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Optimal control of infinite horizon partially observable decision processes modelled as

generators of probabilistic regular languages
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Decision processes with incomplete state feedback have been traditionally modelled as partially observable
Markov decision processes. In this article, we present an alternative formulation based on probabilistic regular
languages. The proposed approach generalises the recently reported work on language measure theoretic optimal
control for perfectly observable situations and shows that such a framework is far more computationally
tractable to the classical alternative. In particular, we show that the infinite horizon decision problem under
partial observation, modelled in the proposed framework, is �-approximable and, in general, is not harder to
solve compared to the fully observable case. The approach is illustrated via two simple examples.
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1. Introduction and motivation

Planning under uncertainty is one of the oldest and
most studied problems in research literature pertaining

to automated decision making and artificial intelli-
gence. Often, the central objective is to sequentially

choose control actions for one or more agents

interacting with the operating environment such that
some associated reward function is maximised for a

pre-specified finite future (finite horizon problems) or
for all possible futures (infinite horizon problems). The

control problem becomes immensely difficult if the

effect of such control actions is not perfectly observ-
able to the controller. Absence of perfect observability

also makes it hard to take optimal corrective actions in
response to uncontrollable exogenous disturbances

from the interacting environment. Such scenarios are

of immense practical significance; the loss of sensors
and communication links often cannot be avoided in

modern multi-component and often non-collocated
engineered systems. Under these circumstances, an

event may conceivably be observable at one plant state

while being unobservable at another; event observa-
bility may even become dependent on the history of

event occurrences. Among the various mathematical
formalisms studied to model and solve such control

problems, Markov decision processes (MDPs) have

received significant attention. A brief overview of the
current state-of-art in MDP-based decision theoretic

planning is necessary to place this work in appropriate
context.

1.1 Markov decision processes

MDP models (Puterman 1990; White 1993) extend
the classical planning framework (Mcallester and

Rosenblitt 1991; Penberthy and Weld 1992; Peng and

Williams 1993; Kushmerick, Hanks, and Weld 1995) to

accommodate uncertain effects of agent actions with the
associated control algorithms attempting to maximise

the expected reward and is capable, in theory, of

handling realistic decision scenarios arising in opera-

tions research, optimal control theory and, more
recently, autonomous mission planning in probabilistic

robotics (Atrash and Koenig 2001). In brief, an MDP

consists of states and actions with a set of action-specific
probability transition matrices allowing one to compute

the distribution over model states resulting from the

execution of a particular action sequence. Thus, the

endstate resulting from an action is not known uniquely
a priori. However, the agent is assumed to occupy

one and only one state at any given time, which is

correctly observed, once the action sequence is com-

plete. Furthermore, each state is associated with a
reward value and the performance of a controlledMDP

is the integrated reward over specified operation time

(which can be infinite). A partially observable Markov

decision process (POMDP) is a generalisation of
MDPs which assumes actions to be nondeterministic

as in an MDP, but relaxes the assumption of perfect

knowledge of the current model state.
A policy for an MDP is a mapping from the set of

states to the set of actions. If both sets are assumed to
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be finite, the number of possible mappings is also finite
implying that an optimal policy can be found by
conducting search over this finite set. In a POMDP, on
the other hand, the current state can be estimated only
as a distribution over underlying model states as a
function of operation and observation history. The
space of all such estimations or belief states is a
continuous space although the underlying model has
only a finite number of states. In contrast to MDPs, a
POMDP policy is a mapping from the belief space to
the set of actions implying that the computation of
optimal policy demands a search over a continuum
making the problem drastically more difficult to solve.

1.2 Negative results pertaining to POMDP solution

As stated above, an optimal solution to a POMDP is a
policy which specifies actions to execute in response
to state feedback with the objective of maximising
performance. Policies may be deterministic with a
single action specified at each belief state or stochastic
which specify an allowable choice of actions at each
state. Policies can also be categorised as stationary,
time-dependent or history-dependent; stationary policies
depend only on the current belief state, time-dependent
policies may vary with the operation time and history-
dependent policies vary with the state history. The
current state-of-art in POMDP solution algorithms
(Zhang and Golin 2001; Cassandra 1998) are all
variations of Sondick’s original work (Sondik 1978)
on value iteration based on dynamic programming
(DP). Value iterations, in general, are required to solve
a large number of linear programs at each DP update
and consequently suffer from exponential worst case
complexity. Given that it is hard to find an optimal
policy, it is natural to try to seek the one that is good
enough. Ideally, one would be reasonably satisfied
to have an algorithm guaranteed to be fast which
produces a policy that is reasonably close (�-approx-
imation) to the optimal solution. Unfortunately, the
existence of such algorithms is unlikely or, in some
cases, impossible. Complexity results show that
POMDP solutions are nonapproximable (Burago,
de Rougemont, and Slissenko 1996; Madani, Hanks,
and Condon 1999; Lusena, Goldsmith, and Mundhenk
2001) with the above-stated guarantee existing in
general only if certain complexity classes collapse.
For example, the optimal stationary policy for
POMDPs of finite-state space can be �-approximated
if and only if P¼NP. Table 1 reproduced from Lusena
et al. (2001) summarises the known complexity results
in this context. Thus, finding the history-dependent
optimal policy for even a finite horizon POMDP is
PSPACE-complete. Since this is a broader problem

class than NP, the result suggests that POMDP
problems are even harder than NP-complete problems.
Clearly, infinite horizon POMDPs can be no easier to
solve than finite horizon POMDPs. In spite of the

recent development of new exact and approximate
algorithms to efficiently compute optimal solutions
(Cassandra 1998) and machine-learning approaches to
cope with uncertainty (Hansen 1998), the most efficient
algorithms to date are able to compute near optimal
solutions only for POMDPs of relatively small state
spaces.

1.3 Probabilistic regular language based models

This work investigates decision-theoretic planning
under partial observation in a framework distinct
from the MDP philosophy (Figure 1). Decision
processes are modelled as probabilistic finite-state
automata (PFSA) which act as generators of probabil-
istic regular languages (Chattopadhyay and Ray
2008b).

Note: It is important to note that the PFSA model
used in this article is conceptually very different from
the notion of probabilistic automata introduced by
Rabin (1963), Paz (1971), etc., and essentially follows
the formulation of p-language theoretic analysis first
reported by Garg (1992a, 1992b).

The key differences between the MDP framework
and PFSA-based modelling (Figure 1) can be enumer-
ated briefly as follows:

(1) In both MDP and PFSA formalisms, we have
the notion of states. The notion of actions in
the former is analogous to that of events in the

latter. However, unlike actions in the MDP
framework, which can be executed at will (if
defined at the current state), the generation of
events in the context of PFSA models is
probabilistic. Also, such events are categorised
as being controllable or uncontrollable.
A controllable event can be ‘disabled’ so that
the state change due to the generation of that
particular event is inhibited; uncontrollable

Table 1. �-approximability of optimal POMDP solutions.

Policy Horizon Approximability

Stationary K Not unless P¼NP
Time-dependent K Not unless P¼NP
History-dependent K Not unless P¼PSPACE
Stationary 1 Not unless P¼NP
Time-dependent 1 Uncomputable
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events, on the other hand, cannot be disabled in
this sense.

(2) For an MDP, given a state and an action
selected for execution, we can only compute the
probability distribution over model states
resulting from the action; although the agent
ends up in an unique state due to execution of
the chosen action, this endstate cannot be
determined a priori. For a PFSA, on the
other hand, given a state, we only know the
probability of occurrence of each alphabet
symbol as the next to-be generated event each
of which causes a transition to an a priori
known unique endstate; however, the next state
is still uncertain due to the possible execution of
uncontrollable events defined at the current
state. Thus, both the formalisms aim to capture
the uncertain effects of agent decisions; albeit
via different mechanisms.

(3) Transition probabilities in MDPs are, in gen-
eral, functions of both the current state and
the action executed; i.e. there are m transition
probability matrices where m is the cardinality
of the set of actions. PFSA models, on the

other hand, have only one transition probabil-
ity matrix computed from the state-based event
generation probabilities.

(4) It is clear that MDPs emphasise states and
state-sequences; while PFSA models emphasise
events and event-sequences. For example, in
POMDPs, the observations are states; while
those in the observability model for PFSAs (as
adopted in this article) are events.

(5) In other words, partial observability in MDP
directly results in not knowing the current state;
in PFSA models partial observability results in
not knowing transpired events which as an
effect causes confusion in the determination of
the current state.

This article presents an efficient algorithm for
computing the history-dependent (Lusena et al. 2001)
optimal supervision policy for infinite horizon decision
problems modelled in the PFSA framework. The key
tool used is the recently reported concept of a rigorous
language measure for probabilistic finite-state lan-
guage generators (Chattopadhyay and Ray 2006). This
is a generalisation of the work on language measure-
theoretic optimal control for the fully observable case
(Chattopadhyay and Ray 2007) and we show in this
article that the partially observable scenario is not
harder to solve in this modelling framework.

The rest of this article is organised in five additional
sections and two brief appendices. Section 2 introduces
the preliminary concepts and relevant results from the
reported literature. Section 3 presents an online
implementation of the language measure-theoretic
supervision policy for perfectly observable plants
which lays the framework for the subsequent develop-
ment of the proposed optimal control policy for
partially observable systems in Section 4. The theoret-
ical development is verified and validated in two
simulated examples in Section 5. This article is
summarised and concluded in Section 6 with recom-
mendations for future work.

2. Preliminary concepts and related work

This section presents the formal definition of the PFSA
model and summarises the concept of signed real
measure of regular languages; the details are reported
in Ray (2005), Ray, Phoha, and Phoha (2005) and
Chattopadhyay and Ray (2006b). Also, we briefly
review the computation of the unique maximally
permissive optimal control policy for PFSA
(Chattopadhyay and Ray 2007b) via the maximisation
of the language measure. In the sequel, this measure-
theoretic approach will be generalised to address

Figure 1. Comparison of modelling semantics for MDPs and
PFSA.
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partially observable cases and is thus critical to the
development presented in this article.

2.1 The PFSA model

Let Gi¼ (Q,�, �, qi,Qm) be a finite-state automaton
model that encodes all possible evolutions of the
discrete-event dynamics of a physical plant, where
Q¼ {qk: k2IQ} is the index set of states and
IQ� {1, 2, . . . , n} is the index set of states; the autom-
aton starts with the initial state qi; the alphabet of
events is �¼ {�k: k2I�}, having �

T
IQ ¼ ; and

I�� {1, 2, . . . , ‘} is the index set of events;
� :Q��!Q is the (possibly partial) function of
state transitions; and Qm� {qm1

, qm2
, . . . , qml

}�Q is
the set of marked (i.e. accepted) states with qmk

¼ qj for
some j2IQ. Let �* be the Kleene closure of �, i.e. the
set of all finite-length strings made of the events
belonging to � as well as the empty string � that is
viewed as the identity of the monoid �* under the
operation of string concatenation, i.e. �s¼ s¼ s�. The
state transition map � is recursively extended to its
reflexive and transitive closure � :Q��*!Q by
defining

8qj 2Q, �ðqj, �Þ ¼ qj ð1aÞ

8qj 2Q, � 2�, s2�?, �ðqi, �sÞ ¼ �ð�ðqi, �Þ, sÞ ð1bÞ

Definition 2.1: The language L(qi) generated by a
deterministic finite-state automata (DFSA) G initia-
lised at the state qi2Q is defined as:

LðqiÞ ¼ fs2�� j ��ðqi, sÞ 2Qg ð2Þ

The language Lm(qi) marked by the DFSA G initialised
at the state qi2Q is defined as

LmðqiÞ ¼ fs2�� j ��ðqi, sÞ 2Qmg ð3Þ

Definition 2.2: For every qj2Q, let L(qi, qj) denote
the set of all strings that, starting from the state qi,
terminate at the state qj, i.e.

Li,j ¼ fs2�� j ��ðqi, sÞ ¼ qj 2Qg ð4Þ

To complete the specification of a PFSA, we need
to specify the event generation probabilities and the
state characteristic weight vector, which we define next.

Definition 2.3: The event generation probabilities are
specified by the function ~� : Q� �?! ½0, 1� such that
8qj2Q, 8�k2�, 8s2�?,

(1) ~�ðqj,�kÞ¼
4

~�jk2½0,1Þ;
P

k ~�jk¼1��,with�2ð0,1Þ;
(2) ~�ðqj, �Þ ¼ 0 if �(qj, �) is undefined; ~�ðqj, �Þ ¼ 1;
(3) ~�ðqj, �ksÞ ¼ ~�ðqj, �kÞ ~�ð�ðqj, �kÞ, sÞ:

Notation 2.1: The n� ‘ event cost matrix e� is defined

as: e�jij ¼ ~�ðqi, �j Þ

Definition 2.4: The state transition probability
� :Q�Q! [0, 1), of the DFSA Gi is defined as
follows:

8qi, qj 2Q, �ij ¼
X

� 2� s:t: �ðqi, �Þ¼qj

~�ðqi, �Þ ð5Þ

Notation 2.2: The n� n state transition probability
matrix � is defined as �jij¼�(qi, qj)

The set Qm of marked states is partitioned into Qþm
and Q�m, i.e. Qm ¼ Qþm [Q

�
m and Qþm \Q

�
m ¼ ;, where

Qþm contains all good marked states that we desire to
reach, and Q�m contains all bad marked states that we
want to avoid, although it may not always be possible

to completely avoid the bad states while attempting to
reach the good states. To characterise this, each
marked state is assigned a real value based on the
designer’s perception of its impact on the system
performance.

