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Abstract
This communication addresses real-time weapon classification by analysis of asynchronous
acoustic data, collected from microphones on a sensor network. The weapon classification
algorithm consists of two parts: (i) feature extraction from time-series data using symbolic
dynamic filtering (SDF), and (ii) pattern classification based on the extracted features using the
language measure (LM) and support vector machine (SVM). The proposed algorithm has been
tested on field data, generated by firing of two types of rifles. The results of analysis
demonstrate high accuracy and fast execution of the pattern classification algorithm with low
memory requirements. Potential applications include simultaneous shooter localization and
weapon classification with soldier-wearable networked sensors.

Keywords: weapon systems, pattern classification, symbolic dynamic filtering, language
measure, support vector machine

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Sniper attacks have become one of the major sources
of casualty in asymmetric warfare, especially in urban
environments. A counter-sniper system that assists
identification of the shooter’s location and weapon class
information would significantly reduce the potential peril
of both soldiers and civilian population. Counter-sniper
systems make use of several different physical phenomena
that are related to weapon data (e.g., acoustic, visual or
electromagnetic signals). In spite of the wide range of possible
measurement devices, acoustic signals (e.g., muzzle blast,
shockwave and surface vibration [1]) apparently provide the
most convenient and accurate way to identify sniper shots.
Hence, a majority of existing counter-sniper systems use
acoustic signals as the primary information source [2]. In
recent years, several commercial sniper localization systems
have been developed [3–5], which have not taken weapon

classification into consideration. To this end, Volgyesi et al
[6] developed a soldier-wearable sensor network system
for both shooter localization and weapon classification. It
estimates the trajectory, range, caliber and weapon type
using data from a single sensor or fusion of multiple time-
synchronized sensors, where the weapon classification is
dependent on the localization. To alleviate the requirement
of time synchronization, Damarla et al [7] developed a sniper
localization method for a network of sensors, which relies
only on the time difference of arrival (TDOA) between the
muzzle blast and shock wave from multiple single sensor
nodes, relaxing the need for precise time synchronization
across the network.

The goal of the research work explored in this
communication is to formulate a real-time weapon
classification algorithm based on asynchronous time series
data collected from microphones on a sensor network. The
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Figure 1. Concept of symbolic dynamic filtering (SDF).

major contribution of this communication is formulation of
a weapon classification algorithm that is capable of real-time
feature extraction and pattern classification directly from the
time series of asynchronous acoustic signals, collected from
networked sensors. This algorithm is independent of sniper
location and thus is expected to be more reliable under adverse
conditions in battlefields than existing weapon classification
systems [6].

2. Review of underlying mathematical concepts

The weapon classification algorithm is built upon the following
major concepts: (i) symbolic dynamic filtering (SDF) [8, 9]
for feature extraction, and (ii) language measure (LM)
[10, 11] and support vector machine (SVM) [12, 13] for
pattern classification. While the theories of SDF, LM and
SVM are reported in detail in the existing literature, this section
briefly presents the underlying concepts that have significant
relevance to this communication.

2.1. Symbolic dynamic filtering (SDF) for feature extraction

Figure 1 pictorially elucidates the concepts of partitioning a
finite region of the phase space of the dynamical system under
consideration and a mapping from the partitioned space into
the symbol alphabet, where the symbols are indicated by Greek
letters (e.g., α, β, γ, δ, . . .). It also shows conversion of the
symbol sequence into a probabilistic finite-state automaton
(PFSA) and generation of the state probability vectors at the
current and the reference conditions. The states of the PFSA
and the associated histograms in figure 1 are indicated by
numerics (i.e., 0, 1, 2 and 3). Feature extraction from training
data consists of the following steps.

2.1.1. Collection of time series data. Sensor time series data,
generated from a physical system or its dynamical model, are
collected as training or test sets over the range of operation.

A compact (i.e., closed and bounded) region � ∈ R
n (i.e.,

the n-dimensional real space), where n ∈ N (i.e., the set
of positive integers), within which the quasi-stationary time
series is circumscribed, is identified. Let the space of time
series data sets be represented as Y, where the number of data
points in each time series is sufficiently large for convergence
of statistical properties within a specified threshold [9]. Then,
yi = {

yi
1, y

i
2, . . .

} ∈ Y denotes a time series for the data set
i ∈ {0, 1, . . . , l − 1}, where l is the number of time series data
sets under consideration.

