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Abstract – The paper presents a concept of Statistical Mechanics for observation-based
adaptation in autonomous systems, which is typically exhibited by simple biological systems. Time-
critical operations of autonomous systems (e.g., unmanned undersea vehicles (UUVs)), require
in situ adaptation in the original plan of action and rapid response to evolving contextual
changes and situation awareness for enhanced autonomy. In this regard, a concept of dynamic plan
adaptation (DPA) is formulated in the setting of a generalized Ising model (e.g., the Potts model)
over a discretized configuration space, where the targets (e.g., undersea mines) are distributed. An
exogenous time-dependent potential field is defined that controls the movements of the autonomous
system in the configuration space, while the decision-theoretic tool for dynamic plan adaptation is
built upon local neighborhood interactions. The efficacy of the DPA algorithm has been evaluated
by simulation experiments that demonstrate early detection of localized neighborhood targets as
compared to a conventional search method involving back and forth motions.

Copyright c© EPLA, 2009

Introduction. – Tools of Statistical Mechanics [1] have
been used to study stationary and quasi-stationary behav-
ior of evolving complex systems. This area has emerged as
a new discipline in the applied-physics literature, known
as thermodynamic formalism of complex systems [2,3].
The concepts of Statistical Mechanics, which were orig-
inally developed to study the collective properties of
physical systems (e.g., solids, liquids, and gases), have
been extensively used for a diverse range of applications
including chemical and biological systems (e.g., colloids,
emulsions, liquid crystals, complex fluids, polymers, bio-
polymers, cellular structures, and bacterial chemotactic
networks) [4–7], economical and sociological systems [8,9],
ecological systems [10], mechanical systems [11], complex
networks [12,13], and for time series data analysis [14–18].
Specifically, the simple structure of Ising model [19],

that is considered to be one of the profound foundations of
Statistical Mechanics, has an immense potential to model
neighborhood dependencies between the interacting
elements of a complex system. These interactions in turn
produce the collective global behavior through mutual
interdependence. Technical literature abounds with

(a)E-mail: axr2@psu.edu

diverse applications of Ising model [7,15,20]; however,
the domain of applications of such exclusive models from
physical sciences has so far been limited from extension to
many other disciplines including the science of autonomy
and artificial intelligence. A critical issue in the science of
autonomous systems (e.g., unmanned undersea vehicles
(UUVs)) is to enhance onboard autonomy that facilitates
in situ adaptation to contextual changes, that refer to
the observed phenomenon of the environment (e.g., an
event detection). Recent literature [21–23] in autonomous
systems has addressed several critical issues of offline
coverage planning (e.g., area segmentation, obstacle
avoidance, and optimization of path trajectory) to search
for targets (e.g., undersea mines) distributed in a region;
however, the concept of in situ plan adaptation has not
been addressed.
In this regard, this paper introduces a concept of

observation-based dynamic plan adaptation (DPA) in
autonomous systems for improvement in the local search
performance. The concept of DPA is formulated in the
setting of a lattice spin system, where the search region
is partitioned into a grid to form a finite-dimensional
lattice structure. A generalized Ising-model (i.e., the Potts
model [24,25]) is constructed over the lattice to model
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neighborhood influences that facilitate adaptation in the
autonomous systems. Note: the generalized Ising model
refers to any spin model (e.g., the Potts model, the XY
model, and the Heisenberg model) that is constructed
from n-dimensional vector spins with an alphabet whose
cardinality exceeds two. However, this paper utilizes the
Potts model where the spin set is extended beyond the
binary alphabet. To maintain generality this model is
simply referred to as a generalized Ising model. The model
involves i) an exogenous time-varying potential function
term to control the movement of the autonomous system
in the search space and ii) a local adaptation term that
models the neighborhood influences on the nominal path
trajectory.

