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a b s t r a c t

A sensor network operates on an infrastructure of sensing, computation, and communication, through
which it perceives the evolution of events it observes. We propose a fusion-driven distributed dynamic
network controller, called MDSTC, for a multi-modal sensor network that incorporates distributed
computation for in-situ assessment, prognosis, and optimal reorganization of constrained resources
to achieve high quality multi-modal data fusion. For arbitrarily deployed sensors, a certain level of
data quality cannot be guaranteed in sparse regions. MDSTC reallocates resources to sparse regions;
reallocation of network resources in this manner is motivated by the fact that an increased density of
sensor nodes in a region of interest leads to better quality data and enriches the network resilience.
Simulation results in NS-2 show the effectiveness of the proposed MDSTC.1

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

A distributed sensor network consists of many low-cost mo-
bile or fixed sensor nodes that are networked to observe spatial-
temporal distributed events. Observations, decisions or estimates
made by individual sensors are fused together to create a compos-
ite view of the situation. The sensor nodes must dynamically col-
laborate to fuse information in the vicinity of an arbitrary critical
event to optimize its identification, classification, and tracking in
operational environments. The sensor nodes and the network they
form are resource-constrained in terms of network bandwidth,
the lifetime of the node’s battery, sensing range and communica-
tion radius. Consequently, it is important to dynamically control
the available resources to deliver acceptable sensor fusion perfor-
mance and possibly to maximize this performance, measured in
terms of data accuracy for fusion. The techniques described com-
bine distributed control and self-adaptation of the network topol-
ogy to the requirements of the application running at the highest
level at each sensor node, and can be applied to solve many prob-
lems in military, homeland security, medicine, civil engineering,
bathymetry, terrain mapping, etc. Previous research efforts [3] fo-
cused on human-controlled or human-guided sensor networks. In
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this paper we consider networks that are autonomous; there is no
human intervention involved in designing or organizing the net-
work.

Heterogeneous sensor networks have been extensively stud-
ied for the purpose of classifying and tracking mobile targets, by
obtaining an accurate estimation of the sensed event(s) locations
based on the sensors’ locations [27], measured signal strength, and
the quality of the raw data [5,16,25,14]. When a multi-modal sen-
sor network is used to track moving targets, the critical resource
optimization parameters are power consumption, coverage, com-
munication, and data fusion. Major sources of wasted energy are
communication collisions, overhearing, idle listening, and control
overhead [32]. Idle listening can be minimized by an appropriate
sleep-and-awake schedule for nodes [33,4,10,26]. Collisions can be
minimized by scheduling the local transmission [1] and overhear-
ing can be minimized by reducing the transmission power [12]. To
optimize the region coverage, various fault tolerant schemes for
the network topology are researched in order to guarantee that a
certain area is covered [34,7,18,28]. To optimize communication,
the network capacity is to be maximized and the network delay is
to be minimized [17]. To optimize data fusion, interference is to be
reduced by scheduling nodes’ transmission [11], higher fidelity of
raw data is to be obtained by moving sensors closer to observed
event(s) [18], high fidelity compressed data is to be obtained from
the raw data [6], and the delivery rate of fused data is to be in-
creased [31].

When a mobile target approaches a sensor node and the stimu-
lus at the node is above a given threshold, an event is said to have
been detected. However, if the threshold is not reached then the
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event is labeled as undetected and ignored. When an event is de-
tected by a sensor node, the node broadcasts a message contain-
ing the event description and the event data. Since the events are
assumed to be localized in time and space, a burst of communica-
tion will occur in a small geographic region surrounding the tar-
get. So, instead of analyzing the topology of the entire network, we
concentrate on the topology of a relatively small geographical re-
gion around themobile target where nodes that are geographically
near observe an event of interest and form multi-modal (hetero-
geneous) clusters that together support a specified level of multi-
modal data fusion. We present MDSTC, a distributed network
controller for a multi-modal sensor network, responsible for clus-
tering nodes in the space–time vicinity of amoving object, improv-
ing data fusion by adapting the network topology (i.e., changing the
location of selected mobile nodes and the transmission range of
selected nodes), localizing and tracking the object. MDSTC is an
adaptation of the dynamic space–time clustering (DSTC) proto-
col [8,19–21] to the sensors’ heterogeneity and mobility; it has the
enhanced capability to coordinate mobile nodes within a cluster
to move to nearby locations in order to lower interference, avoid
field obstructions, and cover sparse regions. Thus the topology of
the cluster self-adapts to achieve better data fusion.

