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Abstract Resource aware operation of sensor networks
requires adaptive re-organization to dynamically adapt to the
operational environment. A complex dynamical system of
interacting components (e.g., computer network and social
network) is represented as a graph, component states as spins,
and interactions as ferromagnetic couplings. Using an Ising-
like model, the sensor network is shown to adaptively
self-organize based on partial observation, and real-time
monitoring and detection is enabled by adaptive redistribu-
tion of limited resources. The algorithm is validated on a
test-bed that simulates the operations of a sensor network
for detection of percolating faults (e.g. computer viruses,
infectious disease, chemical weapons, and pollution) in an
interacting multi-component complex system.

Keywords Sensor network · Graph theory · Ising model ·
Pervasive faults

1 Introduction

Real-time situational awareness is necessary for both—
military and civil applications for detection (of known and
unknown events) and for control to maintain desired
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performance. Sensor networks are often used to monitor large
and distributed systems composed of interdependent compo-
nents, examples include Structural Health Monitoring, Mili-
tary Operations in Urban Terrain (MOUT), weather, habitat,
and pollution monitoring [1–4]. Usage of distributed sensor
networks for pattern recognition and detection of percolat-
ing faults becomes a challenging task because of the need
to process a large volume of generated data in real time [5].
Moreover, sensor nodes are often severely constrained for
the use of available resources—such as processing power,
energy, communication bandwidth, etc. Since events such as
the growth of anomalies are usually rare and localized events,
data from all sensor nodes need not be processed simulta-
neously at all times. Thus, the network can often be operated
at a reduced capacity by using only a fraction of available
resources while extracting the necessary information in real
time.

Complex systems of interacting dynamic components
found in computer networks, social networks, chemistry, and
biology have recently been studied using the concepts of sta-
tistical mechanics and graph theory [6]. The tools of statisti-
cal mechanics have been applied to investigate the ensemble
behavior of a large number of interacting units. For instance,
representing nodes in a graph as energy levels and its edges
as particles occupying it, complex networks have been shown
to follow Bose statistics, where certain known characteristics
of the network appear as thermodynamically distinct phases
of a Bose gas [7]. A detailed review of statistical mechanics
of complex networks is reported by Albért and Barabási [6]
and, in the context of statistical physics, Strogatz [8] has
explored the behavior of interacting dynamical systems in
various disciplines.

Ising’s ferromagnetic spin model [9,10] has been tradi-
tionally used to study critical phenomena (e.g., spontane-
ous magnetization) in various systems. Essentially it allows
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modeling the collective behavior of an ensemble of
interacting systems. Its ability to model local and global influ-
ences on constituting units that make a binary choice (e.g.
±1) has been shown to characterize the behavior of systems
in diverse disciplines other than statistical mechanics, e.g.,
finance [11], biology [12], and sociophysics [13].

This paper extends the application of Ising model to the
field of sensor networks to enable resource-aware real-time
monitoring of a dynamic environment. Tools of statistical
mechanics and graph theory have been applied to formulate
an algorithm for self-organization and adaptive redistribu-
tion of available resources in a sensor network. From these
perspectives, contributions of the work reported in this paper
are delineated below.

• Construction of an adaptive model for scheduling sensor
node activity for self-learning and adaptation.

• Construction of a state-dependent Hamiltonian to model
neighborhood interactions and time-dependent external
influences.

• Synergistic usage of statistical mechanical concepts (e.g.,
Boltzman distribution and thermodynamic equilibrium).

• Construction of an importance sampling function for
probabilistic activation of sensor nodes.

The paper is organized in five sections including the pres-
ent one. Section 2 presents Ising model formulation that
forms the backbone of the sensor network algorithm. Section
3 formulates the algorithm for self organization of sensor net-
works based on the principles of statistical mechanics and
graph theory. Section 4 implements the algorithm on a simu-
lation test-bed and presents the results of algorithm validation
on a test problem. Section 5 summarizes and concludes the
paper with recommendations for future research.

