

� �
P

!¢
i2� exp ��

P
c2Ci

VcðK¢Þ
� � (9)

where Ci is the set of all cliques that contain the node si; and K¢ is the configuration K with

node si being labeled as !¢
i. The sum in the denominator is taken over all configurations K¢

obtained with !¢
i 2 �. (See Equation (22) in Appendix B for details).

2A clique potential is called anisotropic (isotropic) when it is dependent (independent) of the
clique orientation [29].
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Let �Hð�iÞ be the change in energy as a node si changes its state from �i ! ��i.
Then,

�Hð�iÞ ¼ HðKj!i ¼ ��iÞ � HðKj!i ¼ �iÞ
¼ 2Bð��i Þ�i þ 2

X
sj2@i

wij�i�̂j (10)

Let pa
j, Pð�j ¼ 1jKSnfjgÞ denote the conditional probability of the node sj being active.

Then, �̂j ¼ 2ðpaj � 1
2
Þ where the bias of the node sj is clearly observed; and �Hð�iÞ is

expressed as:

�Hð�iÞ ¼ 2Bð��i Þ�i þ 4
X
sj2@i

wij�i pa
j �

1

2

� �
(11)

It follows from Equation (11) that �Hð�iÞ ¼ ��Hð��iÞ, i.e., �H is an odd function of �i.
Setting �Hi ¼ �Hð�iÞj�i¼�1 for the node si, the state probabilities (pai ; 1� pai ) are

now expressed using Equation (9) as:

pa
i ¼

expð���HiÞ
1þ expð���HiÞ

(12)

Both Equations (9) and (12) imply that Pð!ijKSnfigÞ ¼ Pð!ij@iÞ and the computation

of state probabilities require only local knowledge. Furthermore, partition function ZN does

not appear in the local computations.

Equations (12) and (11) together highlight the coupled nature of the node state

probabilities as:

pai
1� pai

¼ exp 2�Bð��i Þ þ 4�
X
sj2@i

wij paj �
1

2

� �0
@

1
A (13)

It is seen from Equation (13) that the probability of being active pai is a function of

the current sensed parameters at the node si and the expected behavior of its neighbors.

In the absence of the magnetic field Bð��i Þ that represents exogenous influences as a

function of ��i , the node probabilities depend only on the neighbors’ behavior and the

sensor network system has a fixed point at p* ¼ 0:5, i.e., pai ¼ p* "i, both left hand and

right hand sides of Equation (13) are identically equal to 1. This implies unbiased

operation for all nodes.

The fixed point of the system determines the normal or usual operation characteristics

of the system, i.e., when there are no events in the sensor field (�i ¼ 0 "i). Thus, for a

sensor network application, the ability to choose p* would be desirable. For a given

0 < p* < 1, this is accomplished as follows.
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Let us define the clique potentials as:

Vc ¼
�ðB0 þ Bð��i ÞÞ�i ; jcj ¼ 1; si 2 c

�wij�i��̂j ; jcj ¼ 2; c ¼ ðsi; sjÞ
0 ; jcj > 2

8<
: (14)

where

B0 ¼
1

2�
ln

p*

1� p*

� �
(15)

and ��̂j is the change in the expected neighbor spin. For a given

p*;��̂j ¼ �̂jjpaj � �̂jjp* ¼ 2ðpaj � p*Þ. Then, Equation (13) becomes

pai
1� pai

¼ exp � 2B0 þ 2Bð��i Þ þ 4
X

wijðpaj � p*Þ
� �� �

(16)

and the sensor network system has a fixed point at p* for �i ¼ 0"i. In this model, a sensor

node is allowed to make its local decisions based on its sensed parameters ð�iÞ and the

change ��̂j in the expected behavior of its neighbors. Note that, for p* ¼ 0:5, Equation (16)

degenerates to the earlier model in Equation (13).

The formulation presented here essentially follows a hybrid model [34] where the

clique potentials and hence the probabilities are functions of both a discrete variable ð�iÞ
and a continuous variable �̂j. This model formulation is different from the conventional

practice (e.g., auto-logistic and auto-normal models used in image processing) and has been

adopted here to suit sensor network applications.