2.1.2. Space partitioning. Time series data are encoded by
introducing a partition B ≡ {B0, . . . , B(m−1)} that consists of m
mutually exclusive (i.e., Bj ∩Bk = ∅ ∀j �= k), and exhaustive
(i.e., ∪m−1

j=0 Bj = �) cells. Let each cell be labeled by symbols
σj ∈ � where � = {σ0, . . . , σm−1} is called the alphabet.
This process of coarse graining can be executed by appropriate
partitioning (e.g., uniform or maximum entropy [14]) of the
data set. Then, the data points of the reference time series y0

which visit the cell Bj are assigned the corresponding symbol
as σj ∀j = 0, 1, . . . , m − 1. This step enables transformation
of the reference time series y0 to a symbol sequence s0 ={
s0

1 , s
0
2 , . . .

}
, where each s0

j ∈ �. To alleviate the difficulties
associated with noisy time series, symbolization is carried out
by Hilbert transform-based analytical signal space partitioning
(ASSP) [14], which is an essential ingredient of SDF analysis
in the proposed weapon classification algorithm. Symbol
sequences s1, . . . , sl−1 are generated from the respective time
series, y1, . . . , yl−1, using the same partitioning for generation
of the symbol sequence s0 from the reference time series y0.

2.1.3. Construction of probabilistic finite state automata
(PFSA). Probabilistic finite state automata (PFSA) are
constructed [8] with a chosen depth D, and the corresponding
(r × r) state transition matrices Πi = [

πi
jk

]
are generated by

running the symbol sequences through the PFSA structure; the
pair of subscripts j, k ∈ {1, 2, . . . , r} denotes a state transition
from j to k and the superscript i denotes the ith training data
set, i ∈ {0, 1, . . . , l − 1}. Since πi

jk � 0 is the transition
probability from state j to state k,Πi is a stochastic matrix,
i.e.,

∑
k πi

jk = 1 ∀j ∈ {1, 2, . . . , r}.

2.2. Pattern classification

A threshold-based binary classifier is constructed in terms of
a signed scalar measure [10, 11] of the language generated by
the PFSA Π. The classification logic is as follows:

class =
{

C1: if ν < 0

C2: if ν > 0,
(1)

where ν is the language measure obtained by assigning a
weight to each state of the PFSA Π.

Definition 2.1. The characteristic vector χ assigns a signed
real weight to each of the r states of the PFSA, where larger
weights are assigned to relatively more desirable states. The
(1 × r) characteristic vector is defined as

χ = [χ1 χ2 · · ·χr ]. (2)
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Figure 2. Flow chart of the proposed methodology.

Definition 2.2. Measure of the language generated by a
PFSA in terms of its characteristic vector χ is defined as

ν̄(θ) = θ [I − (1 − θ)Π]−1χT where θ ∈ (0, 1). (3)

Proposition 2.1. The measure ν̄(0) � limθ→0+ ν̄(θ) exists
and is bounded as ‖ν̄(0)‖∞ � ‖χ‖∞.

Proof. Given in [11]. �
Proposition 2.2. Given a primitive (i.e., irreducible and
acyclic) state transition matrix Π, the measure in equation (3)
reduces to ν̄(0) = ν1 in the limit, where 1 � [1 1 . . . 1]T .
Then, the scalar measure ν is denoted as [11]

ν = pχT , (4)

where p = [p1, p2, . . . , pr ] is the (1 × r) state probability
vector that is the (sum-normalized) left eigenvector of Π
corresponding to its unique unity eigenvalue [15].

Proof. Given in [11]. �
The scalar measure ν is of the form

ν = pχT =
r∑

i=1

piχi =
r−1∑
i=1

piχi + prχr

=
r−1∑
i=1

piχi +

(
1 −

r−1∑
i=1

pi

)
χr

=
r−1∑
i=1

pi (χi − χr) + χr =
r−1∑
i=1

piai + b, (5)

where ai � (χi − χr) and b � χr . Therefore, the scalar
measure ν is an affine transformation of the (r−1) independent
state probabilities, where the rth state probability may be
expressed in the form 1 −∑r−1

i=1 pi . Further, the equi-measure
surfaces in space of probability vectors are hyperplanes as
described by equation (5). The classifier construction involves
computation of the values of ai, i = 1, . . . , r − 1 and
b, that in turn may be used to evaluate the characteristic
vector χ = [χ1 · · · χr ]. The classifier follows the form of
equation (1).