Definition 2.5: The characteristic function
� :Q! [�1, 1] that assigns a signed real weight to
state-based sublanguages L(qi, q) is defined as

8q2Q, �ðqÞ 2

½�1, 0Þ, q2Q�m

f0g, q 2=Qm

ð0, 1�, q2Qþm

8><>: ð6Þ

The state weighting vector, denoted by �¼
[�1 �2 . . . �n]

T, where �j��(qj) 8j2IQ, is called the
�-vector. The j-th element �j of �-vector is the weight
assigned to the corresponding terminal state qj.

Remark 2.1: The state characteristic function
� :Q! [�1, 1] or equivalently the characteristic
vector s is analogous to the notion of the reward
function in MDP analysis. However, unlike MDP
models, where the reward (or penalty) is put on

individual state-based actions, in our model, the
characteristic is put on the state itself. The similarity
of the two notions is clarified by noting that just as
MDP performance can be evaluated as the total
reward garnered as actions are executed sequentially,

the performance of a PFSA can be computed by
summing the characteristics of the states visited due to
transpired event sequences.

Plant models considered in this article are DFSA
(plant) with well-defined event occurrence probabilities.

In other words, the occurrence of events is probabil-
istic, but the state at which the plant ends up, given a
particular event has occurred, is deterministic. No
emphasis is laid on the initial state of the plant, i.e.
we allow for the fact that the plant may start from
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any state. Furthermore, having defined the character-
istic state weight vector s, it is not necessary to specify
the set of marked states, because if �i¼ 0, then qi is not
marked and if �i 6¼ 0, then qi is marked.

Definition 2.6 (Control philosophy): If qi!
�
qk and

the event � is disabled at state qi, then the supervisory
action is to prevent the plant from making a transition
to the state qk, by forcing it to stay at the original state
qi. Thus, disabling any transition � at a given state q
results in deletion of original transition and the
appearance of self-loop �(q, �)¼ q with the occurrence
probability of � from the state q remaining unchanged
in the supervised and unsupervised plants.

Definition 2.7 (Controllable transitions): For a given
plant, transitions that can be disabled in the sense of
Definition 2.6 are defined to be controllable transitions.
The set of controllable transitions in a plant is denoted
by C. Note that controllability is state-based.

It follows that plant models can be specified by the
following sextuplet:

G ¼ ðQ,�, �,e�,�,CÞ ð7Þ

2.2 Formal language measure for terminating plants

The formal language measure is first defined for
terminating plants (Garg 1992b) with sub-stochastic
event generation probabilities, i.e. the event generation
probabilities at each state summing to strictly less than
unity. In general, the marked language Lm(qi) consists
of both good and bad event strings that, starting from
the initial state qi, lead to Qþm and Q�m, respectively.
Any event string belonging to the language L0ðqiÞ ¼
LðqiÞ � LmðqiÞ leads to one of the non-marked states
belonging to Q�Qm and L0 does not contain any one
of the good or bad strings. Based on the equivalence
classes defined in the Myhill–Nerode Theorem
(Hopcroft, Motwani, and Ullman 2001), the regular
languages L(qi) and Lm(qi) can be expressed as

LðqiÞ ¼
[
qk 2Q

Li,k ð8Þ

LmðqiÞ ¼
[

qk 2Qm

Li,k ¼ Lþm [ L
�
m ð9Þ

where the sublanguage Li,k�L(qi) having the initial
state qi is uniquely labelled by the terminal state qk,
k2IQ and Li,j\Li,k¼; 8j 6¼ k; and Lþm �

S
qk 2Q

þ
m
Li,k

and L�m �
S

qk 2Q�m
Li,k are good and bad sublanguages

of Lm(qi), respectively. Then, L0 ¼
S

qk 2=Qm
Li,k and

LðqiÞ ¼ L0 [ Lþm [ L
�
m.

A signed real measure 	i : 2L(qi)!R� (�1, þ1)
is constructed on the �-algebra 2L(qi) for any i2IQ and

interested readers are referred to Ray (2005) and Ray

et al. (2005) for the details of measure-theoretic

definitions and results. With the choice of this

�-algebra, every singleton set made of an event string

s2L(qi) is a measurable set. By Hahn Decomposition

Theorem (Rudin 1988), each of these measurable sets

qualifies itself to have a numerical value based on the

above state-based decomposition of L(qi) into L0(null),

Lþ(positive) and L�(negative) sublanguages.

Definition 2.8: Let !2L(qi, qj)� 2L(qi). The

signed real measure 	i of every singleton string set !
is defined as

	iðf!gÞ ¼ ~�ðqi,!Þ�ðqj Þ ð10Þ

The signed real measure of a sublanguage Li,j�L(qi)

is defined as

	i,j ¼ 	
iðLðqi, qj ÞÞ ¼

 X
!2Lðqi,qj Þ

~�ðqi,!Þ

!
�j ð11Þ

Therefore, the signed real measure of the language

of a DFSA Gi initialised at qi2Q, is defined as

	i ¼ 	
iðLðqiÞÞ ¼

X
j2IQ

miðLi,jÞ ð12Þ

It is shown in Ray (2005) and Ray et al. (2005)

that the language measure in Equation (12) can be

expressed as

	i ¼
X
j2IQ

�ij	j þ �i ð13Þ

The language measure vector, denoted as

	¼ [	1 	2 . . . 	n]
T, is called the 	-vector. In a

vector form, Equation (13) becomes

k ¼ �kþ v ð14Þ

whose solution is given by

k ¼ ðI��Þ�1v ð15Þ

The inverse in Equation (15) exists for terminating

plant models (Garg 1992a, 1992b) because � is a

contraction operator (Ray 2005a; Ray et al. 2005) due

to the strict inequality
P

j �ij5 1. The residual

�i¼ 1�
P

j �ij is referred to as the termination prob-

ability for state qi2Q. We extend the analysis to non-

terminating plants (Garg 1992a, 1992b) with stochastic

transition probability matrices (i.e. with �i¼ 0, 8qi2Q)

by renormalising the language measure

(Chattopadhyay and Ray 2006) with respect to the

uniform termination probability of a limiting terminat-

ing model as described further.
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Let e� and � be the stochastic event generation and

transition probability matrices for a non-terminating

plant Gi¼ (Q, �, �, qi, Qm). We consider the terminat-

ing plant Gi(�) with the same DFSA structure (Q, �, �,
qi,Qm) such that the event generation probability

matrix is given by ð1� �Þe� with � 2 (0, 1) implying

that the state transition probability matrix is (1� �)�.

Definition 2.9 (Renormalised measure): The renor-

malised measure 
i� : 2LðqiÞ ! ½�1, 1� for the �-param-

eterised terminating plant Gi(�) is defined as:

8!2LðqiÞ, 

i
�ðf!gÞ ¼ �	

iðf!gÞ ð16Þ

The corresponding matrix form is given by

l� ¼ � k ¼ � ½I� ð1� �Þ��
�1v with � 2 ð0, 1Þ ð17Þ

We note that the vector representation allows for the

following notational simplification:


i�ðLðqiÞÞ ¼ l�ji ð18Þ

The renormalised measure for the non-terminating

plant Gi is defined to be lim�!0þ 

i
�.

The following results are retained for the sake of

completeness. Complete proofs can be found in

Chattopadhyay (2006) and Chattopadhyay and Ray

(2006b).

Proposition 2.1: The limiting measure vector

l0 ¼
4
lim�!0þ l� exists and kl0k1� 1.

Proposition 2.2: Let � be the stochastic transition

matrix of a non-terminating PFSA (Garg 1992a,

1992b). Then, as the parameter �! 0þ, the limiting

measure vector is obtained as: l0¼C(�)s where the

matrix operator C¼
4
limk!1

1
k

Pk�1
j¼0 � j is the Cesaro

limit (Bapat and Raghavan 1997; Berman and

Plemmons 1979) of the stochastic transition matrix �.

Corollary 2.1 (to Proposition 2.2): The expression

C(�)l� is independent of �. Specifically, the following

identity holds for all � 2 (0, 1):

Cð�Þl� ¼ Cð�Þv ð19Þ

Notation 2.3: The linearly independent orthogonal set

fvi 2R
CardðQÞ : vij ¼ �ijg is denoted as B where �ij denotes

the Krönecker delta function. We note that there is a

one-to-one onto mapping between the states qi2Q and

the elements of B, namely:

qi ��() �k ¼
1 if k ¼ i

0 otherwise

�
ð20Þ

Definition 2.10: For any non-zero vector v2R
CARD(Q),

the normalising function N :RCARD(Q)n0!R
CARD(Q) is

defined as NðvÞ ¼ vP
i
vi
.

2.3 The optimal supervision problem: formulation
and solution

A supervisor disables a subset of the set C of

controllable transitions and hence there is a bijection
between the set of all possible supervision policies and

the power set 2C. That is, there exist 2jCj possible

supervisors and each supervisor is uniquely identifiable
with a subset of C and the corresponding language

measure l� allows a quantitative comparison of differ-

ent policies.

Definition 2.11: For an unsupervised plant

G ¼ ðQ,�, �,e�,�,CÞ, let Gy and Gz be the supervised
plants with sets of disabled transitions, Dy�C and

Dz�C, respectively, whose measures are ly and lz.
Then, the supervisor that disables Dy is defined to
be superior to the supervisor that disables Dz if

ly= ELEMENTWISE lz and strictly superior if

ly4 ELEMENTWISE l
z.

Definition 2.12 (Optimal supervision problem): Given

a (non-terminating) plant G ¼ ðQ,�, �,e�,�,CÞ, the
problem is to compute a supervisor that disables a

subset D?
�C, such that 8Dy�C, l? =ELEMENTWISE l

y

where l? and ly are the measure vectors of the

supervised plants G? and Gy under D? and Dy,
respectively.

Remark 2.2: The solution to the optimal supervision

problem is obtained in Chattopadhyay and Ray (2007)

and Chattopadhyay and Ray (2007b) by designing an

optimal policy for a terminating plant (Garg 1992a,
1992b) with a substochastic transition probability

matrix ð1� �Þe� with � 2 (0, 1). To ensure that the

computed optimal policy coincides with the one for
�¼ 0, the suggested algorithm chooses a small value for

� in each iteration step of the design algorithm.

However, choosing � too small may cause numerical
problems in convergence. Algorithm B.2 (Appendix B)

computes the critical lower bound �? (i.e. how small a �
is actually required). In conjunction with Algorithm
B.2, the optimal supervision problem is solved by using

of Algorithm B.1 for a generic PFSA as reported in

Chattopadhyay (2007) and Chattopadhyay and Ray
(2007b).

The following results in Proposition 2.3 are critical
to development in the sequel and hence are presented

here without proof. The complete proofs are available

in Chattopadhyay (2007) and Chattopadhyay and Ray
(2007b).

Proposition 2.3

(1) (Monotonicity) Let l[k] be the language measure

vector computed in the kth iteration of Algorithm
B.1. The measure vectors computed by the
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algorithm form an elementwise non-decreasing
sequence, i.e. l[kþ1] =ELEMENTWISE l

[k]
8k.

(2) (Effectiveness) Algorithm B.1 is an effective
procedure (Hopcroft et al. 2001), i.e. it is
guaranteed to terminate.

(3) (Optimality) The supervision policy computed by
Algorithm B.1 is optimal in the sense of
Definition 2.12.

(4) (Uniqueness) Given an unsupervised plant G, the
optimal supervisor G?, computed by Algorithm
B.1, is unique in the sense that it is maximally
permissive among all possible supervision policies
with optimal performance. That is, if D? and Dy

are the disabled transition sets, and l? and ly are
the language measure vectors for G? and an
arbitrarily supervised plant Gy, respectively, then
l? �ELEMENTWISE l

y
)D?

	Dy�C.

Definition 2.13: Following Remark 2.2, we note that
Algorithm B.2 computes a lower bound for the critical
termination probability for each iteration of Algorithm
B.1 such that the disabling/enabling decisions for the
terminating plant coincide with the given non-termi-
nating model. We define

�min ¼ min
k
�½k�? ð21Þ

where �½k�? is the termination probability computed by
Algorithm B.2 in the kth iteration of Algorithm B.1.