2 Ising model formulation

A weighted graph has been used to represent interacting
components in a large system and the choice of this frame-
work naturally leads to an Ising-like formulation. Let G =
(V, E, W ) be a weighted graph, where V = {v1, v2, . . . , vN }
is the set of individual components of the system under con-
sideration; an edge (vi , v j ) ∈ E is a two-element subset
of V representing interdependence between a pair of com-
ponents vi and v j ; and the function W : E → R yields
W ((vi , v j )) = wi j as the strength of interaction between the
components vi and v j . Every interaction in G, identified as
an edge and its weight, is represented in a nearest neighbor
model in the sense of Ising. However, unlike a conventional
Ising model, G can potentially be a directed graph where ele-
ments of E are 2-tuples and interactions between components

may not be symmetric. Self loops are assumed to be absent
in G as they are not meaningful in this context.

Given a weighted graph G, its weights are used to con-
struct a time-dependent Hamiltonian H τ .

H τ = −
∑

〈i, j〉
wi jσiσ j − Bτ

∑

i

σi (1)

where 〈i, j〉 denotes a pair of nearest neighbor spins; wi j

and Bτ are neighborhood interactions and time-dependent
external field, respectively. Each node is assigned a spin σi

Eq. (1) to represent its current state. The spin σi of node
vi is ±1 to represent its state as functional (+1) or failed
(−1). In general, the interactions wi j in Eq. (1) can be time-
dependent but they are assumed to be constants here. Every
wi j is taken to be strictly positive; thus, being in the same
spin state as its neighbors is energetically favorable for a
node. This assumption is representative of a typical multi-
component system where malfunctioning neighbors make a
node more likely to change its state from +1 to −1 under
similar external influences, which is analogous to ferromag-
netic influences in an Ising model. In a more general setting, a
larger set (i.e., cardinality > 2) of states as opposed to binary
{+1,−1} may be required to represent nodes states e.g. Potts
model. Although (possibly) required to model more complex
dynamics of interacting systems, this is not considered in this
paper and is suggested as an avenue for future research.

Let S = {S1,S2, . . . ,SN } be a sensor network, where
every component vi ∈ V is being monitored by a sensor node
Si which is represented as a function Si : P → R

n that maps
the physical space P of observable parameters into the mea-
surement space R

n . The pattern of a sensor data sequence,
generated from a component vi ∈ V , could be statistically
characterized as the state probability vector pi of a finite
state machine, and a (non-negative scalar) distance measure
µi � d(pi , qi ) of pi from a given reference pattern qi can be
computed [5]. Instead of directly incorporating sensor data
sequences, the scalar measures µi are used for construction
of a Hamiltonian in the Ising model to make the computa-
tion independent of specific sensor modalities as described
below.

The field Bτ in Eq. (1) is representative of external influ-
ences and points in the negative direction. Thus enforcing
the components of the system to flip to their respective failed
(−1) state. The value of Bτ at node vk and time τ is estimated
as the sum:

Bτ (k) = −
N∑

i=1

Bi

(
µτ

i , {µτ
i j
}
)

δi (k) (2)

where Bi

(
µτ

i , {µτ
i j
}
)

is magnitude of the local field at node

vi , which is a function of the measure µτ
i at node vi and the

set of measures {µτ
i j
} of its nearest neighbors vi j . The func-

tional form of Bi is taken to be identical for all nodes vi , and
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δi (k) is the unit impulse function, i.e., δi (k) = 1 if k = i and
δi (k) = 0 if k �= i .

Given the spin states and anomaly measures at a given
time instant, it follows from Eq. (2) that self-organization of a
sensor network for redistribution of resources reduces to esti-
mation of the probabilities of the possible subsequent states
of the underlying system. A statistical mechanical approach
that is used to compute the probability of subsequent states
of the observed system is given in the next section.

3 Self-organization of sensor networks

A statistical mechanical representation of the sensor network
is formulated as follows. The thermodynamic state I of the
system represented by the graph G can be given by the spin
sequence (σ1, σ2, . . . , σN ); the probability PI that the sys-
tem is in this state is given by the Gibbs Distribution [9]:

PI (σ1, σ2, . . . , σN ) = 1

Z N
exp(−βEI ) (3)

where the energy EI of the thermodynamic state I is derived
from the Hamiltonian in Eq. (1); the parameter β is propor-
tional to the inverse temperature and Z N is the associated
partition function defined as:

Z N =
∑

I

exp(−βEI ) (4)

where the sum runs over all possible spin sequences or ther-
modynamic states I . The partition function may not be
computationally tractable, especially, for systems with an
irregular lattice and a large number of interacting nodes. The
situation is simplified by the following assumptions [14]:

• Markov dynamics: the future state depends only on the
present state.