The schematic view in Fig. 1 represents a sensor network with orthogonal nearest

neighbors. The network is perceived as a collection of interacting probabilistic finite state

automata (PFSA). To adapt to the dynamic operational environment, sensors nodes recur-

sively compute their state probabilities based on their neighborhood interactions and most

recently sensed data. Although only two states (i.e., active and inactive) have been

considered for each node, the formulation is extendable to a larger number of states

(e.g., with a Potts model representation [18]) and is a topic of future research.

Figure 1. Sensor Field with sensor nodes represented as a probabilistic finite state automaton (PFSA)

(magnified) with two states - Active (+1) and Inactive (-1), with pa and ð1� paÞ as respective state

probabilities.
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5. Validation on a Simulated Sensor Field

Tests have been conducted on a simulated sensor field to demonstrate and validate the

performance of the methodology presented above. The sensor field is simulated as a two-

dimensional array of sensor nodes (like TelosB or MICAz [1, 2]). The sensor field consists

of 600 (20 · 30) nodes which are placed in a uniform grid. Each node has four neighbors—

nearest orthogonal, with inter-node distance between the neighbors being set to 10 units.

Note that with nearest orthogonal neighbors, cliques of order three or more are not present.

The scalar measure �i is taken to be the normalized signal intensity detected by the sensor

node si. If the analysis based on mere intensity cannot be used for event detection, more

advanced methods such as frequency domain, wavelet domain, or pattern recognition

analysis would be required to compute the measure �i [32]. In the current simulation

tests, Bð��i Þ ¼ B1�
�
i is chosen to be a proportional function of ��i and wij are chosen to be

identical so that wij ¼ w for all neighbor pairs ðsi; sjÞ.
Unlike a true spin system (e.g., a ferromagnet), information exchange between a pair of

sensor nodes is possible only when both nodes in active state and communicating. A true

spin system would correspond to a sensor network where nodes are always listening, so that

any changes in the expected behavior of neighbors are promptly known. To this effect,

algorithms (e.g., Low Power Listening (LPL) [35]) that offsets the load of communication

to the transmitting node, can be utilized but they could be expensive. When not opting for

such a communication scheme, a sensor node can only have a passive influence on its

neighbors and therefore may not be able to actively update or wake-up a sleeping node.

Using the last reported neighbor probabilities, a node handles the task of communicating to

its neighbors as follows.

For a node si; let pm ¼ minjðpaj Þ, j 2 @i where paj , Pð�j ¼ 1jKSnfjgÞ denote the

conditional probability of the node sj being active as stated earlier in the previous section.

Then, in a discrete time setting for time � , the probability that the least probable neighbor

would be active at least once in k time steps is 1� ð1� pmÞ
k
.

Expiry time Texp for broadcast is calculated so that Pcomm ¼ 1� ð1� pmÞ
Texp and thus

Texp ¼
lnð1� PcommÞ

lnð1� pmÞ
(17)

where Pcomm is a design parameter that determines the likelihood of updating one’s

neighbors and thus Texp, as seen in Fig. 2. Thus, a sensor node broadcast new pai for

broadcast expire time Texp, to update its least active neighbor with probability Pcomm. Nodes

broadcast new pai only when it changes by �pa. This is done so that insignificant changes in

pa are not broadcast.

Sensor network activity is scheduled via a stochastic update of node states, as given in

Algorithm 1. In a discrete time setting, a node si computes pai at each time step k based on its

current �ki and last known neighbor probabilities paj , j 2 @i. It then assigns a state active or

inactive to itself for this time step with probability pa
i and ð1� pai Þ respectively. These

stochastic local decisions, in turn, evolve to adapt to the changing environment. The

following subsection present results from two simulation experiments:

1) The effects of neighborhood interactions on sensor network performance (see

Subsection 5.1), and

2) A target tracking application (see Subsection 5.2).
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5.1. Neighborhood Interactions

Neighborhood interactions in the proposed methodology enable a sensor node to adapt its

activity schedule to an event in its vicinity. This event may not be directly visible to the

sensor node. To demonstrate the effects of neighborhood interaction, an event is simulated

to be detected by only one sensor node (i.e., s0 at grid point (15,10) in Fig. 3). This is done

by setting �0 ¼ 1 for node s0 and �i ¼ 0 for all nodes si; i 6¼ 0. Figure 3 shows six contour

plots, (a) to (f), of activity probability pa of sensor nodes for w ¼ 0, 0.8, 1.2, 1.35, 1.8, and

2.0 respectively. For all six cases (a) to (f), fixed point p* ¼ 0:3, � ¼ 0:2 and parameter

B1 ¼ 50.