Definition 2.14: If G and G? are the unsupervised and
optimally supervised PFSA, respectively, then we
denote the renormalised measure of the terminating
plant G?(�min) as 
i? : 2LðqiÞ ! ½�1, 1� (Definition 2.9).
Hence, in vector notation we have

l? ¼ l�min
¼ �min½I� ð1� �minÞ�

?�
�1v ð22Þ

where �? is the transition probability matrix of the
supervised plant G?.

Remark 2.3: Referring to Algorithm B.1, it is noted
that l?¼ 


[k] where K is the total number of iterations
for Algorithm B.1.

2.4 The partial observability model

The observation model used in this article is defined
by the so-called unobservability maps developed in
Chattopadhyay and Ray (2007a) as a generalisation of
natural projections in discrete event systems. It is
important to mention that while some authors refer to
unobservability as the case where no transitions are
observable in the system, we use the terms ‘unobser-
vable’ and ‘partially observable’ interchangeably in
the sequel. The relevant concepts developed in

Chattopadhyay and Ray (2007a) are enumerated in

this section for the sake of completeness.

2.4.1 Assumptions and notations

We make two key assumptions:

. The unobservability situation in the model is

specified by a bounded memory unobserva-

bility map p which is available to the

supervisor.
. Unobservable transitions are uncontrollable.

Definition 2.15: An unobservability map

p :Q��?
!�? for a given model G ¼ ðQ,�, �,e�, v,CÞ is defined recursively as follows: 8qi2Q,

�j2� and �j!2L(qi),

pðqi, �j Þ ¼
�, if �j is unobservable from qi

�j, otherwise

�
ð23aÞ

pðqi, �j!Þ ¼ pðqi, �j Þpð�ðqi, �Þ,!Þ ð23bÞ

We can indicate transitions to be unobservable in the

graph for the automaton G ¼ ðQ,�, �,e�,�,CÞ as

unobservable and this would suffice for a complete

specification of the unobservability map acting on the

plant. The assumption of bounded memory of the

unobservability maps imply that although we may

need to unfold the automaton graph to unambiguously

indicate the unobservable transitions, there exists a

finite unfolding that suffices for our purpose. Such

unobservability maps were referred to as regular in

Chattopadhyay and Ray (2007a).

Remark 2.4: The unobservability maps considered in

this article are state-based as opposed to being event-

based observability considered in Ramadge and

Wonham (1987).

Definition 2.16: A string !2�? is called unobservable

at the supervisory level if at least one of the events in !
is unobservable, i.e. p(qi,!) 6¼! Similarly, a string

!2�? is called completely unobservable if each of the

events in ! is unobservable, i.e. p(qi,!)¼ �. Also, if

there are no unobservable strings, we denote the

unobservability map p as trivial.

The subsequent analysis requires the notion of the

phantom automaton introduced in Chattopadhyay

and Ray (2006a). The following definition is included

for the sake of completion.

Definition 2.17: Given a model G ¼ ðQ,�, �,e�, v,CÞ

and an unobservability map p, the phantom automa-

ton PðGÞ ¼ ðQ,�,Pð�Þ,Pðe�Þ, v,PðCÞÞ is defined as
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follows:

Pð�Þðqi, �j Þ ¼
�ðqi, �j Þ if pðqi, �j Þ ¼ �

Undefined otherwise

�
ð24aÞ

Pðe�Þðqi, �j Þ ¼ e�ðqi, �j Þ if pðqi, �j Þ ¼ �

0 otherwise

(
ð24bÞ

PðCÞ ¼1 ð24cÞ

Remark 2.5: The phantom automata in the sense of
Definition 2.17 is a finite-state machine description of
the language of completely unobservable strings
resulting from the unobservability map p acting on
the model G ¼ ðQ,�, �,e�, v,CÞ. Note that Equation
(24c) is a consequence of the assumption that
unobservable transitions are uncontrollable. Thus, no
transition in the phantom automaton is controllable.

Algorithm B.3 (Appendix B) computes the transi-
tion probability matrix for the phantom automaton of
a given plant G under a specified unobservability map
p by deleting all observable transitions from G.

2.4.2 The Petri net observer

For a given model G ¼ ðQ,�, �,e�, v,CÞ and a non-
trivial unobservability map p, it is, in general, impos-
sible to pinpoint the current state from an observed
event sequence at the supervisory level. However, it is
possible to estimate the set of plausible states from a
knowledge of the phantom automaton P(G).

Definition 2.18 (Instantaneous state description): For
a given plant G0 ¼ ðQ,�, �,e�, v,CÞ initialised at state
q02Q and a non-trivial unobservability map p, the
instantaneous state description is defined to be
the image of an observed event sequence !2�?

under the map Q : pðLðG0ÞÞ�! 2Q as follows:

Qð!Þ ¼ qj 2Q : 9s2�? s:t: �ðq0, sÞ ¼ qj
^

pðq0, sÞ ¼ !
n o

Remark 2.6: Note that for a trivial unobservability
map p with 8!2�?, p(!)¼!, we have Qð!Þ ¼ �ðq0,!Þ
where q0 is the initial state of the plant.

The instantaneous state description Qð!Þ can be
estimated on-line by constructing a Petri net observer
with flush-out arcs (Moody and Antsaklis 1998;
Gribaudo, Sereno, Horvath, and Bobbio 2001). The
advantage of using a Petri net description is
the compactness of representation and the simplicity
of the on-line execution algorithm that we present next.
Our preference of a Petri net description over a subset
construction for finite-state machines is motivated by
the following: the Petri net formalism is natural, due to
its ability to model transitions of the type q1! j

% q2

& q3
,

which reflects the condition ‘the plant can possibly be
in states q2 or q3 after an observed transition from q1’.
One can avoid introducing an exponentially large
number of ‘combined states’ of the form [q2, q3] as
involved in the subset construction and more impor-
tantly preserve the state description of the underlying
plant. Flush-out arcs were introduced by Gribaudo et
al. (2001) in the context of fluid stochastic Petri nets.
We apply this notion to ordinary nets with similar
meaning: a flush-out arc is connected to a labelled
transition, which, on firing, removes a token from the
input place (if the arc weight is one). Instantaneous
descriptions can be computed on-line efficiently due to
the following result:

Proposition 2.4

(1) Algorithm B.4 has polynomial complexity.
(2) Once the Petri net observer has been computed

offline, the current possible states for any
observed sequence can be computed by executing
Algorithm B.5 online.

Proof: Proof is given in Chattopadhyay and Ray
(2007a). œ

3. Online implementation of measure-theoretic

optimal control under perfect observation

This section devises an online implementation scheme
for the language measure-theoretic optimal control
algorithm which will be later extended to handle
plants with non-trivial unobservability maps.
Formally, a supervision policy S for a given plant
G ¼ ðQ,�, �,e�,�,CÞ specifies the control in the terms
of disabled controllable transitions at each state qi2Q,
i.e. S¼ (G, �) where

� : Q�!f0, 1gCard ð�Þ ð25Þ

The map � is referred in the literature as the state
feedback map (Ramadge and Wonham 1987) and it
specifies the set of disabled transitions as follows: if
at state qi2Q and events �i1, �ir are disabled by the
particular supervision policy, then �(qi) is a binary
sequence on {0, 1} of length equal to the cardinality of
the event alphabet � such that

i1th element
?y EEE irth element

?y
�ðqiÞ ¼ 0 
 
 
 1 
 
 
 0 
 
 
 0 1 
 
 


� �
Remark 3.1: If it is possible to partition the alphabet
� as � ¼ �c

F
�uc, where �c is the set of controllable

transitions and �uc is the set of uncontrollable
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transitions, then it suffices to consider � as a map � :
Q! {0, 1}Card(�

c). However, since we consider con-
trollability to be state dependent (i.e. the possibility
that an event is controllable if generated at a state qi
and uncontrollable if generated at some other state qj),
such a partitioning scheme is not feasible.

Under perfect observation, a computed supervisor
(G, �) responds to the report of a generated event as
follows:

. The current state of the plant model is
computed as qcurrent¼ �(qlast, �), where � is
the reported event and qlast is the state of the
plant model before the event is reported.

. All events specified by �(qcurrent) is disabled.

Note that such an approach requires the supervisor to
remember �(qi)8qi2Q, which is equivalent to keeping
in memory an n�m matrix, where n is the number of
plant states and m is the cardinality of the event
alphabet. We show that there is a alternative simpler
implementation.

Lemma 3.1: For a given finite-state plant G ¼ ðQ,�,
�,e�,�,CÞ and the corresponding optimal language
measure l?, the pair (G, l?) completely specifies the
optimal supervision policy.

Proof: The optimal configuration G? is characterised
as follows (Chattopadhyay 2006; Chattopadhyay and
Ray 2007a):

. if for states qi, qj2Q, l?
��
i
4 l?

��
j
, then all

controllable transitions qi!
qi
qj are disabled.

. if for states qi, qj2Q, l?
��
i
5 l?

��
j
, then all

controllable transitions qi!
qi
qj are enabled.

It follows that if the supervisor has access to the
unsupervised plant model G and the language measure
vector l?, then the optimal policy can be implemented
by the following procedure:

(1) Compute the current state of the plant model as
qcurrent¼ �(qlast, �), where � is the reported
event and qold is the state of the plant model
before the event is reported. Let qcurrent¼ qi.

(2) Disable all controllable transitions qi!
�j
qk if

l?
��
i
4 l?

��
k
for all qk2Q.

This completes the proof. The procedure is sum-
marised in Algorithm 3.1. œ

The approach given in Lemma 3.1 is important
from the perspective that it forms the intuitive basis for
extending the optimal control algorithm derived under
the assumption of perfect observation to situations
where one or more transitions are unobservable at the
supervisory level.

4. Optimal control under non-trivial unobservability

This section makes use of the unobservability analysis
presented in Section 2.4 to derive a modified online-
implementable control algorithm for partially observ-
able probabilistic finite-state plant models.

4.1 The fraction net observer

In Section 2.4, the notion of instantaneous description
of was introduced as a map Q : pðLðGiÞÞ�! 2Q from
the set of observed event traces to the power set of the
state set Q, such that given an observed event trace !,
Qð!Þ � Q is the set of states that the underlying
deterministic finite state plant can possibly occupy at
the given instant. We constructed a Petri net observer
(Algorithm B.4) and showed that the instantaneous
description can be computed online with polynomial
complexity. However, for a plant modelled by a
probabilistic regular language, the knowledge of the
event occurrence probabilities allows us to compute
not only the set of possible current states (i.e. the
instantaneous description) but also the probabilistic
cost of ending up in each state in the instantaneous
description. To achieve this objective, we modify the
Petri net observer introduced in Section 2.4.2 by
assigning (possibly) fractional weights computed as
functions of the event occurrence probabilities to the
input arcs. The output arcs are still given unity weights.
In the sequel, the Petri net observer with possibly
fractional arc weights is referred to as the fraction net
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observer (FNO). First we need to formalise the
notation for the FNO.

Definition 4.1: Given a finite-state terminating plant
model Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ, and an unobser-
vability map p, the FNO, denoted asF(G�,p)

, is a labelled
Petri net (Q,�,AI,AO,wI ,x0) with fractional arc
weights and possibly fractional markings, where Q is
the set of places, � is the event label alphabet,
AI jQ���Q and AOjQ�� are the sets of input
and output arcs, wI is the input weight assignment
function and x02B (Notation 2.3) is the initial marking.
The output arcs are defined to have unity weights.

The algorithmic construction of an FNO is derived
next. We assume that the Petri net observer has already
been computed (by Algorithm B.4) with Q the set of
places, � the set of transition labels, AI jQ���Q
the set of input arcs and AOjQ�� the set of output
arcs.

Definition 4.2: The input weight assigning function
wI :AI ! (0, 1) for the FNO is defined as

8qi 2Q, 8�j 2�, 8qk 2Q,

�ðqi, �j Þ ¼ q‘¼)wI ðqi, �j, qkÞ

¼
X

!2�? s.t.
�? ðq‘ ,!Þ¼qk

V
pðq‘ ,!Þ¼�

ð1� �Þj!j ~�ðq‘,!Þ

where � :Q��!Q is the transition map of the
underlying DFSA and p is the given unobservability
map and ~� is the event cost (i.e. the occurrence
probability) function (Ray 2005). It follows that the
weight on an input arc from transition �j (having an
output arc from place qi) to place qk is the sum of the
total conditional probabilities of all completely unob-
servable paths by which the underlying plant can reach
the state qk from state q‘ where q‘¼ �(qi, �j).

Computation of the input arc weights for the FNO
requires the notion of the phantom automaton
(Definition 2.17). The computation of the arc weights
for the FNO is summarised in Algorithm 4.1.

Proposition 4.1: Given a Petri net observer (Q, �, AI ,
AO), the event occurrence probability matrix e� and the
transition probability matrix for the phantom automaton
P(�), Algorithm 4.1 computes the arc weights for the
FNO as stated in Definition 4.2.