• Quasi-static equilibria at all time instants: the probabil-
ity of state transitions corresponding to large changes in
energy is assumed to be zero and the system follows the
single-flip dynamics.

• Detailed balance: let PI be the probability of being in
thermodynamic state I and pI J be the probability of tran-
sition from the thermodynamic state I to state J . Then,
detailed balance [14] implies that

(
PI pI J = PJ pJ I

) ⇒
(

PJ

PI
= pI J

pJ I

)
(5)

and pI J = pJ I exp (−β(E J − EI )) follows from Eq. (4).

Equation (5) eliminates the partition function Z N and tells
how the ratios of transition probabilities pI J and pJ I should
behave but it does not provide the solution for pI J . For this

purpose, pI J is derived from the so-called heat-bath dynam-
ics [14] as:

pI J = exp (−β(E J − EI ))

1 + exp (−β(E J − EI ))
> 0 (6)

Irreducibility of the state transition matrix
[

pI J

]
is ensured

because of strict positivity of each pI J .
The change in energy�Eflip due to a single-spin-flip (from

+1 to −1 or vice versa) at a node vi is given by:

�Eflip
i = 2

∑

〈i, j〉
wi jσiσ j + 2Bτ σi (7)

where 〈i, j〉 denotes the nearest neighbor j of the node i . The
flip probability pflip

i of node vi is obtained by using Eq. (6)
as:

pflip
i = exp

(
−β�Eflip

i

) / [
1 + exp

(
−β�Eflip

i

)]
(8)

Thus for a node vi , pflip
i is the likelihood that it would change

its state from σi → −σi given the states of its neighbors and
magnitude of external influence. The expected probability
p̂flip that a randomly chosen node would flip (and generate
information) in the next sampling instant is obtained as:

p̂flip = 1

N

N∑

i=1

pflip
i (9)

A high (low) value of p̂flip indicates, irrespective of the cho-
sen node, a higher (lower) likelihood of new information
begin available when a randomly chosen sensor node is set
to be active. The number Ns of sensors that should be acti-
vated in the next sampling instant, out of a total of N sensors,
is therefore a monotonically increasing function of p̂flip. The
choice of a piecewise linear function for Ns yields:

Ns = min
(

M, max
(
(1 + ε)N p̂flip, m

))
(10)

where 0 < ε � 1 is a detection threshold; m is the mini-
mum number of sensors that must remain active at all time
instants; and M ≤ N is the maximum capacity of the sensor
network.

Given the flip probabilities pflip
i for each node and Ns ≤

N computed by Eq. (10), the optimal solution for choos-
ing the nodes that should be activated would yield Ns sen-
sor nodes with the highest probability to be active at any
instant. This deterministic method where the most probable
Ns sensor nodes are activated would be blind to any activ-
ities at the nodes not chosen by the method. Thus, a sub-
optimal approach is followed where the sensor nodes are
not chosen deterministically but Ns nodes are sampled from
an importance sampling function. This ensures that there
is a finite probability of activating every sensor node at all
time instants, although the sampling probability is higher for
nodes with high expected activity and vice versa.

123



102 SIViP (2010) 4:99–104

The importance sampling function is defined as:

ps
i = pflip

i

N p̂flip (11)

to provide larger sampling weights to nodes with higher
expected activity in the next instant. In essence, Ns nodes are
drawn from this distribution at each instant and are sched-
uled to be activated in the next sampling instant. The col-
lected data are used to modify the flip probability pflip

i of
the node vi and the importance sampling function ps

i is
re-calculated. The state of a node is changed from +1 to
σi = −1 when it is detected to have reached its respective
failed state. The failed state of a node is signalled when the
normalized measure µi computed for that node saturates and
reaches a value of unity [15]. Unless updated by the sensor
network, µi and spin σi are maintained at their last recorded
values. Thus at all times the network works with partial infor-
mation gathered by a fraction of sensor nodes. Following an
iterative procedure, collected information is used to predict
the likelihood of new activities. This estimate is then used
to re-organize the network to adapt to the changing environ-
ment and collect new data, which is used to modify previously
made predictions. This approach is similar to recursive fil-
ters (e.g., Kalman filter) where predictions are made using a
model and the measurement history, which are then corrected
based on new data.