Background information. – Several time critical
operations of autonomous systems, such as mine counter
measure (MCM) and anti-submarine warfare (ASW),
involve search, detection, and tracking of targets (e.g.,
undersea mines and submarines), where it is imperative
to plan the (sub)optimum navigation path offline based
on the a priori information. This a priori information
may include contextual knowledge, such as the probabil-
ity maps of target locations and enemy coarse of action
(ECoA). Therefore, an offline plan (e.g., a navigation
path trajectory) is generated for such autonomous systems
based on the a priori information using different multi-
objective optimization methods, such as the Genetic algo-
rithms [26]. The objective of the generated plan is to facil-
itate optimal execution of a mission task (e.g., under-
sea operations to search for seabed mines using sonar
technology and land operations to search for explosives)
within limited time margins. The offline plan performs
well under known scenarios with perfect a priori infor-
mation. However, the unknown situational uncertainties
including both anticipated events (e.g., environmental
changes) and unanticipated events (e.g., an enemy attack)
demand for in situ adaptation of the original plan based
on local observations. Furthermore, the a priori informa-
tion may be faulty, thereby, necessitating in situ adap-
tation of the autonomous systems. Specifically, onboard
autonomy is designed to make local decisions with agile
response to observed neighborhood events (e.g., target
detection). Recent literature in autonomous systems has
addressed the critical issues of coverage planning such as
area segmentation, obstacle avoidance, and optimization
of path trajectory to achieve multiple objectives (e.g.,
minimization of the total time and early detection of
targets) [21–23]. Apparently, the concept of in situ plan
adaptation has not yet been addressed.
Local adaptation in the navigation path for maneu-

vering around a target is typically observed in biological
systems. A common example of a biological system that
exhibits adaptation is that of an ant that drops a chem-
ical called pheromone to act as a navigator to hunt for
food. Therefore, the ant follows the areas that have high
intensity of pheromone and also drops the pheromone in

areas of interest where the food is present and that could
be searched around to detect more food. Thus, search-
ing for high-intensity pheromone regions enables localized
improvement in performance. As such, learning from such
biological systems, the problem of localized plan adapta-
tion in autonomous systems is investigated based on detec-
tion of a target (e.g., an undersea mine) for additional
search in target neighborhood before reverting to the orig-
inal path trajectory. Often, the targets are located closely
in a clustered fashion or demonstrate a certain deployment
pattern (e.g., a straight line). Therefore, it is advantageous
to search around the region of a detected target to hunt
for (possible) locally clustered targets before indulging
into search of the remaining large area. If no neighboring
targets are found, the search resumes back to the nomi-
nal trajectory. Another example is that of an emergency
situation, where while moving along the normal course of
action (CoA), an autonomous system detects a shooting
enemy, in this scenario, saving life and hunting for a possi-
ble enemy convoy hiding in the neighborhood becomes
more critical necessity then to follow the CoA. As such, the
performance of an adaptive autonomous system depends
on in situ response to observation (e.g., early detection
of neighborhood targets); this in general improves search
efficiency even if the operation is halted due to unexpected
emergencies (e.g., a severe storm) before complete cover-
age is achieved.

Space partitioning and lattice formation. – As
presented earlier in the introduction section, the concept
of dynamic plan adaptation (DPA) is formulated in the
setting of a lattice spin system. The search region (e.g.,
the area where the potential targets are believed to be
distributed) of the autonomous system is partitioned into
a grid to form a finite-dimensional lattice structure such
that each grid element (i.e., a cell) represents a lattice site.
A generalized Ising model (i.e., a Potts model [24,25])
is constructed over the lattice, which involves: i) an
exogenous time-varying potential function term to control
the movement of the autonomous system in the search
space, and ii) a local adaptation term that models the
neighborhood influences on the nominal path trajectory.
The construction of an energy potential of this spin model
is similar to the pheromone of biological systems, which
acts as a navigator to the autonomous system to search
for critical targets.
Let S ⊂R2 be the search region for the autonomous

system. Let P = {Pξ : ξ = 1, · · · , |P|} be a partition of S
such that it is mutually exclusive and exhaustive, i.e.,

Pξ
⋂

Pν = φ for all ξ �= ν and
⋃|P|
ξ=1 Pξ = S, respectively.

Therefore, the partition P forms a grid of the search space
S. The partition is constructed such that the dimensions
of each element (i.e., cell) of the grid structure fall
within the scanning radius of the sensors mounted on the
autonomous system and the distance that it travels to
complete one instance of measurement. For example, in
typical unmanned undersea vehicles (UUVs), these sensors
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include sonar detectors that transmit sonar waves down
towards the seabed, from where they are reflected back.
A typical object in the path of the sonar wave, such as
a mine, reflects back a signal of high amplitude, thus
enabling detection. The scanning radius of such sonar
sensors (that cover the space orthogonal to the direction
of motion of UUVs) is typically of the order of 10m on the
seabed. Furthermore, these UUVs travel for approximately
10m while taking sonar measurements, which defines
one measurement instance. Therefore, the grid size for
such UUVs is ∼10m× 10m. (Note: the details of sonar
technology are beyond the scope of this paper and are not
discussed further).
Once the spatial partitioning is done to construct a