Proof: Algorithm 4.1 employs the following identity
to compute input arc weights:

8qi2Q, 8�j2�, 8qk2Q,

wI ðqi,�j,qkÞ

¼

h
I�ð1� �ÞPð�Þ

i�1����
‘k

if ðqi,�j,qkÞ2A
I ^ �ðqi,�j Þ ¼ q‘

0, otherwise

8<:

which follows from the following argument. Assume
that for the given unobservability map p, GP is the
phantom automaton for the underlying plant G. We
observe that the measure of the language of all strings
initiating from state q‘ and terminating at state qk
in the phantom automaton GP is given by�
I�Pð�Þ

��1��
‘k
. Since every string generated by the

phantom automaton is completely unobservable (in the
sense of Definition 2.17), we concludeh
I�ð1� �ÞPð�Þ

i�1����
‘k

¼
X

!2�? s.t.
�? ðq‘ ,!Þ¼qk

V
pðq‘ ,!Þ¼�

ð1� �Þj!j ~�ðq‘,!Þ

ð26Þ

This completes the proof. œ

In Section 2.4.2, we presented Algorithm B.5 to
compute the instantaneous state description Qð!Þ
online without referring to the transition probabilities.
The approach consisted of firing all enabled transitions
(in the Petri net observer) labelled by �j on observing
the event �j in the underlying plant. The set of possible
current states then consisted of all states which
corresponded to places with one or more tokens. For
the FNO, we use a slightly different approach which
involves the computation of a set of event-indexed
state transition matrices.

Definition 4.3: For an FNO (Q,�,AI ,AO, wI, x0),
the set of event-indexed state transition matrices
!¼ {��j: �j2�} is a set of m matrices each of dimen-
sion n� n (where m is the cardinality of the event
alphabet � and n is the number of places), such that on
observing event �j in the underlying plant, the updated
marking x[kþ1] for the FNO (due to firing of all enabled
�j-labelled transitions in the net) can be obtained from
the existing marking x[k] as follows:

x½kþ1� ¼ x½k���j ð27Þ

The procedure for computing ! is presented in
Algorithm 4.2. Note that the only inputs to the
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algorithm are the transition matrix for the phantom

automaton, the unobservability map p and the transi-

tion map for the underlying plant model. The next

proposition shows that the algorithm is correct.

Proposition 4.2: Algorithm 4.2 correctly computes the

set of event-indexed transition matrices !¼ {��j: �j2�}

for a given FNO (Q,�,AI,wI, x0) in the sense stated in

Definition 4.3.

Proof: Let the current marking of the FNO specified

as (Q,�,AI ,AO,wO,wI) be denoted by x[k] where

x[k]2 [0,1)n with n¼Card(Q). Assume that event

�j2� is observed in the underlying plant model. To

obtain the updated marking of the FNO, we need to

fire all transitions labelled by �j in the FNO. Since the

graph of the FNO is identical with the graph of the

Petri net observer constructed by Algorithm B.4, it

follows that if �(qi, �j) is undefined or the event �j is
unobservable from the state qi in the underlying plant,

then there is a flush-out arc to a transition labelled �j
from the place qi in the graph of the FNO. This implies

that the content of place qi will be flushed out and

hence will not contribute to any place in the updated

marking x[kþ1], i.e.

x½k�i �
�j
i‘ ¼ 08 i2 f1, . . . , ng ð28Þ

implying that the ith column of the matrix ��j is

[0, . . . , 0]T. This justifies Line 5 of Algorithm 4.2. If �j
is defined and observable from the state qi in the

underlying plant, then we note that the contents of the

place qi end up in all places q‘2Q such that there exists

an input arc (qi, �j, q‘) in the FNO. Moreover, the

contribution to the place q‘ coming from place qi is

weighted by wI(qi, �j, q‘). Denote this contribution by

ci‘. Then we have

ci‘ ¼ wI ðqi, �j, q‘ Þx
½k�
i

¼)
X
i

ci‘ ¼
X
i

wI ðqi, �j, q‘ Þx
½k�
i

¼)x½kþ1�‘ ¼
X
i

wI ðqi, �j, q‘ Þx
½k�
i ð29Þ

Note that
P

i ci‘ ¼ x½kþ1�‘ since contributions from all
places to q‘ sum to the value of the updated marking in
the place q‘. Recalling from Proposition 4.1 that

wI ðqi, �j, q‘ Þ ¼
h
I� ð1� �ÞPð�Þ

i�1����
r‘

ð30Þ

where qr¼ �(qi, �j) in the underlying plant, the result
follows. œ

Proposition 4.2 allows an alternate computation of
the instantaneous state description. We assume that
the initial state of the underlying plant is known and
hence the initial marking for the FNO is assigned as
follows:

x½0�i ¼
1 if qi is the initial state

0 otherwise

�
ð31Þ

It is important to note that since the underlying plant is
a DFSA having only one initial state, the initial
marking of the FNO has only one place with value 1
and all remaining places are empty. It follows from
Proposition 4.2 that for a given initial marking x[0] of
the FNO, the marking after observing a string
!¼ �r1 
 
 
 �rk where �j2� is obtained as:

x½k� ¼ x½0�
Yj¼rk
j¼r1

��j ð32Þ

Referring to the notation for instantaneous description
introduced in Definition 2.18, we have

Qð!Þ ¼
�
qi 2Q : x½j!j�i 4 0

�
ð33Þ

Remark 4.1: We observe that to solve the state
determinacy problem, we only need to know if the
individual marking values are non-zero. The specific
values of the entries in the marking x[k], however, allow
us to estimate the cost of occupying individual states in
the instantaneous description Qð!Þ.

4.2 State entanglement due to partial observability

The markings of the FNO F(G�,p)
for the plant

Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ in the case of perfect
observation is of the following form:

8k2N, x½k� ¼ ½0 
 
 
0 1 0 
 
 
0�T, i:e: x½k� 2B ðNotation 2:3Þ

It follows that for a perfectly observable system, B is an
enumeration of the state set Q in the sense x½k�i ¼ 1
implies that the current state is qi2Q. Under a non-
trivial unobservability map p, the set of all possible
FNO markings proliferates and we can interpret x[k]

after the kth observation instance as the current states
of the observed dynamics. This follows from the fact
that no previous knowledge beyond that of the current
FNO marking x[k] is required to define the future
evolution of x[k]. The effect of partial observation can
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then be interpreted as adding new states to the model
with each new state a linear combination of the
underlying states enumerated in B.

Drawing an analogy with the phenomenon of state
entanglement in quantum mechanics, we refer to B as
the set of pure states; while all other occupancy
estimates that may appear are referred to as mixed or
entangled states. Even for a finite state plant model, the
cardinality of the set of all possible entangled states is
not guaranteed to be finite.

Lemma 4.1: Let F(G�,p)
with initial marking x[0]2B be

the FNO for the underlying terminating plant
Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ with uniform termina-
tion probability �. Then for any observed string
!¼ �r1 
 
 
 �rs of length s2N with �rj2�
8rj2 {1, . . . , k}, the occupancy estimate x[k], after the
occurrence of the kth observable transition, satisfies:

x½k� 2 0,
1

�

� 	CARD ð�Þ.

0 ð34aÞ

Proof: Let the initial marking x[0]2B be given by

½0 
 
 
 1 
 
 
 0�

ðith elementÞ "
ð35Þ

Elementwise non-negativity of x[k] for all k2N follows
from the fact that x[0]2B is elementwise non-negative
and each �� is a non-negative matrix for all � 2�. We
also need to show that x[k] cannot be the zero vector.
The argument is as follows: assume that if possible
x[‘]��¼ 0 where x[‘] 6¼ 0 and � 2� is the current
observed event. It follows from the construction of
the transition matrices that 8qi 2Q, x½‘ �i 6¼ 0 implies
that either �(qi, �) is undefined or p(qi, �)¼ ". In either
case, it is impossible to observe the event � with the
current occupancy estimate x[‘], which is a contra-
diction. Finally, we need to prove the elementwise
upper bound of 1

� on x[k]. We note that that x½k�j is the
sum of the total conditional probabilities of all strings
u2�? initiating from state qi2Q (since 8j, x½0�j ¼ �ij)
that terminate on the state qj2Q and satisfy

pðuÞ ¼ ! ð36Þ

It follows that x½k�j 5 x½0�½I� ð1� �Þ���1
��
j
since the

right-hand side is the sum of conditional probabilities
of all strings that go to qj from qi, irrespective of the
observability. Hence we conclude:

kx½k�k15 kx
½0�½I� ð1� �Þ���1k15 1�

1

�

which completes the proof. œ

Remark 4.2: It follows from Lemma 4.1 that the
entangled states belong to a compact subset of
R

CARD(Q).

Definition 4.4 (Entangled state set): For a given

G ¼ ðQ,�, �,e�,�,CÞ and p, the entangled state set

QF	R
CARD(Q) n 0 is the set of all possible markings of

the FNO initiated at any of the pure states x[0]2B.

4.3 An illustrative example of state entanglement

We consider the plant model as presented in the left-

hand plate of Figure 2. The finite-state plant model

with the unobservable transition (marked in red

dashed) along with the constructed Petri net observer

is shown in Figure 2. The event occurrence probabil-

ities assumed are shown in Table 2 and the transition

probability matrix P is shown in Table 3. Given

�¼ 0.01, we apply Algorithm B.3 to obtain:

�
I� ð1� �ÞPð�Þ

��1
¼

1 0:2 0 0

0 1 0 0

0 0 1 0

0 0 0 1

26664
37775 ð37Þ

00 01

1110

e

a

e

a
r

r

r

r

00 01

1110

a, e

a

aa

e

r

e

e

e

e r

a

r

r

0.2

0.2

MODEL FRACTION NET OBSERVER

Figure 2. Underlying plant and Petri net observer. Available
in colour online.

Table 3. Transition probability matrix �.

00 01 11 10

00 0.8 0.2 0 0
01 0.5 0.2 0.3 0
11 0 0 0.6 0.4
10 0.2 0 0.3 0.5

Table 2. Event occurrence probabilities.

e r a

00 0.2 0.8 0
01 0.2 0.5 0.3
11 0.6 0.4 0
10 0.3 0.5 0.2
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The arc weights are then computed for the FNO

and the result is shown in the right-hand plate of

Figure 2. Note that the arcs in bold red are the ones

with fractional weights in this case and all other arc

weights are unity. The set of transitions matrices ! are

now computed from Algorithm 4.2 as

�e ¼

0 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

2666664

3777775, �r ¼

1 1 0 0

0.2 0.2 0 0

0 0 0 0

0 0 1 1

2666664

3777775

�a ¼

0 0 0 1

0 0 0 0.2

0 1 0 0

0 0 0 0

2666664

3777775
We consider three different observation sequences rr,

re, ra assuming that the initial state in the underlying

plant is 00 in each case (i.e. the initial marking of the

FNO is given by �0¼ [1 0 0 0]T. The final markings (i.e.

the entangled states) are given by

��r�r ¼

1:20

0:24

0

0

26664
37775,��r�e ¼

0

0:2

0

0

26664
37775,��r�a ¼

0

0

0:2

0

26664
37775
ð38Þ

Note that while in the case of the Petri net observer, we

could only say that QðrrÞ ¼ fq1, q2g, for the FNO, we

have an estimate of the cost of occupying each state

(1.2 and 0.24, respectively, for the first case).
Next we consider a slightly modified underlying

plant with the event occurrence probabilities as

tabulated in Table 4. The modified plant (denoted as

Model 2) is shown in the right-hand plate of Figure 3.

The two models are simulated with the initial pure

state set to [0 0 1 0] in each case. We note that the

number of entangled states in the course of simulated

operation more than doubles from 106 for Model 1 to

215 for Model 2 (Figure 4). In the simulation,

entangled state vectors were distinguished with a

tolerance of 10�10 on the max norm.

4.4 Maximisation of integrated instantaneous
measure

Definition 4.5 Instantaneous characteristic: Given a

plant Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ, the instantaneous
characteristic �̂ðtÞ is defined as a function of plant

operation time t2 [0, 1) as follows:

�̂ðtÞ ¼ v
��
i

ð39Þ

where qi2Q is the state occupied at time t

Definition 4.6 Instantaneous measure for perfectly

observable plants: Given a plant Gð�Þ ¼ ðQ,�, �,
ð1� �Þ,e�,�,CÞ, the instantaneous measure (
̂�ðtÞ) is

defined as a function of plant operation time t2 [0,1)

as follows:


̂�ðtÞ ¼ h�ðtÞ, l�i ð40Þ

where �2B corresponds to the state that G is observed

to occupy at time t (refer to Equation (20)) and l� is the
renormalised language measure vector for the under-

lying plant G with uniform termination probability �.

Next, we show that the optimal control algorithms

presented in Section 3, for perfectly observable
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Figure 4. Total number of distinct entangled states encoun-
tered as a function of the number of observation ticks, i.e. the
number of observed events.
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Figure 3. Underlying models to illustrate effect of unobser-
vability on the cardinality of the entangled state set.