The support vector machine (SVM) [12, 13] estimates χ
and simultaneously maximizes the separation margin between
the two classes. In the linearly separable case, the binary
SVM classifier selects a hyperplane to separate the two classes
by maximizing the margin that is defined as the sum of the

distances of the hyperplane to the closest points of the two
classes. If the two classes are non-separable, positive slack
variables are introduced to allow some of the training samples
to fall on the wrong side of the separating hyperplane. The
SVM then finds the hyperplane that maximizes the margin
and simultaneously minimizes a quantity directly related to
the number of classification errors. This procedure, called the
‘soft margin’ method, is an extension of the linear SVM [16].

Figure 2 depicts the flow chart of the proposed
classification algorithm that is constructed based on the
theories of SDF, LM and SVM. Upon collection of acoustic
time series data, symbol sequences are generated by analytic
signal space partitioning (ASSP) [14] that is invariant for both
training and testing stages. In the training stage, ltrain sets of
rifle-shot time series data with known class labels are selected.
A PFSA structure is constructed using SDF; subsequently, a
feature vector pi , i ∈ {0, . . . , ltrain − 1} is generated for each
set of the rifle-shot data. The time series data belong to exactly
one of the two known classes C1 and C2.

The feature vectors are inputs to the LM and SVM module
that generates a hyperplane that maximizes the margin and
minimizes classification errors between feature vectors of
the training data. A linear kernel has been used in this
communication. In the testing stage, the feature vectors
pi , i ∈ {0, . . . , ltest−1} are generated from SDF with unknown
class labels and are then separated by the hyperplane obtained
in the training stage. The SM and SVM algorithm yields a
binary output (i.e., C1 or C2) as the class labels of the testing
data.

3. Results of field data analysis

Figure 3 shows a data collection scenario for classification
of two weapon types, namely, Rifle 1 and Rifle 2 that were
fired from two different locations that are ∼60 m apart.
Eight microphone sensors are distributed over a region of
∼30 m × 30 m around each of the three aim-points that are
∼250 m down range.

For each of the three aim-points, the data set of Rifle 1,
which is generated by firing Rifle 1 from location B, has been
used for partitioning; these data sets are not used in the training
stage or testing stage. Referring to section 2, a maximum-
entropy analytic signal space partitioning (ASSP) [14] is
generated in the radial direction with |�R| = 4 segments and,
in the angular direction, with |�A| = 1 segment [14]; thus, the
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Figure 3. A data collection scenario with eight microphones and
two rifle locations.

alphabet size is |�| � |�A| × |�R| = 4. Thus, for each aim-
point, there is a unique partition that is kept invariant in both
training and testing stages. For construction of PFSA from
symbol sequences, a depth of D = 1 is found to be adequate
to capture sufficient information for pattern classification in
this application [8]. Each feature vector obtained as the
(stationary) state probability vector of the PFSA represents
the respective signature of the rifle acoustic signal. The top
row of figure 4 exhibits a typical time series of acoustic data
from Rifle 1 and Rifle 2, which are collected from the same
microphone; examples of feature vectors for the two types of
rifles are shown as histograms in the bottom row of figure 4,
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Figure 4. Acoustic signals and respective feature vectors.

which display how the structure of the underlying probability
distribution varies with the rifle type.

Three plots, arranged as a vertical column in figure 5,
present the results of classification for two types of rifles firing
from location A at aim-points 1, 2 and 3, respectively, based on
the time series data of Microphone 4. No occurrence of pattern
classification errors is observed in these experiments for this
specific choice of feature extraction and pattern classification
parameters. For each aim-point, the respective plot in figure 5
exhibits the results of classification for a single set of Rifle 2
data and a combination of two different sets of Rifle 1 data that
have been collected on two different days. For each aim-point,
about a half of the data in each set are used for training the SVM
classifier and the remaining data for testing the classification
algorithm. As stated earlier, the partition of individual data
sets for each aim-point is generated based on the respective
data set of Rifle 1 fired from the building as indicated by firing
location B in figure 3. In figure 5, the feature extracted from
each data set is represented by a vector that belongs to the four-
dimensional real space R