grid, a lattice is defined, where each site of the lattice
is isomorphic to a grid element (i.e., a cell) and repre-
sents a physical state of that element. Therefore, the terms
“cell” and “site” are used interchangeably in this paper.
Let Σ= {σj : j = 1, · · ·, |Σ|} be a finite set of symbols,
called the alphabet, which defines all possible states for
each partition cell Pξ ∈P. For example, in the physical
description of a polycrystalline alloy, Σ denotes the list
of atom species that may occupy a lattice site. For a
standard Ising model, such an alphabet denotes the up
and down states of the spin orientations. In this paper,
the physical description of the state of each partition cell
is described by an alphabet Σ that is constructed with
three possible symbols (i.e., |Σ|= 3). These symbols are
defined as σ1 = 0, σ2 =−1, and σ3 = 1, that represent the
following possible states of each partition cell: i) target
present, ii) target not present, and iii) unexplored, respec-
tively. While the the autonomous system explores the
search area by taking sonar measurements at each cell,
the states are updated by onboard analysis and interpre-
tation of the measured sonar data via appropriate pattern
analysis methods. Therefore, these states represent the
three possible conditions of a partition cell. The objec-
tive of this paper is to facilitate adaptation based on the
observed states of the neighborhood.
Let us now define a mapping Ω :P ×T →Σ that assigns

each partition cell a symbol from the alphabet Σ, such that
γξ(t)≡Ω(Pξ, t) is the state of a lattice site ξ at time t∈ T ,
where T is the time span. Then, the configuration space
of the autonomous system at time t∈ T is constructed as
the Cartesian product

Γ(t) =

|P|
⊗

ξ=1

γξ(t), (1)

where Γ is the collective state of the lattice that can have
at most |Σ||P| possible state configurations. The lattice
system is then defined as a set L= {P,Γ}. Therefore,
as the autonomous system continuously searches different
cells on the lattice, while moving from one cell to another,
Γ unfolds in space-time via exhibiting different configu-
rations, that represents an evolution of the checkerboard
pattern in the search space.

Generalized Ising model formulation. – A three-
state generalized Ising model (i.e., a Potts model) is now
constructed over the lattice system L. A local energy term
at a lattice site ξ is defined as

ELξ (t) =
∑

〈ξ,ν〉κ

JξνΨ(γξ(t), γν(t))+Φ (Bξ(t), γξ(t)) , (2)

where 〈ξ, ν〉κ implies summation over a κ-neighborhood of
ξ, for some κ ∈ N. The κ-neighborhood of a lattice site ξ
is defined as

Nκ(ξ) = {ν : max(|ξx− νx|, |ξy − νy|)≤ κ}, (3)

where ξx, ξy ∈N and νx, νy ∈N denote the x- and y-
coordinates of lattice sites ξ and ν, respectively. Therefore,
the first term in the right-hand side of eq. (2) defines
the total interaction potential due to the sum of the
effects of neighbors on the state at a lattice site ξ.
This term is called as the adaptation term because the
effects of the observed states in the neighborhood cause
changes in the resultant energy potential at a lattice site
ξ, that enables real-time adaptation in the navigation
path trajectory. The coefficient Jξν denotes the interaction
strength between two distinct lattice sites ξ and ν. For
η=max(|ξx− νx|, |ξy − νy|), i.e., the distance between two
neighborhood sites, Jξν is given as

Jξν =

{

η−α, ∀ξ �= ν and η ∈ {1, · · · , κ},
0, otherwise,

(4)

where α∈ (0,∞) is a control parameter. The interaction
function Ψ is defined as

Ψ (γξ(t), γν(t)) =

⎧

⎨

⎩

ψ0, for γξ(t) = 1, γν(t) = 0,
ψ−1, for γξ(t) = 1, γν(t) =−1,
0, otherwise,

(5)

which implies the following conditions.

1. Any lattice site ξ whose state is either γξ(t) = 0 (i.e.,
an explored site where a target is present) or γξ(t) =
−1 (i.e., an explored site where no target is present)
is not influenced by the state of the neighborhood.
Therefore, the interaction potentials of sites that are
in the above states are zero.

