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a b s t r a c t

One of the key issues in symbolic dynamic filtering (SDF) is how to obtain a lower bound
on the length of symbol blocks for computing the state probability vectors of probabilistic
finite-state automata (PFSA). Having specified an absolute error bound at a confidence
level, this short work formulates a stopping rule by making use of Markov chain Monte
Carlo (MCMC) computations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Symbolic dynamic filtering (SDF) has been used as a tool for anomaly detection [1] and also for feature extraction in
pattern classification problems [2]. The theory of SDFmakes the following assumptions on the underlying dynamical system.
• The system behavior is statistically quasi-stationary at the fast scale of time series data acquisition.
• An observable non-stationary behavior can be associated with changes evolving at a slow time scale.

While time series of sensor data are converted to symbol blocks, a key issue in SDF is how to decide the length of the
symbol block for construction of probabilistic finite-state automata (PFSA) models so that these models capture significant
statistical properties of the dynamical system. Usually, the longer the symbol block is, themore accurate the state probability
vector is expected to be. However, very long symbol blocks may not always be admissible because of the assumption of
quasi-stationarity in the SDF analysis.
Anomaly detection usually consists of two phases, namely the offline learning phase and the online monitoring phase.

In the learning phase, some features of the system are extracted under a nominal condition. In the monitoring phase, the
same features are computed and compared to the features obtained in the learning phase by using an appropriate diversity
measure or a statistical test to detect and quantify the anomaly.
Using a stopping rule, referred to as the relative error method in the sequel, has been proposed by Ray [3]; this is based

on the Perron–Frobenius theorem of irreducible matrices and the ergodic theory of finite-state Markov chains. The stopping
time is computed as the ratio of the number of Markov states and the tolerance η (that is a free parameter to be chosen).
Although this stopping rule [3] is computationally efficient, it does not specify how to choose the parameter η.
Flegal and Haran [4] proposed an asymptotic stopping rule, called the fixed-width method, based on the central limit

theorem. Having specified a confidence level, an absolute error bound ε is computed to construct the stopping criterion.
However, there is no guarantee that the process will stop at a finite step and it does not provide an explicit relation between
the stopping point and the absolute error bound ε. Although this method might work for offline learning, it is not deemed
suitable for online monitoring.
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This short work formulates and validates a stopping rule based on Markov chain Monte Carlo (MCMC) computations.
The stopping criterion is obtained via a relation between the tolerance η and the absolute error bound ε, which is generated
offline by the learning algorithm. Subsequently, the stopping rule is executed online to obtain an adaptive confidence interval
of the state probability vector p of the PFSA for anomaly detection.

2. Statement of the problem

Let a statistically stationary dynamical system bemodeled as a stationaryMarkov chain S = {s0, s1, s2, . . .} of finite order
D, whereD is a positive integer. Let the symbols si ∈ S belong to a (finite) alphabetΣ and letΣ∗ be the set of all finite-length
strings of symbols including the null string ε. Each state q of S is labeled with a symbol block of length D belonging to Σ∗
and we let qj to be the unique label of the jth state. For example, if Σ = {0, 1} and D = 2, then the possible states are
q1 = 00, q2 = 01, q3 = 10, and q4 = 11.
If S is assumed to be an ergodic Markov chain (i.e., the associated (n × n) state transition matrix Π is irreducible,

where n ≤ |Σ |D), then it follows from the Perron–Frobenius theorem [5] that there exists a unique probability vector
p = [p1, p2, . . . , pn] such that pΠ = p with the constraints

∑
i pi = 1 and pi > 0 ∀i. Then, p is called the state probability

vector of theMarkov chain S. In the setting of SDF, the quasi-stationary state probability vector of the PFSA could be selected
as the feature which captures the statistical property of the dynamical system.
For a particular symbol block sr = {si}ri=1 generated by S, let p̂(r) , [p̂1(r) p̂2(r) · · · p̂n(r)] be the estimated state

probability vector. Each element of p̂(r) is defined as

p̂i(r) =
1
r

r∑
j=1

Jqi ◦ T
j(sr) =

N ri
r
, i = 1, 2, . . . , n (1)

where Jqi(x) is an indicator function, i.e.,

Jqi(x) =
{
1 if qi is a prefix of the string x
0 otherwise.