It is noteworthy that the model predicts a non-zero proba-
bility of a −1 → +1 flip, which corresponds to a less likely
event of healing or on-line repair. Due to the field pointing
in the negative direction, the probability of a −1 → +1 flip
is very small. Thus, the sensor network has a non-zero prob-
ability of activating a sensor for a failed component, but it
may do so with a very small probability.

The parameter β serves the role of bias control for ps
i (see

Eqs. (8) and (11)). Low (high) values of β cause ps
i to move

towards uniform distribution (δ-distribution) independent of
�Eflip.

It must be noted that irrespective of the state of sensors
(i.e., active or inactive), the underlying system evolves in
time, whereas a limited number, Ns ≤ N , of sensor nodes
are activated at each sampling instant. From this perspective,
the efficiency η is defined as:

η =
(

N∑

i=1

µi

)

m

/ (
N∑

i=1

µi

)

a

(12)

where the subscripts m and a imply measured and actual
values, respectively.

Unlike a typical computational statistical mechanical
problem, the goal here is not to compute macroscopic param-
eters but to estimate the probabilities of future thermody-
namic states of the system when a particular state is sensed at
time τ . In this respect the following two issues are addressed

for the sensor network at all sampling instants: (1) the
number of nodes to activate and (2) their distribution in the
sensor network.

4 Simulation results and discussion

A simulation test bed has been constructed to validate the
proposed methodology. The test bed consists of a two-
dimensional (25 × 25) array of sensor nodes (i.e., a total
of 625 nodes) with four nearest neighbors in the orthogo-
nal directions. All nodes begin with a functional state (i.e.,
σi = +1) and a small number (= 5) of randomly chosen
nodes are injected (seeded) with faults that slowly continue to
grow until the node reaches the failed state. Infectious nodes
infect their neighbors with a probability, called transmission
probability, equal to the fraction of the total number of failed
nodes present in the system at that instant of time τ . Thus,
the transmission probability increases as the fault percolates
through the system. The simulation scenario resembles the
Susceptible Exposed Infectious Removed (SEIR) model of
epidemic spread [16] (e.g. infectious diseases and computer
viruses).

The fault process in this example problem was taken to
be linear i.e. represented by a linear growth of anomaly mea-
sure once infected. Following the Susceptible Exposed Infec-
tious Removed (SEIR) model of epidemic spread, nodes with
a critical value of normalized anomaly measure (≥0.8 in
this case) are termed infectious and transmit the fault pro-
cess to their neighbors with a transmission probability as
described above. Nodes that are infected with the fault pro-
cess but not yet infectious fall into the exposed category.
Failed nodes (with normalized anomaly measure = 1) are
considered removed i.e. they cannot be infected again with
the fault process. Nodes neighboring the exposed or infec-
tious nodes are taken to be susceptible.

Each node vi in the simulation test bed is monitored by a
sensor whose τ -dependent data are compressed into a scalar
measure µτ

i , and the local field Bi in Eq. (2) for each node
vi is identically modeled in the following form.

B
(
µτ

i , {µτ
i j
}
)

= B0

⎛

⎝µτ
i +

∑

i j

µτ
i j

exp(−α|i − i j |)
⎞

⎠ (13)

where |i − i j | = 1 for nearest neighbor interactions.
Self-organization of the sensor network is implemented in

the simulation test-bed based on the following algorithm.
The interaction coefficients wi j in Eq. (1) are chosen to

be 0.8 for each neighbor pair (vi , v j ); inverse temperature
β is set to 0.333; parameters N , M , m and ε in Eq. (10) are
set to 625, 320, 20 and 0.001, respectively; and parameters
B0 and α in Eq. (13) are set to 5 and 1, respectively, in the
simulation.
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Algorithm 1: Self-Organization of Sensor Networks

while (1) do1
Step 1: Collect data from active senor nodes.2
Step 2: Compute local measure µτ

i for active nodes at current3
time τ and update their spin states.
Step 3: Compute the local field Bl (Eqs. 2 and 13)4
Step 4: Compute change in energy �E (Eq. 7)and calculate5
new pi (Eq. 6) for each node i .
Step 5: Update importance function ps (Eq. 11) and calculate6
Ns (Eq. 10)
Step 6: Draw Ns samples from ps and to activate sensors7
nodes in the next time step.

endw8

As stated earlier the parameter N is the total number of
nodes in the system being monitored, while M and m are the
maximum and the minimum limit on the sensor nodes that
the sensor network can activate at a particular instant of time.
The maximum limit M would be dictated by the capacity
of the sensor network to handle data traffic and processing
resources available. The lower limit m, on the other hand,
is a design parameter chosen to maintain a desired level of
detection probability. The parameter 0 < ε � 1 allows the
algorithm to be robust against errors such as in modeling. A
higher (lower) value can be chosen to achieve higher (lower)
degree of robustness.