As explained in Section 4.3, in the absence of an event each sensor node operates at the

fixed point with pa ¼ p*. But when an event gets detected by a sensor node, each node
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Figure 2. Trend of the design parameter Pcomm versus time steps k.
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Figure 3. Contour plots of activity probability pa of sensor nodes when for different values of w: (a)

w ¼ 0, (b) w ¼ 0:80, (c) w ¼ 1:20 (d) w ¼ 1:36, (e) w ¼ 1:80 and (f) w ¼ 2:0. Only one sensor at

grid point (15,10) is detecting the event. ðp* ¼ 0:3Þ:
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adjusts its activity probability pa thorough local decisions to adapt to the changes in the

environment. This can be seen in the contour plots in Fig. 3. For w > 0 sensor nodes in the

immediate neighborhood of grid point (15,10) achieve higher probability of activity

through local interactions although they are unable to detect the event directly. This

influence gradually decreases further away from the node s0, which is detecting the event.

In Fig. 3 the contour line for pa ¼ 0:3 ¼ p* can be considered as the boundary of the

influence patch due the event at s0. Cases (b), (c), and (d) for w ¼ 0:8, 1.2, and 1.36

respectively show that nodes far away from s0 remain undisturbed by the event and operate

at the fixed point p* of the network. Although, the size of the influence patch grows with

increase in w. In case (e) and (f) where w ¼ 1:8 and 2.0 respectively, the event at s0 can be

seen to influence the entire network and a large number of nodes have a high probability of

being active.

Figure 4 shows a plot of expected number of active nodes nað¼ �ip
a
i Þwith interaction

coefficient w. The simulation was repeated fives times for each value of w and the value na

of the sum �ip
a
i was recorded when it stabilized within an error bound (10�2). Expected

number of active nodes for each run are marked as * in Fig. 4, while the solid line shows the

average trend of the simulation data points. Figure 4 shows that there is a sudden change in

behavior of the sensor network atw ¼ 1:36. Forw � 1:36 the na has a low value (�180 for

w ¼ 0)3, and shows a slow rise changing only by a small number of nodes. For w > 1:36,

expected number of active nodes jumps to high value (>400) and rises quickly as w is

increased. Forw ¼ 3 almost all nodes (�600) achieve pai close to unity. This abrupt change

or discontinuity in na can be seen as a phase change of zeroth order in the thermodynamic

sense. The value ofw is stepped by 0.2, except aroundw ¼ 1:36 where it is stepped by 0.02

to adequately characterize the discontinuity in na.
Results show that neighborhood interaction allows sensor nodes to gradually adapt to

an event even before it gets directly detected by them. These interactions lead to the

formation of an influence patch whose size can be controlled using an appropriate choice

ofw. Above the critical point, a localized event detected by single node can activate a large

number of nodes. Thus, to ensure a stable performance of the sensor network operating

below the critical point is desirable. It should be noted that the critical point for phase

transition is dependent on the inverse temperature �.
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Figure 4. Expected number of active nodes ð
P

pai Þ with respect to w for � ¼ 0:2:

3For w ¼ 0; pai ¼ p* ¼ 0:3 for all i 6¼ 0 and pa0 � 1 for node s0. Thus na ¼ �ip
a
i � 180:
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5.2. Target Tracking

This section presents a target tracking application of the proposed methodology. The

intensity of the signal, used to detect the target, is simulated to follow inverse-square law.

This would be true in many cases such as when the target has an acoustic or a magnetic

footprint. In both cases the signal intensity would decay proportional to r�2, where r is the

distance form the target. An acoustic response from the target would be obtained when a

noisy target moves through the sensor field. While, ferrous targets such as a vehicle would

produce a magnetic signature by affecting the nearby Earth’s magnetic field.