Table 4. Event occurrence probabilities for Model 2.

e r a

00 0.2 0.79 0.01  
01 0.2 0.5 0.3
11 0.6 0.39 0.01  
10 0.3 0.5 0.2
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situations, can be interpreted as maximising the
expectation of the time-integrated instantaneous mea-
sure for the finite-state plant model under considera-
tion (Figure 5).

Proposition 4.3: For the unsupervised plant
G ¼ ðQ,�, �,e�,�,CÞ with all transitions observable
at the supervisory level, let G? be the optimally
supervised plant and G# be obtained by arbitrarily
disabling controllable transitions. Denoting the instan-
taneous measures for G? and G# by 
̂?�ðtÞ and 
̂

#
� ðtÞ for

some uniform termination probability � 2 (0, 1) respec-
tively, we have

E

Z t

0


̂?�ðÞd


 �
=E

Z t

0


̂#
� ðÞd


 �
8t2 ½0,1Þ, 8� 2 ð0, 1Þ

ð41Þ

where t is the plant operation time and E(
) denotes the
expected value of the expression within braces.

Proof: Assume that the stochastic transition proba-
bility matrix for an arbitrary finite-state plant model
be denoted by � and denote the Cesaro limit as:
C ¼ limk!1

1
k

Pk�1
j¼0 �j. Denoting the final stable state

probability vector as pi, where the plant is assumed to
initiate operation in state qi, we claim that pij ¼ Cij
which follows immediately from noting that if the
initiating state is qi then

ð piÞT ¼

�
0 
 
 
 0 1 
 
 
 0

	
limk!1

1
k

Pk�1
j¼0 �j

" ith element

i.e. (pi)T is the ith row of C(�). Hence, we have

E

Z t

0

�̂ðÞd


 �
¼

Z t

0

E �̂ðÞð Þd ¼ thpi, vi ¼ tl0
��
i

ðNote : � ¼ 0Þ

where finite number of states guarantee that the
expectation operator and the integral can be
exchanged. Recalling that optimal supervision ele-
mentwise maximises the language measure vector l0,
we conclude that

E

Z t

0

�̂?ðÞd


 �
=E

Z t

0

�̂#ðÞd


 �
8t2 ½0,1Þ ð42Þ

where the �̂ðtÞ for the plant configurations G? and G# is
denoted as �̂? and �̂#, respectively. Noting that the
construction of the Petri net observer (Algorithm B.4)
implies that in the case of perfect observation, each
transition leads to exactly one place, we conclude that
the instantaneous measure is given by


̂�ðtÞ ¼ l�
��
i
where the current state at time t is qi

ð43Þ

Furthermore, we recall from Corollary 2.1 that

Cl� ¼ Cv¼)E 
̂�ðtÞð Þ ¼ E �̂ðtÞð Þ8t2 ½0,1Þ ð44Þ

which leads to the following argument:

E

Z t

0

�̂?ðÞd


 �
=E

Z t

0

�̂#ðÞd


 �
8t2½0,1Þ

¼)

Z t

0

E �̂?ðÞð Þd=

Z t

0

E �̂#ðÞ
� 

d 8t2½0,1Þ

¼)

Z t

0

E 
̂?�ðÞ
� 

d=

Z t

0

E 
̂#
� ðÞ

� 
d 8t2½0,1Þ,8�2ð0,1Þ

¼)E

Z t

0


̂?�ðÞd


 �
=E

Z t

0


̂#
� ðÞd


 �
8t2½0,1Þ,8�2ð0,1Þ

This completes the proof. œ

Next we formalise a procedure of implementing an
optimal supervision policy from a knowledge of the
optimal language measure vector for the underlying
plant.

4.5 The optimal control algorithm

For any finite-state underlying plant Gð�Þ ¼ ðQ,�,
�, ð1� �Þe�,�,CÞ and a specified unobservability map
p, it is possible to define a probabilistic transition
system as a possibly infinite-state generalisation of
PFSA which we denote as the entangled transition
system corresponding to the underlying plant and the
specified unobservability map. In defining the
entangled transition system (Definition 4.7), we use a
similar formalism as stated in Section 2.1, with the
exception of dropping the last argument for controll-
ability specification in Equation (7). Controllability
needs to handled separately to address the issues of

Figure 5. Time integrals of instantaneous measure and
instantaneous characteristic vs. operation time.
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partial controllability arising as a result of partial

observation.

Definition 4.7 (Entangled transition system): For a

given plant Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ and an

unobservability map p, the entangled transition

system EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ is defined as:

(1) The transition map D :QF��?
!QF is

defined as:

8�2QF, Dð�,!Þ ¼ �
Y�m
�1

��i where ! ¼ �1 
 
 
 �m

(2) The event generation probabilities ~�E : QF�

�?! ½0, 1� are specified as:

~�Eð�, �Þ ¼
Xi¼CARD ðQÞ

i¼1

ð1� �ÞN ð�iÞ ~�ðqi, �Þ

(3) The characteristic function �E: QF! [�1, 1] is

defined as: �E(�)¼h�, si

Remark 4.3: The definition of ~�E is consistent in the

sense:

8�2QF,
X
� 2�

~�Eð�; �Þ ¼¼
X
i

Nð�iÞð1� �Þ ¼ 1� �

implying that if QF is finite then E(G, p) is a perfectly

observable terminating model with uniform termina-

tion probability �.

Proposition 4.4: The renormalised language measure


E� ð�Þ for the state �2QF of the entangled transition

system EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ can be computed as

follows:


E� ð�Þ ¼ h�, l�i ð45Þ

where l� is the language measure vector for the

underlying terminating plant Gð�Þ ¼ ðQ,�, �,
ð1� �Þe�,�,CÞ with uniform termination probability �.

Proof: We first compute the measure of the pure

states B	QF of EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ denoted by

the vector lE� . Since every string generated by the

phantom automaton is completely unobservable, it

follows that the measure of the empty string " from

any state �2B is given by �[I� (1� �)p(�)]�1s. Let �
correspond to the state qi2Q in the underlying plant.

Then the measure of the set of all strings generated

from �2B having at least one observable transition in

the underlying plant is given byX
j

ð1� �Þ

�
I� ð1� �ÞPð�Þ

	�1

��Pð�Þ

�����
ij

�
lE�
�
j

ð46Þ

which is simply the measure of the set of all strings of

the form !1�!2 where p(!1�!2)¼ �p(!2). It therefore

follows from the additivity of measures that

lE� ¼ ð1� �Þ

�
I�ð1� �ÞPð�Þ

	�1

��Pð�Þ

�
lE�

þ

�
I�ð1� �ÞPð�Þ

	�1
v

) lE� ¼

"
I�ð1� �Þ

�
I�ð1� �ÞPð�Þ

	�1

��Pð�Þ

�#�1

�

�
I�ð1� �ÞPð�Þ

	�1
v

) lE� ¼

�
I�ð1� �Þ�

	�1
v¼ l�

ð47Þ

which implies that for any pure state �2B, we have


E� ð�Þ ¼ h�, l�i. The general result then follows from

the following linear relation arising from the defini-

tions of ~�E and �E:

8�2B, 8k2R, 
E� ðk�Þ ¼ k
E� ð�Þ ð48Þ

This completes the proof. œ

Definition 4.8 (Instantaneous characteristic for

entangled transition systems): Given an underlying

plant Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ and an unobser-

vability map p, the instantaneous characteristic �̂EðtÞ
for the corresponding entangled transition system

EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ is defined as a function of

plant operation time t2 [0,1) as follows:

�̂EðtÞ ¼ h�ðtÞ, vi ð49Þ

where �(t) is the entangled state occupied at time t

Definition 4.9 (Instantaneous measure for partially

observable plants): Given an underlying plant

Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ and an unobservability

map p, the instantaneous measure (
̂�ðtÞ) is defined as a

function of plant operation time t2 [0, 1) as follows:


̂�ðtÞ ¼ h�ðtÞ, l
E
� i ð50Þ

where �2QE is the entangled state at time t and lE� is

the renormalised language measure vector for the

corresponding entangled transition system

EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ.

Corollary 4.1 (Corollary to Proposition 4.4): For a

given plant Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ and an unob-

servability map p, the instantaneous measure


̂� : ½0,1Þ ! ½�1, 1� is given by


̂�ðtÞ ¼ h�ðtÞ, l�i ð51Þ
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where �(t) is the current state of the entangled
transition system EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ at time t
and l� is the language measure vector for the under-
lying plant G.

Proof: Follows from Definitions 4.9, 4.7 and
Proposition 4.4. œ

Proposition 4.4 has a crucial consequence. It
follows that elementwise maximisation of the measure
vector l� for the underlying plant automatically
maximises the measures of each of the entangled
states irrespective of the particular unobservability
map p. This allows us to directly formulate the optimal
supervision policy for cases where the cardinality of
the entangled state set is finite. However, before we
embark upon the construction of such policies, we need
to address the controllability issues arising due to state
entanglement. We note that for a given entangled state
�2QFnB, an event � 2� may be controllable from
some but not all of the states qi2Q that satisfy �i4 0.
Thus, the notion of controllability introduced in
Definition 2.7 needs to be generalised and disabling
of a transition � 2� from an entangled state can still
change the current state. We formalise the analysis by
defining a set of event-indexed disabled transition
matrices by suitably modifying �� as follows.

Definition 4.10: For a given plant G ¼ ðQ,�, �,e�,�,CÞ, the event indexed disabled transition matrices
��D is defined as

��D
��
ij
¼

�ij, if � is controllable at qi and pðqi,�Þ ¼ �

��ij, otherwise

(
Evolution of the current entangled state � to �0 due to
the firing of the disabled transition � 2� is then
computed as:

�0 ¼ ���D ð52Þ

Remark 4.4: If an event � 2� is uncontrollable at
every state qi2Q, then ��D ¼ �� . On the other hand, if
event � is always controllable (and hence by our
assumption always observable), then we have ��D ¼ I.
In general, we have ��D 6¼ �� 6¼ I.

Proposition 4.3 shows that optimal supervision in
the case of perfect observation yields a policy that
maximises the time-integral of the instantaneous
measure. We now outline a procedure (Algorithm 4.3)
to maximise

R t
0 
̂�ðÞd when the underlying plant has a

non-trivial unobservability map.

Lemma 4.2: Let the following condition be satisfied for
a plant G ¼ ðQ,�, �,e�,�,CÞ and an unobservability
map p:

CARD ðQFÞ51 ð53Þ

Then the control actions generated by Algorithm 4.3 is
optimal in the sense that

E

Z t

0


̂?�ðÞd


 �
=E

Z t

0


̂#
� ðÞd


 �
8t2½0,1Þ,8�2ð0, 1Þ

ð54Þ

where 
̂?�ðtÞ and 
̂
#
� ðtÞ are the instantaneous measures at

time t for control actions generated by Algorithm 4.3
and an arbitrary policy respectively.

Proof

Case 1: First, we consider the case where the following
condition is true:

8� 2�, ��D ¼ ��
� _

8�2QF, ���D ¼ �
� 

ð55Þ

which can be paraphrased as follows:

Each event is either uncontrollable at every state q2Q
in the underlying plant Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ
or is controllable at every state at which it is
observable.

We note that the entangled transition system qualifies
as a perfectly observable probabilistic finite state
machine (Remark 4.3) since the unobservability effects
have been eliminated by introducing the entangled
states. If the above condition stated in Equation (53) is
true, then no generalisation of the notion of event
controllability in EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ is required
(Definition 4.10). Under this assumption, the claim of
the lemma then follows from Lemma 3.1 by noting that
Algorithm 4.3 under the above assumption reduces to
the procedure stated in Algorithm 3.1 when we view
the entangled system as a perfectly observable PFSA
model.

Case 2: Next we consider the general scenario where
the condition in Equation (53) is relaxed. We note that
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the key to the online implementation result in stated

Lemma 3.1 is the monotonicity lemma proved in

Chattopadhyay and Ray (2007b), which states that for

any given terminating plant Gð�Þ ¼ ðQ,�, �,
ð1� �Þe�,�,CÞ with uniform termination probability

�, the following iteration sequence elementwise

increases the measure vector monotonically:

(1) Compute l�
(2) If l�ji5 l�jj, then disable all events qi!

�
qj,

otherwise enable all events qi!
�
qj

(3) Go to step 1.

The proof of the monotonicity lemma

(Chattopadhyay and Ray 2007b) assumes that ‘dis-

abling’ qi!
�
qj replaces it with a self loop at state qi

labelled � with the same generation probability, i.e.e�ðqi, �Þ remains unchanged. Now if there exists a � 2�

with ��D 6¼ I, then we need to consider the fact that on

disabling �, the new transition is no longer a self loop,

but ends up in some other state qk2Q. Under this

more general situation, we claim that Algorithm 4.3 is

true; or in other words, we claim that the following
procedure elementwise increases the measure vector

monotonically:

(1) Compute l�
(2) Let qi!

�
qj (if enabled) and qi!