During the data fusion (necessary for tracking moving events),
two modes of intra-cluster communication are supported: be-
tween the same modality sensors and between sensors of com-
plementary modalities. In order to minimize the local network
communication that leads to reduced power consumption and
network bandwidth, we also describe a novel multicast group
management protocol that handles multicast groups between
same-modality and complementary sensors.

The paper is organized as follows. In Section 2 we present the
network architecture, the system model, and the communication
optimization through multicast. The multi-modal data fusion at
the nodes observing an event of interest is presented in Section 3.
In Section 4 we present the multi-modal cluster formation and
the dynamic adaptation of the multi-modal cluster to improve
data fusion. In Section 5 we show how the proposed multi-modal
network controller improves the quality of the multi-modal data
fusion and we present the results of the experiments conducted in
our laboratory. Section 6 presents conclusions and future work.

2. Network architecture and systemmodel

An event is a dynamical process that is observed by sensors
of various modalities. The time-series data observed by a sensor
of a certain modality can be compressed to a probabilistic finite
state automaton (PFSA) with an a priori fixed alphabet [24], which
depends strictly on themodality of the sensor. The PFSA is designed
to extract themaximumsemantic information from the raw sensor
data, while at the same time it compresses the sensory data to
minimize the network bandwidth requirements. At each node
the data is handled in a module called Information Space and
the network communication issues and adaptation decisions are
addressed by a separate module called Network Design Space
[22,23]; the system model at a node is presented in Fig. 1.

DSTC [8] protocol works for single-modality wireless networks
and it has five basic operations: creating a cluster, disbanding a
cluster, adding a node to a cluster, removing a node from a cluster,
and moving the data from the cluster head to another cluster
member. We adapted DSTC to multi-modal mobile sensors and
we call the new algorithm the multi-modal dynamic space–time
clustering (MDSTC). MDSTC is part of NDS and is responsible
for clustering nodes in the space–time vicinity of a moving
object, improving data fusion, adapting the network topology by
movingmobile sensors to dynamically computed locations in order
to cover sparse regions and lower communication interference,
localizing and tracking the object that has triggered the composite
pattern.

As DSTC, MDSTC allocates the sensor network resources only in
the space–time vicinity of an event or object, resources that belong
to multi-modal, resource-constrained, mobile sensor nodes. It also
dynamically alters the topology of each cluster formed around
an event by allocating and de-allocating resources (i.e., moving
sensors in or out of a cluster) in order to maintain a specified level
of fusion performance. The space–time vicinity of an event [8,20,
9] is defined as the set of all space–time points that are close to the
space–time point (x0, t0) within a time and space boundary:

η(x0, t0, 1x, 1t) = {(x, t)|‖x − x0‖ ≤ 1x ∧ ‖t − t0‖ ≤ 1t}. (1)

The quantities 1x and 1t define the size of the neighborhood.
Multi-modal data that was measured within a distance 1x around
x0 and within the time interval t0 ± 1t will be used for data fusion
and the sensors within this neighborhood will be considered for a
multi-modal space–time cluster.

A distributed network of sensors achieves high performance by
exploiting sensor data fusion. Sensors of various modalities group
together to form dynamic multi-modal clusters; their sensed data
(of various modalities) is fused locally at each node. The clustering
of multi-modal sensors is done in two stages.

Stages 1 and 2 of data fusion entail the following type of
communication. In Stage 1, same-modality sensor nodes located
within the sensing radius of the sensed event need to inform one
another about the minimum semantic distance between the PFSA
observed by a sensor node and some reference PFSA from the
library. The minimum semantic distance argument translates into
the best match argument between an observed PFSA pattern and
the set of reference patterns. Thus, during Stage 1, the sensor nodes
need only to communicate with like-modality sensors.

Stage 2 focuses on constructing the composite PFSA that has
the best possible composite metric. The composite PFSA is made
up of PFSA from all sensors of complementary sensing modalities.
Consequently, during Stage 2 only communication between sen-
sors of different sensingmodalities is needed. In the sequel, we de-
scribe a novel multicast grouping algorithm that can substantially
reduce the communication among sensors, as well as computation
at nodes.

Let S be the set of sensors in a given region and let k = |S|.
For any given sensing modality s, the set S can be partitioned into
Ss, the subset of sensors that have the same sensing modality s,
and S¬s = S \ Ss, the subset of nodes with the sensing modality
complementary to s; let ks = |Ss|.