The task of estimation of target attributes such as position and communication to the

data sink is handled by cluster head. Dynamic Space-Time Clustering (DSTC) given in

Algorithm 2 [25] is used by the sensor nodes to elect cluster heads. Cluster heads perform

local information fusion and transmit assimilated data as short packets to the data sink using

single-hop communication. In the current work cluster heads estimate the position of the

target using a weighted mean of sensor node positions. The weights used are the corre-

sponding measures �i from the sensor nodes. The data sink may receive data from one or

more cluster heads and use it to get a final estimate of the target position. Cluster head

selection, target position estimation, and communication to a data sink are done to

254 A. Srivastav et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
e
n
n
s
y
l
v
a
n
i
a
 
S
t
a
t
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
2
:
3
9
 
2
3
 
J
u
n
e
 
2
0
0
9



demonstrate efficacy of the proposed methodology to enable target tracking. A more

sophisticated approach such as multilateration or Kalman filtering for position estimation

can be used. Sensor field is the same as used for studying the effect of neighborhood

interaction.

Figure 5 shows the results for target tracking as snap shots at three instants of time -

cases (a), (b), and (c). Each case shows the sensor field and a contour plot. The sensor field

shows the sensor nodes in four modes -

(i) active (sensing and sniffing for messages from neighbors - Rx),

(ii) inactive (neither sensing nor receiving),

(iii) cluster head (performing information fusion besides sensing and receiving) and

(iv) transmitting (sending new pa to neighbors - Tx).

The corresponding contour plots show the distribution of activity probability pa of

sensor nodes. It can be seen that as the target moves through the sensor field, sensor nodes

adapt their pa to suit the current scenario. The contour plots show that the target (black dot)

is always in an area of high probability of activity. While sensor nodes far away are

unaffected by the presence of the target. This is confirmed by the snap shot of the sensor

field, which shows nodes in the immediate neighborhood of the target in active mode and

elected as cluster heads for information fusion. Nodes ahead of the target are transmitting to

inform neighbors of their current (increase in) probability. While nodes behind the target

are informing their neighbors of new pa (decreased as target moved away).

As for previous application, measure �i is taken as the normalized signal intensity.

Parameters p*; �; w and B1 are chosen as 0.3, 0.2, 0.8, and 10. In Algorithm 2 pc ¼ 0:9 for

cluster head election and change in activity probability �pa ¼ 0:02 in Algorithm 1 to

broadcast pa to neighbors. Nodes transmit for a period Texp (Equation (17)) to ensure

with Pcomm ¼ 0:95 likelihood that their least active neighbors receive their messages. Note

that Tact and Tinact in Algorithm 1 are the time durations for active and inactive states
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Figure 5. Snap shots of the sensor field and activity probability pa contour plots. Subplots (a), (b) and

(c) show three positions of the target progressively advanced in time. (p* ¼ 0:3).
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respectively. They have been chosen to be unity in both simulations. Their choice would

dependent on the application at hand.

Figure 6 show the true track of the target (solid line) and the estimate of its

position obtained using the weighted mean approach. Estimated target positions are

appreciably close to the true target track for a simple weighted mean approach. It can

be seen that the sensor network is able to adaptively activate node so as to enable

target tracking.

6. Summary, Conclusions, and Future Work

This paper presents an adaptive methodology for sensor node activity scheduling in sensor

networks based on the fundamental concepts of random fields on graphs and Statistical

Mechanics. Clique potentials have been defined in this context and a hybrid Ising-like

model is constructed to suit a sensor network application. This procedure allows the sensor

nodes to make simultaneous local decisions by relying on their sensed parameters and

changes in expected behavior of their neighbors. These local decisions, in turn, evolve to a

meaningful global behavior of the sensor network. Tests have been conducted on a

simulated sensor field of 600 nodes to

(i) observe the effects of neighborhood interactions and

(ii) for a target tracking application.

The framework presented in this paper provides a method for collaboration in a sensor

network for a resource aware operation. The following are a few directions for further

investigation.

� Extension to address situations where sensor node states are not binary;
� Inclusion of factors such as communication link or sensor node reliability and inter-

node distance in the interaction coefficient wij;
� Use of methods such as statistical pattern recognition for the scalar measure � [32],

[33]; and
� Stability control
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Figure 6. True target track (solid line) and estimated positions (dots) of the target obtained using

weighted mean approach.
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Appendix

This appendix presents a more detailed and rigorous background on the theory of random

fields used for methodology formulated in the main text.