�
qk (if disabled)

(3) If l�jj5 l�jk, then disable qi!
�
qj, otherwise

enable qi!
�
qj

(4) Go to step 1

which is guaranteed by Proposition A.1 in
Appendix A. Convergence of this iterative process

and the optimality of the resulting supervision policy in

the sense of Definition 2.12 can be worked out exactly

on similar lines as shown in Chattopadhyay and Ray

(2007b). This completes the proof. œ

In order to extend the result of Lemma 4.2 to

the general case where the cardinality of the entangled

state set can be infinite, we need to introduce

a sequence of finite-state approximations to the

potentially infinite-state entangled transition system.
This would allow us to work out the above extension

as a natural consequence of continuity arguments.

The finite-state approximations are parameterised by

�2 (0, 1] which approaches 0 from above as we derive

closer and closer approximations. The formal defini-

tion of such an �-quantised approximation for

EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ is stated next.

Definition 4.11 (�-quantised approximation): For

a plant Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ, an unobserva-

bility map p and a given �2 (0, 1], a probabilistic

finite-state machine E�
ðG,pÞ ¼ ðQ

�
F,�,D�, ~�E,�EÞ qualifies

as an �-quantised approximation of the corresponding

entangled transition system EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ if

D�ð�,!Þ ¼ ��ðDð�,!ÞÞ ð56Þ

where �� : ½0, 1
��
CARDðQÞ

! Q�
F is a quantisation map

satisfying:

CARD ðQ�
FÞ51 ð57aÞ

8�2B, ��ð�Þ ¼ � ð57bÞ

8�2QF, k��ð�Þ � �k15 � ð57cÞ

where k
k1 is the standard max norm. Furthermore,
we denote the language measure of the state �2Q�

F as

�� ð�Þ and the measure vector for the pure states �2B is
denoted as l�� .

We note the following:

(1) For a given �2 (0, 1], there may exist uncoun-
tably infinite number of distinct probabilistic
finite-state machines that qualify as an �-quan-
tised approximation to EðG,pÞ ¼ ðQF,�,
D, ~�E,�EÞ, i.e. the approximation is not unique.

(2) lim�!0þ E
�
ðG,pÞ ¼ EðG,pÞ:

(3) The compactness of ½0, 1
��
CARDðQÞ is crucial in the

definition.
(4) The set of pure states of EðG,pÞ ¼
ðQF,�,D, ~�E,�EÞ is a subset of Q�

F, i.e.
B 	 Q�

F.
(5) The measure of an arbitrary state �2Q�

F is
given by h�, l��i.

Lemma 4.3: The language measure vector l�� for the set
of pure states B for any �-quantised approximation of
EðG,pÞ ¼ ðQF,�,D, ~�E,�EÞ is upper semi-continuous
w.r.t. � at �¼ 0.

Proof: Let Mk be a sequence in R
CARD(Q) such that

Mkji denotes the measure of the expected state after
k2N[ {0} observations for the chosen �-quantised
approximation E�

ðG,pÞ beginning from the pure state
corresponding to qi2Q. We note thatX1

k¼0

Mk ¼ l
�
� ð58Þ

Furthermore, we have

M0 ¼ A�½0� ð59Þ

where A¼ �[I� (1� �)P(�)]�1 and �[0] is the pertur-
bation of the characteristic vector � due to quantisa-
tion, implying that

kM0 � A�k15 kAk1� ð60Þ

Denoting B ¼
�
I� ð1� �ÞPð�Þ

��1
ð1� �Þ

�
��Pð�Þ


,

we note that

Mk ¼ Bk�½k�¼) Mkk k15 kBk
k
1 Ak k1� ð61Þ

International Journal of Control 473

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
h
a
t
t
o
p
a
d
h
y
a
y
,
 
I
s
h
a
n
u
]
 
A
t
:
 
1
6
:
2
4
 
8
 
F
e
b
r
u
a
r
y
 
2
0
1
0



It then follows that we have:

l�� � l�
�� ��

1
5


X
k

kBkk1

�
Ak k1� ð62Þ

We claim that the following bounds are satisfied:

(1) kAk51
(2)

P
k kBk

k
15

1
�

For the first claim, we note

�
I� ð1� �ÞPð�Þ

��1
¼
X1
k¼0

�ð1� �ÞkPð�Þk

5 ELEMENTWISE

X1
k¼0

�ð1� �Þk�k

¼ �
�
I� ð1� �Þ�

��1
The result then follows by noting that �[I� (1� �)�]�1

is a stochastic matrix for all � 2 (0, 1). For the second

claim, denoting e¼ [1 . . . 1]T, we conclude from sto-

chasticity of �:�
��Pð�Þ


e ¼

�
I�Pð�Þ

�
e

¼
�
I� ð1� �ÞPð�Þ

�
e� �Pð�Þe

)
�
I� ð1� �ÞPð�Þ

��1�
��Pð�Þ


e

¼ e�Pð�Þ�
�
I� ð1� �ÞPð�Þ

��1
e

)
1

1� �
Be

¼

n
I� �

�
I� ð1� �ÞPð�Þ

��1o
eþ �e

ð63Þ

Since B is a non-negative matrix, it follows from

Equation (63) that:

1

1� �
B

���� ����
1

¼ 1�min
i

�
�
�
I� ð1� �ÞPð�Þ

��1����
i

�
þ �

Noting that �
�
I� ð1� �ÞPð�Þ

��1
¼ � þ �

X1
k¼1ð1� �ÞPð�Þð Þ

k,

1

1� �
B

���� ����
1

51� �þ �)
1

1� �
B

���� ����
1

51) Bk k151� �

)
X1
k¼0

kBkk15
1

1�ð1� �Þ
¼
1

�
ð64Þ

Noting that l0� ¼ l� and �4 0, we conclude from

Equation (62):

8�4 0, l�� � l
0
�

�� ��
1
5 �

1

�
ð65Þ

which implies that l�� is upper semi-continuous w.r.t. �
at �¼ 0. This completes the proof. œ

Lemma 4.4: For any plant G ¼ ðQ,�, �,e�,�,CÞ with
an unobservability map p: the control actions generated
by Algorithm 4.3 is optimal in the sense that

E

Z t

0


̂?�ðÞd


 �
=E

Z t

0


̂#
� ðÞd


 �
8t2 ½0,1Þ, 8�2 ð0, 1Þ

ð66Þ

where 
̂?�ðtÞ and 
̂
#
� ðtÞ are the instantaneous measures at

time t for control actions generated by Algorithm 4.3
and an arbitrary policy respectively.

Proof: First, we note that it suffices to consider
terminating plants Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ such
that �5 �min (Definition 2.13) for the purpose of
defining the optimal supervision policy
(Chattopadhyay and Ray 2007b). Algorithm 4.3
specifies the optimal control policy for plants with
termination probability � when the set of entangled
states is finite (Lemma 4.2). We claim that the result is
true when this finiteness condition stated in Equation
(53) is relaxed. The argument is as follows: the optimal
control policy as stated in Algorithm 4.3 for finite QF

can be paraphrased as:

. Maximise language measure for every state
offline

. Follow the measure gradient online

Since CARD ðQ�
FÞ51, it follows from Lemma 4.2

that such a policy yields the optimal decisions for
an �-quantised approximation of EðG,pÞ ¼
ðQF,�,D, ~�E,�EÞ for any �4 0. As we approach
�¼ 0, we note that it follows from continuity that
there exists an �?4 0 such that the sequence of disabling
decisions does not change for all �5 �? implying that the
optimally controlled transition sequence is identical for
all �5 �?. Since it is guaranteed by Definition 4.11 that
for identical transition sequences, quantised entangled
states �½k�� are within �-balls of actual entangled state �[k]

after the kth observation, we conclude that

8k,8�2 ð0, �?�, �½k�� � �
½k�

��� ���
1
5 � ð67Þ

It therefore follows that for any control policy, we have

8�2 ð0, �?�,

Z t

0


̂�� ðÞd �

Z t

0


̂�ðÞd

���� ����
5

Z t

0

���h�½k�� , l��i � h�
½k�, l�i

���d5 � 1þ
1

�
þ

1

�2


 �
t ð68Þ

implying that
R t
0 
̂

�
� ðÞd is semi-continuous from above

at �¼ 0 which completes the proof. œ

Proposition 4.5: Algorithm 4.4 correctly implements
the optimal control policy for an arbitrary finite-state
plant G ¼ ðQ,�, �,e�,�,CÞ with specified unobservabil-
ity map p.
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Proof: We first note that Algorithm 4.4 is a detailed

restatement of Algorithm 4.3 with the exception of the

normalisation step in lines 20 and 22. On account of
non-negativity of any entangled state � and the fact

� 6¼ 0 (Lemma 4.1), we have:

sign �
�
�� � ��D

� 
¼ sign N �ð Þ

�
�� � ��D

� 
ð69Þ

which verifies the normalisation steps. The result then

follows immediately from Lemma 4.4. œ

Remark 4.5: The normalisation steps in Algorithm

4.4 serve to mitigate numerical problems. Lemma 4.1

guarantees that the entangled state � 6¼ 0. However,
repeated right multiplication by the transition matrices

may result in entangled states with norms arbitrarily
close to 0 leading to numerical errors in comparing

arbitrarily close floating point numbers. Normalisation

partially remedies this by ensuring that the entangled
states used for the comparisons are sufficiently

separated from 0. There is, however, still the issue of

approximability and even with normalisation, we may
need to compare arbitrarily close values. The next

proposition addresses this by showing that, in contrast

to MDP based models, the optimisation algorithm for
PFSA is indeed �-approximable (Lusena et al. 2001),

i.e. deviation from the optimal policy is guaranteed to
be small for small errors in value comparisons in

Algorithm 4.4. This further implies that the optimisa-

tion algorithm is robust under small parametric

uncertainties in the model as well as to errors arising

from finite precision arithmetic in digital computer

implementations.

Proposition 4.6 (Approximability): In a finite preci-

sion implementation of Algorithm 4.4, with real numbers

distinguished upto �4 0, i.e.

8a, b2R, ja� bj5 �) a� b � 0 ð70Þ

we have 8t2 [0, 1), 8�2 (0, 1),

05E

Z t

0


̂?�ðÞd


 �
� E

Z t

0


̂#
� ðÞd


 �
5 � ð71Þ

where 
̂?�ðtÞ and 
̂
#
� ðtÞ are the instantaneous measures at

time t for the exact (i.e. infinite precision) and

approximate (up to �-precision) implementations of

the optimal policy, respectively.

Proof: Let Gð�Þ ¼ ðQ,�, �, ð1� �Þe�,�,CÞ be the

underlying plant. First, we consider the perfectly

observable case, i.e. with every transition observable

at the supervisory level. Denoting the optimal and

approximate measure vectors obtained by Algorithm

B.1 as l?� and l
#
� , we claim that

l?� � l
#
� 5 ELEMENTWISE � ð72Þ

Using the algebraic structure of the Monotonicity

Lemma (Chattopadhyay and Ray 2007) (see also

Lemma A.1), we obtain

l?� � l
#
� ¼ �

�
I� ð1� �Þ�?

��1
ð1� �Þ

�
�? ��#

�
l#
�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

M

We note that it follows from the exact optimality of l?�
that

l?� � l
#
� = ELEMENTWISE 0 ð73Þ

Denoting the ith row of the matrix M as Mi, we note

that Mi is of the form
PCARDðQÞ

j¼1 ajbj where

aj5�ij ð74Þ

bj ¼
��l#
� ji � l

#
� jj
�� ð75Þ

We note that the inequality in Equation (74) follows

from the fact that event enabling and disabling is a

redistribution of the controllable part of the unsuper-

vised transition matrix �. Also, since �# was obtained

via �-precision optimisation, we have

l#
� ji 4 l#

� jj
� ^

qj �
���������!
disabled

qi )
��l#
� ji � l

#
� jj
��5 � ð76aÞ

l#
� ji5 l

#
� jj

� ^
qj �
���������!
enabled

qi )
��l#
� ji � l

#
� jj
��5 � ð76bÞ
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It therefore follows from stochasticity of � that

Mk k15 �k k1� ¼ � ð77Þ

Hence, noting that �
�
I� ð1� �Þ�?

��1��� ���
1
¼ 1, we

have

l?� � l
#
�

�� ��
1
5 �

�
I� ð1� �Þ�?

��1��� ���
1
� j1� �j � �5 �

ð78Þ

which proves the claim made in Equation (72). It then

follows from Lemma 3.1 that for the perfectly observ-

able case we have 8t2 [0, 1), 8�2 (0, 1),

05E

Z t

0


̂?�ðÞd


 �
� E

Z t

0


̂#
� ðÞd


 �
5 � ð79Þ

We recall that for a finite entangled state set QF, the

entangled transition system can be viewed as a

perfectly observable terminating plant (Remark 4.3)

with possibly partial controllability implying that we

must apply the generalised monotonicity lemma

(Lemma A.1). Noting that the above argument is

almost identically applicable for the generalised

monotonicity lemma, it follows that the above result

is true for any non-trivial unobservability map on

the underlying plant G� satisfying CARD(QF)51. The

extension to the general case of infinite QF then

follows from the application of the result to �-approx-
imations of the entangled transition system for �5 �?
(see Lemma 4.4 for explanation of the bound �?) and
recalling the continuity argument stated in Lemma 4.4.