2. All neighborhood sites with a state γν(t) = 1 (i.e.,
unexplored site) exert no influence on any lattice
site because they transmit no information to the
neighborhood.

3. ψ0 defines the influence of a site ν in the neighborhood
with γν(t) = 0 (i.e., an explored site where a target is
present) on a site ξ with γξ(t) = 1 (i.e., unexplored
site).

4. ψ−1 defines the influence of a site ν in the neighbor-
hood with γν(t)= −1 (i.e., an explored site where no
target is present) on an unexplored site ξ.
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The interaction function is based on the following
principle. The effect of a target detection at a certain
lattice site causes distortion in the space-time potential
field in the local neighborhood of the target resulting in an
increase in energy by ψ0, scaled to the interaction strength,
thereby creating a dome-like structure. Therefore, as
the autonomous system scans the area, Γ unfolds in
space-time, and any detected target’s neighborhood with
localized increase in energy becomes a high-priority area.
In this neighborhood, the unexplored sites (i.e., with a
state γξ(t) = 1) with a high interaction potential tend
to settle down to low-energy states (i.e., explored site).
Thus, the autonomous system follows the high potential
sites and by scanning them turns them to low-energy
states by converting them to explored sites that have no
neighborhood interaction. If another target is detected in
the neighborhood, it generates its own high interaction
potential. This leads to constructive interference with
the potential of earlier target, and so on. Therefore,
following high potential sites leads to an adaptation in
the nominal trajectory of the autonomous system such
that the high-priority areas are scanned earlier, thereby
improving localized search performance. The interaction
function shows that the explored sites, where no target is
detected, also exert a small influence on the neighboring
unexplored sites where the energy increases by a factor
ψ−1. Therefore, Γ tends to unfold in the neighborhood of
explored sites with a priority, thereby generating a more
uniform and orderly search. The construction of energy
functional for adaptation of an autonomous system is
conceptually similar to that of the chemical pheromone
used for tracking by the biological systems, such as an ant.
The second term in the right-hand side of eq. (2)

defines a navigation control function Φ that depends on
an exogenous time-varying potential field Bξ(t) and the
state γξ(t) at a lattice site ξ. The function Φ is defined as

Φ (Bξ(t), γξ(t)) =

⎧

⎨

⎩

−φ0, for γξ(t) = 0,
−φ−1, for γξ(t) =−1,
Bξ(t), for γξ(t) = 1,

(6)

where φ0 > 0 and φ−1 > 0 correspond to low-energy states
of the explored sites that have the presence (i.e., γξ(t) = 0)
and absence (i.e., γξ(t) =−1) of a target, respectively. As
described earlier, the explored sites have no neighborhood
interaction potential and therefore, they settle down to
these low-energy states. On the other hand, the exogenous
potential field Bξ(t) defines the time-varying potential at
unexplored sites (i.e., γξ(t) = 1) and is given as

Bξ(t) =B
⋆
ξ −Cξ,μ(t), (7)

where B⋆ξ is the potential field that is constructed to navi-
gate the autonomous system with no in situ adaptation.
The relative cost potential function Cξ,μ(t) defines the
total decrease in potential at a site ξ due to travel and
turn costs that are incurred to reach the site ξ from a

current position µ(t) of the autonomous system at time
t∈ T . This cost function is given as

Cξ,μ(t)≡ χtrTtr +χtuTtu, (8)

where Ttr is the cost of traveling one cell, Ttu is the cost
of turning, and χtr and χtu define the total number of
cells and the total number of turns, respectively, that are
required to reach ξ from µ(t) along the shortest path.
Equation (7) implies that the potential of a lattice site
depends on the position and orientation of the autonomous
system. For example, a far away site on the lattice with
respect to the current position of the autonomous system
will have less potential as compared to a nearby site,
because of high traveling and turning costs, unless the far
away site has a neighborhood target. Therefore, eq. (2)
describes the total energy potential at any lattice site ξ,
which is the sum of: i) neighborhood interaction potential
due to nearby target locations, and ii) a time-varying field
that depends on an externally applied potential and the
traveling and turning costs.