A. Random Fields

Definition 1.1. (MEASURE THEORETIC) Let ðK;K; P Þ be a measure space. Let GN;d be the set

of all Rd-valued functions on RN ; N; d 2 N, andGN;d be the corresponding�-algebra. Then a

measurable map F : ðK;KÞ ! ðGN;d;GN;dÞ is a called an N-dimensional random field.

ThusF maps K 2 K to functions in GN;d. Equivalently it maps sets inK to sets inGN;d. For

a given K 2 K, the corresponding function in GN;d is called a realization of the random field and

is denoted asFð�;KÞ. At a given point~r 2 RN the value of this function is written asFð~r;KÞ.
The �-algebra GN;d contains sets of the form fg 2 GN;d : gð~riÞ 2 Bi; i ¼ 1; . . . ;mg,

where m is arbitrary,~ri 2 RN and Bi 2 Bd (the Borel �-algebra of Rd). Note that sets of
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the form fg 2 GN;d : gð~r�Þ 2 B�; � 2 Ig, where I is an interval in RN are not usually present

in GN;d. Such cases are mathematically tractable when the random field F is separable [27].

Definition 1.2. (KOLMOGOROV) Let F be a family of random variables such that

F ¼ fFð~ri; �Þ : ð�; EÞ ! ðRd;BdÞ;~r 2 RNg (18)

Then F is a random field if the distribution function P~r1;...;~rn
ð~x1; . . . ;~xnÞ;~x 2 Rd satisfies

the following

1) Symmetry:P~r1;...;~rn
ð~x1; . . . ;~xnÞ is invariant under identical permutations of~x and~r.

2) Consistency: P~r1;...;~rnþmðB · RmdÞ ¼ P~r1;...;~rn
ðBÞ for every n;m � 1 and B 2 Bnd

A random field over a graph G ¼ fS;Eg is a family of random variables Fðsi; �Þ
indexed by the nodes si 2 S (Section IV-B).

B. Equivalence of Markov and Gibbs Random Fields

Theorem 1.1. Let the @ be the neighborhood system on a node-set S. Let F be a random

field on S. Then F is a Markov random field with respect to @ if and only if it is a Gibbs

random field with respect to @

.Proof. Let F be a Gibbs random field so that the joint density P(K) is given by

Equation (3). Then

Pð!ijKSnfigÞ ¼
Pð!i;KSnfigÞ

PðKSnfigÞ
¼ PðKÞP

!¢
i
2� PðK¢Þ

(19)

where K¢ is the configuration K with node si labeled as !¢
i. Thus the sum in the denominator

of Equation (19) is essentially the marginalized probability PðK¢Þ w.r.t. node si. Given

clique potentials Vc, Equations (3) and (5) can be used to write Pð!ijKSnfigÞ as

Pð!ijKSnfigÞ ¼
expð��HðKÞÞP

!¢
i2� expð��HðK¢ÞÞ

(20)

where H(K) is given by Equation (5). The set of all cliques C can be split into two disjoint

sets Ci and �Ci such that Ci is the set of all cliques that contain si and �Ci ¼ CnCi. Then

Equation (20) can be written as

Pð!ijKSnfigÞ ¼
�ðCi;KÞ�ð�Ci;KÞP

w¢
i2� �ðCiK¢Þ�ð�Ci;K¢Þ

(21)

where �ðA;QÞ ¼ expð��
P

c2A VcðQÞÞ, for some set of cliques A and Q 2 K. Clearly

�ð �Ci;KÞ ¼ �ð �Ci;K¢Þ and we have
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Pð!ijKSnfigÞ ¼
exp ��

P
c2Ci

VcðKÞ
� �

P
!¢
i2� exp ��

P
c2Ci

VcðK¢Þ
� � (22)

Since the right hand side of this equation is dependent only cliques that contain si, a Gibbs

random field is Markov. Also, note that this is Equation (9) in the main body of the paper.

For the proof that a Markov random field has a potential of the form of Equation (3)

see [28].

A-SAS 261

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
e
n
n
s
y
l
v
a
n
i
a
 
S
t
a
t
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
2
:
3
9
 
2
3
 
J
u
n
e
 
2
0
0
9