T is the left shift operator, i.e., T (s1s2s3 . . .) = s2s3 . . ., and N ri the number of times the block s
r visits the state qi.

By the ergodic theorem for a Markov chain, it is guaranteed that p̂(r)→ p as r →∞. The problem is finding aminimal
stopping point rstop such that p̂(rstop) computed from a symbol block of length rstop satisfies the following condition:

‖p̂(rstop)− p‖∞ < ε with a confidence level (1− α) (2)
where ‖ • ‖∞ is the max norm of the finite-dimensional vector •, and ε is the absolute error bound of the estimation.

3. Stopping rules

The difficulty encountered in the above stopping problem is that the limit point p is unknown in Eq. (2). Without loss of
generality, the block length of each state is set to D = 1, because it is possible to rename the alphabetΣ as the labels of the
states.

3.1. Relative error method

The absolute error between successive iterations is obtained as

‖p̂(r)− p̂(r + 1)‖∞ = max
i

∣∣∣∣∣N rir − N r+1i

r + 1

∣∣∣∣∣ < 1r (3)

because N r+1i can only take two values N ri or N
r
i + 1 depending on which state is visited next.

With the objective of identifying the stopping point rstop, a tolerance η (0 < η � 1) is specified for the relative error
such that

‖
(
p̂(r)− p̂(r + 1)

)
‖∞

‖
(
p̂(r)

)
‖∞

≤ η ∀r ≥ rstop. (4)

Since the minimum possible value of ‖
(
p̂(r)

)
‖∞ for all r is 1n , where n is the number of states (i.e., the dimension of the

vector p̂(r)), the least of the most conservative values of the stopping point is obtained from Eqs. (3) and (4) as

rstop = max
(
ceil

(
n
η

)
, rmin

)
(5)

where ceil(•) rounds the real number • to the nearest integer towards infinity, and rmin is the minimum allowable value of
rstop. The rationale for including rmin is to avoid the risk of premature termination possibly due to an erroneous value of η.
Note that a shortcoming of the relative error method in its present form is that the relation between the absolute error ε
and the tolerance η is not specified. This might lead to an arbitrary choice of η.
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3.2. Markov chain Monte Carlo (MCMC) methodology

TheMarkov chainMonte Carlo (MCMC) tools have been used to estimate Eµg =
∫
Ω
g(x)µ(dx)where g(x) is a real-valued,

µ-integrable function onΩ . Under certain specified conditions, the ergodic theorem [6] implies that

ḡr :=
1
r

r−1∑
i=0

g(si)
a.e.
−→ Eµg as r →∞. (6)

The following statement of the central limit theorem [6] has been used in formulating the MCMC stopping rule.

Theorem 3.1. Given a Markov chain S = {s0, s1, . . .} and a real-valued and µ-integrable function g on Ω , if S is uniformly
ergodic [6] and Eµg2 <∞, then the following central limit theorem for g holds:

√
r(ḡr − Eµg)

d
−→ N(0, σ 2g ) as r →∞ (7)

where σ 2g , Varµ{g(s0)} + 2
∑
∞

i=1 Covµ{g(s0), g(si)}.