During Stage 1, all nodes in S need to broadcast their semantic
distance among themselves; the message will be processed by an
application entity present in the application layer of the protocol
stack of each node. However, this broadcast message will have
relevance only for the |ks| (≪ |k|) sensor nodes. The application
entities of the remaining |k−ks| sensors of complementary sensing
modality will however, receive, process and eventually discard
such messages, resulting in unnecessary processing cycles and
consumption of limited battery power.

Stage 2 deals with the formation of composite PFSA at each
node of some modality s, which are made up of individual PFSA
provided by sensors of ¬s sensing modalities in addition to the
PFSA constructed by the node. Therefore in Stage 2, a node from
S¬s of sensingmodality s′ ≠ s needs to send its PFSA only to a node
of sensing modality s; this is the converse of Stage 1. After a node
i ∈ S¬s broadcasts its PFSA to all the nodes inS, such amessagewill
be relevant to only the nodes in Ss; the remaining k− ks − 1 nodes
will waste their processing cycles in receiving and then discarding
such a message. The number of wasted processing cycles can be
quite substantial, since a packet meant for an application has to
traverse all the protocol layers, before it is accepted or thrown
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Fig. 1. System model for a sensor node (independent of the sensor modality).
away by the application layer. Without multicasting, the amount
of CPU cycles used by a single sensor node for receiving and
subsequently rejecting a packet is equal to Cphysical layer+CMAC layer+

Clink layer + Cnetwork layer. With multicasting, in comparison the
number of CPU cycles wasted by a single sensor node for receiving
and subsequently rejecting a packet is equal to Cphysical layer +

CMAC layer, since an IP multicast address gets embedded within the
MAC address assigned to the network interface. Consequently,
packets whose destination address does not correspond either to
the unicast address or to one of the multicast addresses (joined by
this node) are filtered out by the MAC layer itself, thus saving CPU
cycles and energy for not having to process the packet in the link
and network layers.

Let us consider a fully connected sensor network with Acoustic
(A),V isual (V), andChemical (C) sensors,n of eachmodality. During
Stage 1, an A-modality sensor needs to communicate with the rest
of the A-modality sensors only to exchange the semantic distance
metric information. This implies that the remaining 2n sensors
waste their processing cycles when A-modality broadcast packets
traverse their protocol stacks. During Stage 2, the selected cluster
head (let us say an A-modality sensor) needs to communicate
only with the non-A modality sensors, since the purpose of this
communication is to create a composite PFSA. This implies that,
when V- and C-modality sensors broadcast their PFSA, only the
A-modality cluster head has to take cognizance of these broadcast
packets. A naive processing of the broadcast packets would require
remaining the 3n − 2 nodes to process and then discard such
packets. To address this waste, we describe a novel multicast
group formation technique that replaces the broadcast with the
multicast, thus eliminating thewaste described earlier. It turns out
that theminimumnumber ofmulticast groups required to support
Stages 1 and 2 is independent of the number of sensor nodes, and
it depends only on the number of modalities (Lemma 1).

Lemma 1. Given a sensor network with n nodes and m sensing
modalities, theminimumnumber of distinctmulticast groups required
to support Stages 1 and 2 is 2m. Out of these 2m groups, each sensor
node needs to join only m + 1 groups.
Proof. During Stage 1, at least one node of somemodality X needs
to send its PFSA to sensors of the same modality and it does so by
joining a group GX . Thus theminimumnumber ofmulticast groups
to be created during Stage 1 ism since eachmodality is represented
by at least one group.

During Stage 2, a node of some modality w needs to send
its PFSA to the sensor nodes of non-X modalities and it does so
by joining another group G¬X that contains sensors of modalities
other than X . Also, all nodes of non-X modalities will also need
to join the G¬X group to be able to receive a PFSA from a X-
modality sensor. Thus we need to create m additional groups in
order to support Stage 2. In all, we require a minimum of 2m
distinct multicast groups. �
Table 1
Multicast groups for multi-modal data fusion.

(a) Groups for Stage 1 (b) Groups for Stage 2
Modality A C V Modality A C V

A GA A G¬C G¬V
C GC C G¬A G¬V
V GV V G¬A G¬C

As an example, for the 3-modality network described earlier
six multicast groups, GA, GC , GV , G¬A, G¬C , and G¬V , need
to be formed. During Stage 1, a sensor node of modality i
needs to communicate with sensors of the same modality. This
communication takes place on amulticast groupGi (see Table 1(a)).
During Stage 2, a sensor node of modality i needs to communicate
with sensor nodes ofmodality j (j ≠ i). This communication occurs
on themulticast group given by the entry (j, i) (of row j and column
i) of the Table 1(b).