4 because |�| = 4 and D = 1. Since
the elements of each feature vector are stationary probabilities
of the four states of a PFSA, the sum of the (positive) elements
of each feature vector is unity (i.e., belonging to the three-
dimensional simplex). Therefore, only three elements of
the feature vector are linearly independent, implying that the
decision space is three-dimensional in this setting. For each
of the three plots in figure 5, the two-dimensional hyperplane
unambiguously separates the patterns of Rifle 2 from those of
Rifle 1. In this way, a time series of rifle data is reliably tested
for identification of the unknown rifle type, namely, Rifle 1
or Rifle 2 by observing to which side of the hyperplane the
feature vector belongs.
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(a) Aim-point 1

(b) Aim-point 2
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Figure 5. Rifle classification at aim-points 1, 2 and 3
(Microphone 4).

The execution time of the algorithm for each plot in
figure 5 is less than 1.5 s on a desktop computer, which
demonstrates its real-time execution capability.

3.1. Channel effects on classification results

This section presents a summary of channel effects (i.e.
the degradation of acoustic information due to propagation

Table 1. Rifle classification results of all microphones.

Microphone no. Aim-point 1 Aim-point 2 Aim-point 3

1 95.83% 100.00% 83.33%
2 100.00% 100.00% 100.00%
3 100.00% 100.00% 95.83%
4 100.00% 100.00% 100.00%
5 91.67% 100.00% 100.00%
6 91.67% 100.00% 100.00%
7 91.67% 100.00% 100.00%
8 91.67% 91.67% 100.00%

Average 97.22%

through the atmosphere) on the classification results, which are
attributed to: (i) variations in the recorded acoustic signals due
to relative positions of microphones and calibration settings;
(ii) environmental conditions such as vegetation, terrain and
urban buildings that influence the channel. While the first
cause is mainly a hardware issue that can be mitigated by
appropriate calibration, the second cause (i.e., environmental
effects) is the focus of this section.

In real-world applications (e.g., an urban environment
with tall buildings and various other objects), the shock
wave and the muzzle blast from sniper firing are subject to
reflection, attenuation, absorption, diffraction and other wave
modifications as they propagate through the atmosphere. A
microphone placed in the vicinity of an aim-point receives
pressure waves arriving directly from the source and waves
arriving later from other directions due to reflections and
scattering. At distances far from the rifle shot trajectory,
the shock wave is expected to disperse sufficiently by
spatial spreading such that it may no longer be detectable
compared to the ambient noise [1]. The situation becomes
much more complicated if the surroundings include obstacles
and reflecting surfaces so that the received acoustic signal
contains multipath interference, diffraction effects and other
propagation-related flaws. In essence, the environmental
effects could be totally different at different sensor locations.
An ideal weapon classification system should be independent
of the channel effects due to environmental variations.

The results presented earlier in this section make use of the
acoustic time series data from a single microphone, namely,
Microphone 4 for weapon classification. This subsection
reports the results obtained based on the data from all eight
microphones, including Microphone 4, to investigate the
impact of environmental effects on the weapon classification.
The microphones are placed in different locations and have
varying levels of echo/reflection due to their slightly different
environment. Table 1 summarizes the classification results
obtained from all eight microphones for each of the three
aim-points. The total number of tests (i.e., rifle shots) for
each aim-point is 24, and the classification success rate is
calculated by subtracting the ratio of the number of false
classifications over the total test number from 1. It is seen
in table 1 that a majority of the microphones have a very
high classification success rate. The classification success in
Microphone 1 is slightly lower than that in other microphones
due to improper calibration as recorded in the original log of
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the field test. The average rate of successful classification
is 97.22%, which is a clear indication of its reliability and
effectiveness. Trade-off between probabilities of successful
and false classifications is a topic of future research and is not
addressed in this communication.

The quality of classification could be further improved
by (i) increasing the number of states in the PFSA and
(ii) converting the linear hyperplane in the SVM into a
hypersurface by an appropriate nonlinear transformation.

4. Summary, conclusions and future work

This communication presents a data-driven method of real-
time weapon classification based on time series data collected
from asynchronous microphones on a sensor network. The
pattern classification algorithm is feature-based in the sense
that it first converts the raw time series data into a
feature vector of significantly lower dimension, and then
pattern classification is performed based on the extracted
feature vectors. The feature-based approach is well suited
to the weapon classification problem because direct usage
of a large volume of raw data with unknown or partially
known noise statistics is inefficient from both analytical and
computational perspectives. Based on the data set analyzed
in this study, the proposed classification algorithm appears to
be nearly channel independent, which renders it potentially
reliable and effective in the real-world applications.