This completes the proof. œ

The performance of MDP- or POMDP-based

models is computed as the total reward garnered by

the agent in the course of operation. The analogous

notion for PFSA-based modelling is the expected value

of integrated instantaneous characteristic
R t
0 �̂ðÞd

(Definition 4.5) as a function of operation time.

Proposition 4.7 (Performance maximisation): The

optimal control policy stated in Algorithm 4.4 maximises

infinite horizon performance in the sense of maximising

the expected integrated instantaneous state characteris-

tic (Definition 4.5), i.e.

8t2 ½0,1Þ, E

Z t

0

�̂?ðÞd


 �
=E

Z t

0

�̂#ðÞd


 �
ð80Þ

where the instantaneous characteristic, at time t, for the

optimal (i.e. as defined by Algorithm 4.4) and an

arbitrary supervision policy is denoted by �̂?ðtÞ and

�̂#ðtÞ, respectively.

Proof: We recall that the result is true for the case of

perfect observation (Equation (42)). Next we recall

from Remark 4.3 that if the unobservability map is

non-trivial, but has a finite QF, then the entangled
transition system E(G, p) can be viewed as a perfectly
observable terminating model with uniform termina-
tion probability �. It therefore follows, that for such
cases, we have:

8t2 ½0,1Þ, E

Z t

0

�̂?EðÞd


 �
=E

Z t

0

�̂#
EðÞd


 �
ð81Þ

We recall from the definition of entangled transition
systems (Definition 4.7),

�EðtÞ ¼ h�ðtÞ, vi ð82Þ

where �(t) is the entangled state at time t, which in turn
implies that we have:

Eð�EÞ ¼ hEð�Þ, vi ð83Þ

Since E(�)ji is the expected sum of conditional
probabilities of strings terminating on state qi of the
underlying plant, we conclude that E(�) is in fact the
stationary state probability vector corresponding to
the underlying plant. Hence it follows that
E(�E)¼E(�) implying that for non-trivial unobserva-
bility maps that guarantee QE51, we have

8t2 ½0,1Þ, E

Z t

0

�̂?ðÞd


 �
=E

Z t

0

�̂#ðÞd


 �
ð84Þ

The general result for infinite entangled state sets (i.e.
for unobservability maps which fail to guarantee
QF51) follows from applying the above result to
�-approximations (Definition 4.11) of the entangled
transition system and recalling the continuity result of
Lemma 4.4. œ

4.6 Computational complexity

Computation of the supervision policy for an under-
lying plant with a non-trivial unobservability map
requires computation of l? (See Step 2 of Algorithm
4.4), i.e. we need to execute Algorithm B.1 first. It was
conjectured and validated via extensive simulation in
Chattopadhyay and Ray (2007b) that Algorithm B.1
can be executed with polynomial asymptotic runtime
complexity. Noting that each of the remaining steps of
Algorithm 4.4 can be executed with worst case com-
plexity of n� n matrix inversion (where n is the size of
the state set Q of the underlying model), we conclude
that the overall runtime complexity of proposed
supervision algorithm is polynomial in number of
underlying model states. Specifically, we have the
following result.

Proposition 4.8: The runtime complexity of the offline
portion of Algorithm 4.4 (i.e. up to line number 11) is
same as that of Algorithm B.1.
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Proof: The asymptotic runtime complexity of
Algorithm B.1, as shown in Chattopadhyay and Ray
(2007b), is M(n� n)�O(I) where M(n� n) is the
complexity of n� n matrix inversion and O(I) is the
asymptotic bound on the number of iterations on
Algorithm B.1. The proof is completed by noting that
the complexity of executing lines 3–11 of Algorithm 4.4
is M(n� n). œ

Remark 4.6: It is immediate that the online portion of
Algorithm 4.4 has the runtime complexity of matrix–
vector multiplication. It follows that the measure-
theoretic optimisation of partially observable plants is
no harder to solve that those with perfect observation.

The results of this section establish the following
facts:

(1) Decision-theoretic processes modelled in the
PFSA framework can be efficiently optimised
via maximisation of the corresponding lan-
guage measure.

(2) The optimisation problem for infinite horizon
problems is shown to be �-approximable, and
the solution procedure presented in this article
is robust to modelling uncertainties and com-
putational approximations. This is a significant
advantage over POMDP-based modelling, as
discussed in detail in Section 1.2.

5. Verification in simulation experiments

The theoretical development of the previous sections is
next validated on two simple decision problems.

The first example consists of a four state mission
execution model. The underlying plant is illustrated in
Figure 6. The physical interpretation of the states and
events is enumerated in Tables 5 and 6. G is the
ground, initial or mission abort state. We assume the
mission to be important; hence abort is assigned a
negative characteristic value of �1. M represents
correct execution and therefore has a positive charac-
teristic of 0.5. The mission moves to state E on
encountering possible system faults (event d) from

states G and M. Any further system faults or an

attempt to execute the next mission step under such

error conditions results in a transition to the critical

state C. The only way to correct the situation is to

execute fault recovery protocols denoted by r.

However, execution of r from the correct mission

execution state M results in an abort. Occurrence of

system faults d is uncontrollable from every state.

Furthermore, under system criticality, we have sensor

failure resulting in unobservability of further system

faults and success of recovery attempts, i.e. the events d

and r are unobservable from state C.
The event occurrence probabilities are tabulated in

Table 5. We note that the probabilities of successful

execution of mission steps (event t) and damage

recovery protocols (event r) are both small under

system criticality in state C. Also, comparison of the

event probabilities from statesM and E reveals that the

probability of encountering further errors is higher

once some error has already occurred and the prob-

ability of successful repair is smaller.
We simulate the controlled execution of the above

described mission under the following three strategies:

(1) Null controller: no control enforced.
(2) Optimal control under perfect observation:

control enforced using Algorithm 3.1 given

that all transitions are observable at the super-

visory level.
(3) Optimal control under partial observation:

control enforced using Algorithm 4.4 given

the above-described unobservability map.

The optimal renormalised measure vector of the

system under full observability is computed to be

[�0.0049 �0.0048 �0.0049 �0.0051]T . Hence, we

observe in Figure 7 that the gradient of the instanta-

neous measure under perfect observation converges to

G M E C
t

r

d t

t

t

d

r r

d

r

d

Figure 6. Underlying plant model with four states Q¼ {G,
M,E,C} and alphabet �¼ {t, r, d}: unobservable transitions
are denoted by dashed arrows ( ZZ!); uncontrollable but
observable transitions are shown dimmed ( ).

Table 5. State descriptions, event occurrence probabilities
and characteristic values.

Physical meaning t r d �

G Ground/abort 0.8 0.05 0.15 �1.00
M Correct execution 0.5 0.30 0.20 0.50
E System fault 0.5 0.20 0.30 �0.20
C System critical 0.1 0.10 0.80 �0.25

Table 6. Event descriptions.

Physical meaning

t Execution of next mission step/objective successful
r Execution of repair/damage recovery protocol
d System fault encountered
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around 0.005. We note that the gradient for the

instantaneous measure under partial observation con-

verges close to the former value. The null controller, of

course, is the significantly poor.
The performance of the various control strategies

are compared based on the expected value of the

integrated instantaneous characteristic E
R t
0 �̂ðÞd

� 
.

The simulated results are shown in Figure 8. The null

controller performs worst and the optimal control

strategy under perfect observation performs best. As

expected the strategy in which we blindly use the

optimal control for perfect observation (Algorithm 3.1)

under the given non-trivial unobservability map is

exceedingly poor and close-to-best performance is

recovered using the optimal control algorithm under

partial observation.
The second example is one that originally appeared

in the context of POMDPs in Cassandra (1994). The

physical specification of the problem is as follows: the

player is given a choice between opening one of two

closed doors; one has a reward in the room behind it,

the other has a tiger. Entering the latter incurs penalty

in the form of bodily injury. The player can also choose

to listen at the doors; and attempt to figure out which

room has the tiger. The game resets after each play;

and the tiger and the reward are randomly placed in

the rooms at the beginning of each such play. Listening

at the doors does not enable the player to accurately

determine the location of the tiger; it merely makes her

odds better. However, listening incurs a penalty; it

costs the player if she chooses to listen. The scenario is

pictorially illustrated in the top part of Figure 9. We

model the physical situation in the PFSA framework as

shown in the bottom part of Figure 9.
The PFSA has seven states Q¼ {N,T1,T2,L1,

L2,T,A} and eight alphabet symbols �¼ {s1, s2, ‘, tC,
tI, c1, c2, n}. The physical meanings of the states

and alphabet symbols are enumerated in Tables 7

Figure 9. Top: Illustration of the physical scenario, Bottom:
Underlying plant model with seven states and eight alphabet
symbols: unobservable transitions are denoted by dashed
arrows ( ZZ!); uncontrollable but observable transitions
are shown dimmed (!).
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Figure 7. Gradient of integrated instantaneous measure as a
function of operation time.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−800

−700

−600

−500

−400

−300

−200

−100

0

100

Optimal policy : perfect observation

Optimal policy : partial observation

Null controller

Assuming perfect observation

Figure 8. Performance as a function of operation time.

Table 7. State descriptions.

Physical meaning

N Game (Re)Initialise
T1 Tiger in 1
T2 Tiger in 2
L1 Listen: tiger in 1
L2 Listen: tiger in 2
T Tiger chosen
A Award chosen
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and 8, respectively. The characteristic values and the

event generation probabilities are tabulated in Table 9.

States A and T have characteristics of 1 and �1 to

reflect award and bodily injury. The listening states L1

and L2 also have negative characteristic (�0.75) in

accordance with the physical specification. An inter-

esting point is the assignment of negative characteristic

to the states T1 and T2 and this prevents the player

from choosing to disable all controllable moves from

those states. Physically, this precludes the possibility

that the player chooses to not play at all and sits in

either of those states forever; which may turn out to be

the optimal course of action if the states T1 and T2 are

not negatively weighted.
Figure 10 illustrates the difference in the event

disabling patterns resulting from the different strate-

gies. We note that the optimal controller under perfect

observation never disables event ‘ (event no. 3), since

the player never needs to listen if she already knows

which room has the reward. In the case of partial

observation, the player decides to selectively listen to

improve her odds. Also, note that the optimal policy

under partial observation enables events significantly

more often as compared to the optimal policy under

perfect observation. The game actually proceeds via

different routes in the two cases, hence it does not

make sense to compare the control decisions after a

given number of observation ticks, and the differences

in the event disabling patterns must be interpreted only
in an overall statistical sense.

We compare the simulation results in Figures 11
and 12. We note that in contrast to the first example,
the performance obtained for the optimally supervised
partially observable case is significantly lower com-
pared to the situation under full observation. This
arises from the physical problem at hand; it is clear
that it is impossible in this case to have comparable
performance in the two cases since the possibility of
incorrect choice is significant and cannot be elimi-
nated. The expected entangled state and the stationary
probability vector on the underlying model states is
compared in Figure 13 as an illustration for the result
in Proposition 4.7.

6. Summary, conclusions and future work

In this article we present an alternate framework based
on probabilistic finite-state machines (in the sense of
Garg (1992a, 1992b)) for modelling partially observ-
able decision problems and establish key advantages of
the proposed approach over the current state of art.
Namely, we show that the PFSA framework results in
approximable problems, i.e. small changes in the
model parameters or small numerical errors result in
small deviation in the obtained solution. Thus one is
guaranteed to obtain near optimal implementations of
the proposed supervision algorithm in a computation-
ally efficient manner. This is a significant improvement
over the current state of art in POMDP analysis;
several negative results exist that imply it is impossible
to obtain a near-optimal supervision policy for arbi-
trary POMDPs in an efficient manner, unless certain
complexity classes collapse (see detailed discussion in
Section 1.2). The key tool used in this article is the
recently reported notion of renormalised measure of
probabilistic regular languages. We extend the measure
theoretic optimisation technique for perfectly observ-
able PFSA to obtain an online implementable super-
vision policy for finite-state underlying plants, for
which one or more transitions are unobservable at the

Table 9. Event occurrence probabilities and characteristic values.

� s1 s2 ‘ tC tI c1 c2 n

N 0.00 0.5 0.5 0 0 0 0 0 0
T1 �0.25 0 0 0.33 0 0 0.33 0.33 0
T2 �0.25 0 0 0.33 0 0 0.33 0.33 0
L1 �0.75 0 0 0 0.8 0.2 0 0 0
L2 �0.75 0 0 0 0.8 0.2 0 0 0
T �1.00 0 0 0 0 0 0 0 1
A 1.00 0 0 0 0 0 0 0 1

Table 8. Event descriptions.