Adaptive exploration example. – Following eq. (2),
ELξ (t) describes the net potential at time t on a certain
lattice site ξ. By virtue of energy minimization principle,
the tendency of the autonomous system coupled with the
lattice system is to unfold the lattice site that has the
highest potential at the earliest possible. This enables
sequential unfolding of all unexplored high-potential sites,
which turns the local energy potentials at different lattice
sites to low-energy states via exploration. The effect is
conceptually similar to a sandpile, where the high-energy
particles fall one after the other to low-potential states. At
the beginning of the search, when all sites are unexplored,
the potential at every point is given by the exogenous field
Bξ(0). Subsequently, the autonomous system unfolds the
lattice by searching the sites that have the highest values
of ELξ (t), thereby minimizing the energy at these sites to
that of the explored sites.
The concept of dynamic plan adaptation (DPA) has

been evaluated on a dynamic plan execution simulator
(DPES) that is capable of executing complex mission
scenarios for autonomous systems. The six plots in fig. 1
exhibit the snapshots of the DPES program window,
which demonstrate the exploration of a search area as
time progresses. The search area is partitioned into a
grid size of 60× 60 to generate a lattice structure. For
a typical mine counter measure (MCM) operation, each
cell is approximately 10m× 10m that is normally the
scan range of sonar sensors on a UUV for one measure-
ment instance. The starting point of the search is the top
left corner while the end point is located at the bottom
right corner. The typical back and forth motion of an
autonomous system is optimal for searching an area in
terms of minimum number of turns when no adaptation is
needed. Therefore, for area coverage planning, the exoge-
nous potential field B⋆ξ is designed for back and forth
motion such that the potential field has an increasing
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Fig. 1: (Colour on-line) Dynamic plan adaptation for detection
of neighborhood targets.

magnitude from column to column, starting from a mini-
mum value of magnitude 1 at the end point, while having
equipotential sites on each column. The other parame-
ters in eqs. (2) to (8) have been selected to be κ= 5,
φ0 = 250, φ−1 = 500, α= 0.5, ψ0 = 1000, ψ−1 = 0.5, Ttr =
1, and Ttu = 2; however, the specific values of these
parameters do not have significant effect on the algo-
rithm performance as long as they are of the same
relative order of magnitude. Targets are randomly distrib-
uted in a clustered fashion, in this case straight lines,
which is a commonly found deployment pattern of under-
sea mines using a naval ship. Figure 1 illustrates the
motion of the autonomous system that finds these local-
ized neighborhood targets via dynamic plan adaptation.
Figure 1a) shows a starting stage of plan execution where
the autonomous system is primarily guided by the exoge-
nous potential field Bξ(t) and performs the typical back
and forth motion till no target is detected. Figure 1b)
shows plan adaptation of the autonomous system upon
detection of a target to search for more targets in the
neighborhood. This enables further detection of neighbor-
hood targets, thereby improving localized search perfor-
mance. Figure 1c) shows that the autonomous system
resumes back and forth motion when no more targets
are detected in the neighborhood. Figures 1d) and e)
show dynamic plan adaptations in target neighborhoods
at other locations; and fig. 1f) shows the completed search.
The algorithm has been tested on several other scenarios
including different target deployment patterns.

Conclusions and future work. – This paper has
introduced a potential energy concept of dynamic plan
adaptation (DPA) in autonomous systems based on in situ
observation for early detection of neighborhood targets.
The concept of DPA is formulated in the setting of
a generalized Ising model of the configuration space
that is partitioned into a lattice structure. Dynamic

adaptation is achieved via local neighborhood interactions
of the lattice sites, which generate a high potential in
regions around detected targets, facilitating early search
in unexplored neighborhood. The efficacy of the DPA
algorithm has been evaluated on a dynamic plan execution
simulator (DPES), which indicate improvement in the
local performance of the autonomous system by early
detection of neighborhood targets. This is better than
the conventional search method involving back and forth
motions.
The work reported in this paper is a step toward

building a reliable autonomous system for adaptive search
and tracking. Further research is necessary before its
implementation in actual underwater environments (e.g.,
MCM and ASW applications). While there are many
research issues that need to be addressed, the following
research topics are being currently pursued:

– Autonomous plan adaptation to accommodate envi-
ronmental changes and disturbances (e.g., obstacles
and turbulence).

– Collaboration of a team (e.g., swarm) of autonomous
systems based on potential energy method that facil-
itates real-time local adaptation of each autonomous
system for improvement of the collective global
mission performance.

– Recursive learning of target deployment patterns
based on the search history to facilitate more efficient
adaptation.

– Extension of the Potts model to other forms of spin
models (e.g., Heisenberg) for diverse applications of
autonomous systems.
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