The discipline of data-driven weapon classification
is relatively new and requires further theoretical and
experimental research. In this context, the following topics are
recommended for future research before execution of a field
application of the proposed weapon classification algorithm.

• Extension of the current algorithm to multi-class pattern
classification with advanced SVM tools.

• Enhancement of classification performance through usage
of multi-sensor information fusion.

• Investigation of the effects of the signal-to-noise ratio and
clutter parameters for automatic target recognition (ATR)
[17]. In this context, while making a trade-off between
probability of false alarms and probability of successful
detection, additional costs related to weapon localization
could be included in the composite cost functional,
which will augment the standard receiver operating
characteristics (ROC) curve to a higher dimensional
Pareto surface.
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Sallai J, Pap G, Dóra S and Molnár K 2005 Countersniper
system for urban warfare ACM Trans. Sensor Netw.
1 153–77

[3] Stoughton R B 1997 SAIC Sentinel acoustic counter-sniper
system Proc. SPIE 2938 276–84

[4] Sadler B M, Pham T and Sadler L C 1998 Optimal and
wavelet-based shock wave detection and estimation
J. Acoust. Soc. Am. 104 955–63

[5] Duckworth G, Barger J, Carlson S, Gilbert D, Knack M,
Korn J and Mullen R 1999 Fixed and wearable acoustic
counter-sniper systems for law enforcement Proc. SPIE
3577 210–30

[6] Volgyesi P, Balogh G, Nadas A, Nash C and Ledeczi A 2007
Shooter localization and weapon classification with
soldier-wearable networked sensors Proc. MobiSys ’07
(11–14 June 2007, San Juan, Puerto Rico) pp 113–26

[7] Damarla T, Whipps G and Kaplan L 2008 Sniper localization
for asynchronous sensors Proc. 26th Army Science Conf.
(1–4 December 2008, Orlando, FL) Paper No. AP-03

[8] Ray A 2004 Symbolic dynamic analysis of complex
systems for anomaly detection Signal Process.
84 1115–30

[9] Gupta S and Ray A 2009 Symbolic dynamic filtering for
data-driven pattern recognition Pattern Recognition:
Theory and Application (Hauppage, NY: Nova Science)
chapter 5, pp 17–71

[10] Ray A 2005 Signed real measure of regular languages
for discrete-event supervisory control Int. J. Control
78 949–67

[11] Chattopadhyay I and Ray A 2006 Renormalized measure of
regular languages Int. J. Control 79 1107–17

[12] Bishop C M 2006 Pattern Recognition and Machine Learning
(Berlin: Springer)

[13] Vapnik V 1998 Statistical Learning Theory (New York: Wiley)
[14] Subbu A and Ray A 2008 Space partitioning via Hilbert

transform for symbolic time series analysis Appl. Phys. Lett.
92 084107

[15] Bapat R B and Raghavan T E S 1997 Nonnegative Matrices
and Applications (Cambridge: Cambridge University Press)

[16] Cortes C and Vapnik V 1995 Support-vector networks Mach.
Learn. 20 273–97

[17] Ratches J, Walters C, Buser R and Guenther B 1997 Aided and
automatic target recognition based upon sensory inputs
from image forming systems IEEE Trans. Pattern Anal.
Mach. Intell. 19 1004–19

6

http://dx.doi.org/10.1145/1105688.1105689
http://dx.doi.org/10.1117/12.266748
http://dx.doi.org/10.1121/1.423312
http://dx.doi.org/10.1117/12.336972
http://dx.doi.org/10.1016/j.sigpro.2004.03.011
http://dx.doi.org/10.1080/00207170500202447
http://dx.doi.org/10.1080/00207170600801429
http://dx.doi.org/10.1063/1.2883958
http://dx.doi.org/10.1109/34.615449

	1. Introduction
	2. Review of underlying mathematical concepts
	2.1. Symbolic dynamic filtering (SDF) for feature extraction
	2.2. Pattern classification

	3. Results of field data analysis
	3.1. Channel effects on classification results

	4. Summary, conclusions and future work
	Acknowledgments
	References