The probability pflip
i that a node would change its state

from σi → −σi is dependent on the current state of its neigh-
bors through the interaction coefficient wi j and the value of
their anomaly measure via parameter α. Interaction coef-
ficient wi j > 0 corresponds to ferromagnetic interaction,
modeling a case where failed neighbors increase the likeli-
hood on inducing fault process in a node. Parameter α > 0
models a case where the effect of fault growth in a faraway
neighbor is smaller as compared to a node in the immediate
vicinity.

The plots of algorithm efficiency η for three typical sim-
ulation runs are shown in Fig. 1a. At the beginning, η has a
relatively low trend when the sensor network learns the fault
pattern; then η approaches unity as the network dynamically
adapts itself to the fault pattern. Figure 1b shows the frac-
tion of active sensor nodes at any given time. The number
of active sensor nodes dynamically changes and is always
a small fraction (e.g., <25%) of the total number of sensor
nodes in these tests. It must be noted that when all nodes are
functional their anomaly measure is a constant which starts
to change only when fault process is injected. Thus the effi-
ciency starts with a value of unity and drops (representing
the injection of fault) only to converge back up again as the
algorithm learns the patterns and dynamically re-allocates
resources. Figure 1a and b show the ability of the sensor net-
work to self-organize to adapt to the dynamic environment.
As shown by this example problem, the proposed algorithm
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Fig. 1 a Algorithm efficiency and b fraction of active sensors

Fig. 2 A snap shot of the sensor grid. Solid dots (blue): σi = −1. Small
circles (blue): σi = +1. Squares (red): failed but yet undetected by the
sensor network. Big circles (magenta): sensors active at this instant

potentially enables real-time monitoring and detection by
working with a small fraction of sensor nodes to conserve
valuable resources.

Figure 2 displays a snapshot of the operational environ-
ment where the adaptive redistribution of resources can be
seen. A larger number of sensors, neighboring nodes detected
to have failed i.e. σi = −1, were activated. While nodes
already detected to have failed by the sensor network were
activated with a small probability. Thus network resources
were directed more towards functional nodes to activate their
sensors than for nodes detected as failed. As the fault pattern
evolves in time, the sensor network dynamically adapts to
the changes by making corrections to its predicted estimates
while using partial information at all times.
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The choice of the parameters in the proposed methodol-
ogy is dictated by the underlying system being monitored
and level of desired performance. Parameters such as the
interaction coefficient wi j and α, maybe determined empir-
ically from the underlying system using methods such as
mutual information [17] and transfer entropy [18]. While
design parameters such as M , m and ε are determined by
factors such as the capacity of the sensor network.

5 Summary, conclusions and future work

This paper introduces a concept of adaptive self-organization
of sensor networks by using weighted graphs and an Ising-
like model based on the principles of Statistical Mechan-
ics. Given past measurements, probabilities of future states
are computed to construct an importance sampling func-
tion to probabilistically activate a small fraction of sensor
nodes. Numerical simulation has been conducted on a test-
bed of interacting multi-component systems to demonstrate
the adaptive self-organizing capability of the proposed meth-
odology. Simulation results show that the algorithm is able
to adaptively monitor and detect pervasive faults.

While there are many research areas in sensor network,
the following topics are recommended for future research in
the context of the work presented in this paper.

• Higher-order neighborhood systems and more than binary
states for component nodes, e.g. using Potts model.

• Investigation of information-theoretic concepts such as
mutual information [17] to determine the strength of inter-
actions wi j , and transfer entropy [18] to ascertain direc-
tion of information flow.

• Construction of the Hamiltonian in Eq. (1) directly from
the state probability vectors [5] rather than compressing
the sensed information into a scalar measure µ.

• Analysis for robustness to modeling uncertainties and
parametric uncertainties, and its effect on convergence
properties of the proposed algorithm.

• Application of methods such as Artificial Neural Net-
works (ANN) for self organization of sensor network for
redistribution of limited resources and evaluation of the
proposed algorithm relative to such methods.
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