Each sensor of modality A will have to communicate using
four multicast groups, GA, G¬A, G¬C , and G¬V , in order to form
a composite pattern of interest. In general, when there are m
modalities, each sensor needs to use m + 1 multicast groups out
of a total of 2m multicast groups that need to be created, which is
independent of the number of the sensors.

3. Information space—multi-modal data fusion

When amobile target approaches a sensor node and the stimu-
lus at the node is above a given threshold, an event is said to have
been detected. However, if the threshold is not reached then the
event is labeled as undetected and ignored. When an event is de-
tected by a sensor node, the node broadcasts a message contain-
ing the event data. The time-series data observed by a sensor of a
certain modality can be compressed to a probabilistic finite state
automaton (PFSA) over an a priori fixed alphabet [24]. The PFSA is
designed to extract the maximum semantic information from the
raw sensor data, while at the same time it compresses the sensory
data to minimize the network bandwidth requirements.

Multi-modal data fusion is done at individual nodes in the
Information Space (IS) module. During the training phase we
identify and store a number of PFSA of interest, which we call
subpatterns, in the IS of a sensor node. An example of such a
subpattern is the pressure signature of a car passing by a pressure
sensor (Section 3.1). In the operational phase, when an event is
observed by the sensor, the IS at the sensor node will construct
a PFSA based on the time-series data from the sensing unit.
The constructed PFSA will be compared against the library of
subpatterns and a semantic distance [6] will be derived from each
of the existent subpatterns. If the constructed PFSA has a semantic
distance less than a given ϵ with regards to a particular subpattern,
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Fig. 2. Semantic distance for pressure sensors.
we conclude that the sensor has detected that subpattern, and we
have a subpattern match.

After the IS matches a computed PFSA to a specific subpattern,
it sends to the network controller the message subpatternObserved
that contains the subpattern ID and themetric which is the seman-
tic distance between the observed subpattern and the subpattern
stored in the databank. The exact timewhen themessage is sent by
the IS depends on the sensor modality, since the IS has to collect
enough data in order to construct a PFSA. On receiving the mes-
sage subpatternObserved from the IS, MDSTC appends to it some
control information such as the node position, node ID, the time,
and broadcasts it as the message Subpattern. In this way the neigh-
boring nodes are notified about the observed subpattern. Themes-
sages Subpattern can be used for target localization (see [29]).

Based on the observed subpattern and received subpatterns
from other nodes, the IS will try to decide on a composite pattern.
Namely, at each node, the data received from sensors of different
modalities is fused locally in order to generate patterns of interest
which we call composite patterns. If successful, the IS notifies
MDSTC about the decided composite pattern.

A composite pattern is the Cartesian product of subpatterns in
each modality. If we haveM > 1 different modalities, a composite
pattern P = {P1, P2, . . . , PM

} is a M-tuple of subpatterns, one
subpattern for each modality. At each node, the Information
Space stores a set of composite patterns of interest, P, in a so-
called databank. The databank contains, for each stored pattern of
interest and for each individual subpattern, the minimum number
of sensors of that modality that are required to observe the
subpattern NPj = (pj,1, pj,2, . . . , pj,M), pj,l ≥ 1, ∀1 ≤ l ≤ M .
A pattern of interest has an associated maximum lifetime that
represents the period during which the pattern is observable.

3.1. Constructing a subpattern

To construct subpatterns in modality m, a sensing model for
modality m is assumed. We show next how subpatterns are
constructed for pressure sensors; the pressure sensor model in
this case is omni-directional, but this is not a requirement for
other modalities. The data reading of a pressure sensor changes
as a moving object passes by (Fig. 2(a)); when a mobile object
approaches the pressure sensor, different paths of the target
determine different time series data for the sensor. Let d be the
minimum distance between the object and the sensor at any
moment of time (Fig. 2(b)); the solid line corresponds to the
subpattern (trained PFSA when d = 0), which corresponds to the
time series data (solid curve) in Fig. 2(c). The PFSA constructed
from the time-series data starting when the target was at distance
d = 1 m to the sensor is shown as a dotted curve in Fig. 2(b).
When the object is at the same location as the sensor we
are guaranteed that we have a perfect subpattern match. This
coincides with the concept of closest point of approach (CPA)
events [2,15,30]. In other terms, when the object passes closest to
the sensor node, the sensor’s signal reaches a peak and the event is
signaled. The captured event is called a CPA event. The signal peak
of the CPA event is directly related to the distance between the
object and the sensor because the signal-to-noise ratio of sensing
decreases with the distance. The closer the target is to the sensor,
the higher the signal peak of the CPA event is. The difference
between two time series data is reflected in the so-called semantic
distance ϵ.