The central limit theorem holds because an ergodic Markov chain defined on a finite state space is uniformly ergodic [7].
Taking g as the indicator function of the state i, the limit of the time average ḡr becomes pi, the ith element of the state
probability vector p.
Fixed-width methodology [4] constructs an asymptotically valid confidence interval of the estimate p̂i in terms of the

N(0, 1) cumulative distribution function Φ , the confidence level (1 − α) and the block length r . Given the absolute error
bound ε and the estimated standard deviation (σ̂g)i, the stopping rule for estimated probability p̂i of the state qi is

(σ̂g)i
√
r
Φ−1

(
1−

α

2

)
+ θ(r, rmin) ≤ ε ∀i ∈ {1, 2, . . . , n} (8)

where θ(r, rmin) , εI(r < rmin) and I is the usual indicator function, namely,

I(•) =
{
1 if the statement • is true
0 if the statement • is false.

The rationale for including the term θ(r, rmin) in Eq. (8) is to avoid the risk of premature termination possibly due to
inaccuracy in the computation of (σ̂g)i.
There are several ways for obtaining an estimate σ̂g . As suggested in [4], the method of batch means requires weak

conditions on the function g and is implemented as follows. If the symbol block is of total length r = ab, then the batch
means estimate of variance of state qi is calculated as follows:

Ȳij ,
1
b

jb∑
k=(j−1)b+1

I(sk = qi) (9)

(
σ̂g
)
i =

√√√√ b
a− 1

a∑
j=1

(
Ȳij − p̂i(r)

)2 and σ̂g = max
i

(
σ̂g
)
i. (10)

The real parameters a and b both increase as r increases. A convenient choice is b(r) = O(
√
r).

3.3. Algorithms for the stopping rule

The following algorithms are proposed to serve as the stopping rule for SDF. Under a nominal condition, the η–ε relation
function f is computed offline via Algorithm 1. Having the function f already computed, the relative errormethod [3] is used
to compute the estimated state probability vector p̂(rstop) online from a symbol block of length rstop by Algorithm 2. Finally, a
Boolean variable FLAG is produced to indicate whether the deviation of the online estimation p̂(rstop) of the stationary state
probability vector from p̂ref (that is already computed offline in the learning phase) is within the absolute error bound ε.

4. Summary and conclusions

This short work presents a flexible stopping rule for online monitoring in the framework of symbolic dynamic filtering
(SDF) [1] andMarkov chainMonte Carlo (MCMC) [8] computations. The stopping rule uses the fixed-widthmethodology [4]
to find the η–ε relation offline, which serves as the information input to the relative error method [3]. This algorithm can be
used for SDF-based anomaly detection [1] by checking the Boolean variable FLAG, where FLAG= 1 indicates that the (online
estimated) state probability vector has deviated from its (offline computed) nominal value beyond a specified bound at a
given confidence level.
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Algorithm 1 Algorithm of Offline Learning
Input: Symbol block sL of length L, absolute error bound ε, number of states n, minimum block length rmin, and confidence
level (1− α).
Output: Estimate of stationary probability vector p̂ref and η–ε relation function f , i.e. η = f (ε).
Select y = {yj} for computing x = {xj}.
for each yj in y do

Compute rj = max
(
ceil

(
n
yj

)
, rmin

)
.

Obtain the symbol block srj .
Use Eqs. (9) and (10) to estimate σ̂g from srj .
xj =

σ̂g
√rj

Φ−1
(
1− α

2

)
from Eq. (8).

end for
Regression analysis to obtain f based on the pair (x, y).
Compute p̂ref from the whole symbol block using Eq. (1).

Algorithm 2 Algorithm of Online Monitoring
Input: Offline estimated stationary probability vector p̂ref , absolute error bound εm, minimum block length rmin, number
of states n, and η–ε relation function f .
Output: Stopping time rstop, state vector p̂(rstop) and FLAG.
Compute η = f (εm).
Compute rstop = max

(
ceil

( n
η

)
, rmin

)
by using Eq. (5).

Compute p̂(rstop) from a symbol block srstop by using Eq. (1).
if ‖p̂(rstop)− p̂ref ‖∞ ≤ εm then
FLAG= 0.

else
FLAG= 1.

end if
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