Physical meaning

s1 Tiger placed in 1 (unobs.)
s2 Tiger placed in 2 (unobs.)
‘ Choose listen (cont.)
tc Correct determination
tI Incorrect determination
c1 Choose 1 (cont.)
c2 Choose 2 (cont.)
n Game reset
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supervisory level. It is further shown that the proposed
supervision policy maximises the infinite horizon
performance in a sense very similar to that generally
used in the POMDP framework; in the latter the
optimal policy maximises the total reward garnered by

the plant in the course of operation, while in the
former, it is shown that the expected value of the
integrated instantaneous state characteristic is max-
imised. Two simple decision problems are included as
examples to illustrate the theoretical development.

6.1 Future work

Future work will address the following areas:

(1) Validation of the proposed algorithm in real-
life systems with special emphasis of probabil-
istic robotics, and detailed comparison with
existing techniques: of particular interest would
be comparative experimental studies that effec-
tively demonstrate the significant computa-
tional advantage of the approach proposed in
this article over the POMDP-based state of the
art. Carefully designed experiments in robotic
mission planning involving sufficiently complex
decision problems would be one of the key
areas that the authors would pursue in the
immediate future. It is expected that the
proposed approach would be successful in
efficiently solving problem instances that
would most probably prove to be intractable
to competing techniques.

(2) Generalisation of the proposed technique to
handle unobservability maps with unbounded
memory, i.e. unobservability maps that result
in infinite-state phantom automata: it was
shown in Chattopadhyay and Ray (2008a)
that for such non-regular unobservability
maps, the problem of exactly determining the
underlying state is undecidable. However, since
the proposed control approach does not need
to compute the exact underlying state, the
authors are hopeful that an extension to such
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Figure 11. Gradient of integrated instantaneous measure as
a function of operation time.
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N T1 T2 L1 L2 T A
0

0.05

0.1

0.15

0.2

0.25

Underlying plant states

Expected entangled state

Stationary probabilities

Figure 13. Comparison of expected entangled state with the
stationary probability vector on the underlying plant states
for the optimal policy under partial observation.
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general unobservability scenarios might be
possible.

(3) Adaptation of the proposed approach to solve
finite horizon decision problems which appear
to be harder in the proposed framework as
compared to the infinite-horizon solution.

Acknowledgements

This work has been supported in part by the US Army
Research Laboratory (ARL) and the US Army Research
Office (ARO) under Grant No. W911NF-07-1-0376, by the
US Office of Naval Research (ONR) under Grant No.
N00014-09-1-0688, and by NASA under Cooperative
Agreement No. NNX07AK49A. Any opinions, findings
and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

References

Atrash, A., and Koenig, S. (2001), ‘Probabilistic Planning for

Behavior-based Robots’, in Proceedings of the International

FLAIRS conference (FLAIRS), pp. 531–535.

Bapat, R.B., and Raghavan, T.E.S. (1997), Nonnegative

Matrices and Applications, Cambridge: Cambridge

University Press.
Berman, A., and Plemmons, R.J. (1979), Nonnegative

Matrices in the Mathematical Science, New York:

Academic Press.
Burago, D., de Rougemont, M., and Slissenko, A. (1996),

‘On the Complexity of Partially Observed Markov

Decision Processes’, Theoretical Computer Science, 157,

161–183.
Cassandra, A.R. (1994), Optimal Policies for Partially

Observable Markov Decision Processes, Providence, RI,

USA: Technical report.
Cassandra, A.R. (1998), ‘Exact and Approximate

Algorithms for Partially Observable Markov Decision

Processes’, Ph.D. Thesis, Providence, RI, USA: Adviser-

Leslie Pack Kaelbling.

Chattopadhyay, I. (2006), ‘Quantitative Control of

Probabilistic Discrete Event Systems’, PhD Dissertation,

Department of Mechanical Engineering Pennsylvania State

University. http://etda.libraries.psu.edu/theses/approved/

WorldWideIndex/ETD-1443.
Chattopadhyay, I., and Ray, A. (2006a), ‘A Language

Measure for Partially Observed Discrete Event Systems’,

International Journal of Control, 79, 1074–1086.

Chattopadhyay, I., and Ray, A. (2006b), ‘Renormalized

Measure of Regular Languages’, International Journal of

Control, 79, 1107–1117.
Chattopadhyay, I., and Ray, A. (2007a), ‘Generalized

Projections in Finite-state Automata & Decidability of

State Determinacy’, in American Control Conference

(ACC), pp. 5664–5669.
Chattopadhyay, I., and Ray, A. (2007b), ‘Language-

measure-theoretic Optimal Control of Probabilistic

Finite-state Systems’, International Journal of Control, 80,

1271–1290.
Chattopadhyay, I., and Ray, A. (2008a), ‘Generalised

Projections in Finite-state Automata & Decidability of

State Determinacy’, International Journal of Control, 81,

1626–1644.
Chattopadhyay, I., and Ray, A. (2008b), ‘Structural

Transformations of Probabilistic Finite-state Machines’,

International Journal of Control, 81, 820–835.
Garg, V.K. (1992a), ‘An Algebraic Approach to Modeling

Probabilistic Discrete Event Systems’, in Proceedings of

1992 IEEE Conference on Decision and Control, Tucson,

AZ, pp. 2348–2353.
Garg, V.K. (1992b), ‘Probabilistic Languages for

Modeling of DEDs’, in Proceedings of 1992 IEEE

Conference on Information and Sciences, Princeton, NJ,

pp. 198–203.
Gribaudo, M., Sereno, M., Horvath, A., and Bobbio, A.

(2001), ‘Fluid Stochastic Petri Nets Augmented with

Flush-out Arcs: Modelling and Analysis’, Discrete Event

Dynamic Systems, 11(1–2), 97–117.
Hansen, E.A. (1998), ‘Finite-memory Control of Partially

Observable Systems’, Ph.D. Thesis, Amherst, MA, USA:

Director- Shlomo Zilberstein.
Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2001),

Introduction to Automata Theory, Languages, and

Computation (2nd ed.), Addison-Wesley.

Kushmerick, N., Hanks, S., and Weld, D.S. (1995), ‘An

Algorithm for Probabilistic Planning’, Artificial

Intelligence, 76, 239–286.
Lusena, C., Goldsmith, J., and Mundhenk, M. (2001),

‘Nonapproximability Results for Partially Observable

Markov Decision Processes’, Journal of Artificial

Intelligence Research, 14, 83–103.

Madani, O., Hanks, S., and Condon, A. (1999), ‘On the

Undecidability of Probabilistic Planning and Infinite-

horizon Partially Observable Markov Decision

Problems’, in AAAI ‘99/IAAI ’99: Proceedings of the

Sixteenth National Conference on Artificial Intelligence and

the Eleventh Innovative Applications of Artificial

Intelligence Conference Innovative Applications of

Artificial Intelligence, Menlo Park, CA, USA: American

Association for Artificial Intelligence, pp. 541–548.

Mcallester, D., and Rosenblitt, D. (1991),

‘Systematic Nonlinear Planning’, in Proceedings of the

Ninth National Conference on Artificial Intelligence,

pp. 634–639.
Moody, J.O., and Antsaklis, P.J. (1998), Supervisory Control

Ofdiscrete Event Systems using Petri Nets, Boston: Kluwer

Academic.

Paz, A. (1971), Introduction to Probabilistic Automata

(Computer Science and Applied Mathematics), Orlando,

FL, USA: Academic Press, Inc.
Penberthy, J.S., and Weld, D.S. (1992), Ucpop: A Sound,

Complete, Partial Order Planner for ADL, San Matco, CA:

Morgan Kaufmann, pp. 103–114.
Peng, J., and Williams, R.J. (1993), Efficient Learning and

Planning within the Dyna Framework, Adaptive Behavior,

pp. 437–454.

International Journal of Control 481

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
h
a
t
t
o
p
a
d
h
y
a
y
,
 
I
s
h
a
n
u
]
 
A
t
:
 
1
6
:
2
4
 
8
 
F
e
b
r
u
a
r
y
 
2
0
1
0



Puterman, M.L. (1990), ‘Markov Decision Processes’,
in Handbook of Operations Research eds. D.P. Heyman,

& M.J. Sobel, North Holland Publishers, pp. 331–434.
Rabin, M.O. (1963), ‘Probabilistic Automata’, Information
and Control, 6, 230–245.

Ramadge, P.J., and Wonham, W.M. (1987), ‘Supervisory

Control of a Class of Discrete Event Processes’, SIAM
Journal of Control and Optimization, 25, 206–230.

Ray, A. (2005), ‘Signed Real Measure of Regular Languages

for Discreteevent Supervisory Control’, International
Journal of Control, 78, 949–967.

Ray, A., Phoha, V., and Phoha, S. (2005), Quantitative

Measure for Discrete Event Supervisory Control,
New York: Springer.

Rudin, W. (1988), Real and Complex Analysis (3rd ed.),
New York: McGraw Hill.

Sondik, E.J. (1978), ‘The Optimal Control of Partially
Observable Markov Processes Over the Infinite Horizon:
Discounted Costs’, Operations Research, 26, 282–304.

Stewart, W. (1999), Computational Probability: Numerical
Methods for Computing Stationary Distribution of Finite
Irreducible Markov Chains, New York: Springer.

White, D.J. (1993), Markov Decision Processes, Chichester:
Wiley.

Zhang, W., and Golin, G.M.J. (2001), Algorithms for

Partially Observable Markov Decision Processes,
Technical report, Hong Kong University of Science and
Technology.

Appendix A. Generalised monotonicity lemma

The following proposition is a slight generalisation of the
corresponding result reported in Chattopadhyay and Ray
(2007b) required to handle cases where the effect of event
disabling is not always a self-loop at the current state but
produces a pre-specified reconfiguration, e.g.

Disabling qi!
�
qj results in qi!

�
qk

Note that for every state qi2Q, it is pre-specified where each
event � will terminate on been disabled. This generalisation is
critical to address the partial controllability issues arising
from partial observation at the supervisory level.

Proposition A.1 (Monotonicity): Let Gð�Þ ¼ ðQ,�, �,
ð1� �Þe�,�,CÞ be reconfigured to G#

� ¼ ðQ,�, �#,
ð1� �Þe�#, v,CÞ as follows: 8i, j, k2 {1, 2, . . . , n}, the (i, j)th

element �#
ij and the (i, k)th element �#

ik of �# are obtained as

�#
ij ¼ �ij þ �ij

�#
ik ¼ �ik � �ij

)
if 	j 4	k with �ij 4 0

�#
ij ¼ �ij

�#
ik ¼ �ik

)
if 	j ¼ 	k

�#
ij ¼ �ij � �ij

�#
ik ¼ �ik þ �ij

)
if 	j 5	k with �ij 4 0

ð85Þ

Then for the respective measure vectors be l� and l
#
� ,

l#
� = ELEMENTWISE l� 8�2 ð0, 1Þ ð86Þ

with equality holding if and only if �#
¼�.

Proof: From the definition of renormalised measure
(Definition 2.9), we have

l#
� � l� ¼ � I� ð1� �Þ�#

� ��1
�� I� ð1� �Þ�½ �

�1v

¼ I� ð1� �Þ�#
� ��1

ð1� �Þ �# ��
� 

l�

Defining the matrix D ¼4 �#
��, and the ith row of D as Di,

it follows that

Dil� ¼
X
j

Dijl�jj ¼
X
j

�ij�ij ð87Þ

where

�ij ¼

ðl�jk � l�jj Þ if l�jk 4 l�jj
0 if l�jk ¼ l�jj

ðl�jj � l�jkÞ if l�jk 5 l�jj

8><>: ¼)�ij= 0 8i, j

Since 8j,
Pn

i¼1 �ij ¼
Pn

i¼1 �#
ij ¼ 1, it follows from non-

negativity of �, that [I� (1� �)�#]�1 =ELEMENTWISE 0. Since
�ij4 0\,8i, j, it follows that Dil� � 0 8i ) l#

� = ELEMENTWISEl�.
For l�jj 6¼ 0 and D as defined above, Dil�¼ 0 if and only if
D¼ 0. Then, �#

¼� and l#
� ¼ l�. œ

Appendix B. Pertinent algorithms for

measure-theoretic control

This section enumerates the pertinent algorithms for
computing the optimal supervision policy for a perfectly
observable plant G ¼ ðQ,�, �,e�,�,CÞ. For the proof of
correctness, the reader is referred to Chattopadhyay and Ray
(2007b).

In Algorithm B.2, we use the following notation:

M0 ¼

�
I� Pþ Cð�Þ

	�1
, M1 ¼

"
I�

�
I� Pþ Cð�Þ

	�1#

M2 ¼ inf
�6¼0

���������I� Pþ �P
��1��������

1

Also, as defined earlier, C(�) is the stable probability
distribution which can be computed using methods reported
widely in the literature (Stewart 1999).
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