For magnetic sensors, the subpatterns are constructed exactly
the same way as for the pressure sensors. However, the subpat-
terns of video sensors are constructed differently and they do not
incur CPA events. Therefore the PFSA constructed by the video sen-
sors will only be used for pattern classification but not for estimat-
ing the event location.

4. Network design space

MDSTC is part of the Network Design Space (NDS) module;
it has has several responsibilities: adjust the transmission power
based on the battery power, communication with other nodes,
maintain and provide statistics of this communication to the
IS module, cluster multi-modal sensor nodes in the space–time
vicinity of an event, identify sensor nodes to be included or
excluded from the clusters, request sensor nodes to move in
order to improve the quality of the data fusion or to cover sparse
regions in which events are expected, coordinate the detection of
events and correlate events based on spatial-temporal occurrence.
The precluster and cluster formation of DSTC are adapted in
MDSTC to the heterogeneity of the sensors; this adaptation is
straightforward. To improve the quality of data needed for deciding
on a composite pattern and application-dependent computations
(such as estimating the target location, velocity, and predicting its
trajectory), the cluster also adapts its topology to the requirements
of the IS (see Section 4.1) by adding selected sensors (Sections 4.2
and 4.4) in specific locations (Section 4.3).

Each multi-modal cluster has an associated maximum lifetime.
When the maximum lifetime expires, the cluster is disbanded by
the cluster head. Thus all cluster members, including the cluster
head, become free. The cluster head can also disband the cluster
when its battery power falls below a certain threshold.

When the mobile target moves through the sensor network, a
node other than a cluster head may observe the pattern better.
Since the cluster head is selected as the node that currently
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observes the event the best, we may need make that node as the
cluster head. In this case, we may need to disband the current
cluster and form another cluster. The local network stability may
suffer if we create and disband clusters as soon as nodes observe
better than the current cluster heads.We then take a lazy approach,
to maintain stability: we allow the cluster to live for at least some
period of time, that we call min_lifetime. During the min_lifetime,
the cluster head does not change due to a better composite metric
for the same composite pattern. Once themin_lifetime expires and
beforemax_lifetime expires, it is possible for a cluster member or a
non-clustermember to becomea cluster head and force the current
cluster head to disband the cluster.

4.1. Dynamically changing the local topology

We recall that the IS of the node knows a priori the number of
nodes of eachmodality needed to distinguish between subpatterns
or composite patterns. Sensors need to be moved in two distinct
cases. One case is when the IS of the node determines that it has
too little information to properly identify either a uni-modal or
a composite pattern of interest, or it needs better quality data
for composite data fusion. Another case is when the IS of a node
is notified that the trajectory of a mobile target will intersect
its sensing coverage region and it has determined that there
are not enough sensors of a certain modality within the node’s
communication region to be able to do data fusion.

In either case, the IS sends the messagemoreData to the MDSTC
with the sensor modality needed, the number of extra sensors of
that modality needed, and the desired region where the sensors
are needed (the center and the radius). The MDSTC broadcasts
the message addNode appended with the node ID, the node’s
physical location or coordinates, the sensor modality needed, and
the desired region. The number of sensors needed of that modality
is stored by the MDSTC.

On receiving the message addNode:

– If the sensor is of the modality requested by the requester node
and the requester is further away from the center of the desired
region, then drop the message.

– If the node’s modality is not the same as the requested one and
the node’s location is not far from the desired location, then
broadcast the message further.

– If the node’s modality is the same as the requested one then the
message is sent to the IS for further processing (see Section 4.2)
and may agree to participate. We note that the nodes that have
agreed to the request have to move within to the requester’s
transmission range.

Among the sensors that have responded positively to the
request, theMDSTC of the requester will decide where they will be
placed (see Section 4.3) and which of them will be asked to move
(see Section 4.4).

4.2. When a node decides to move

The decision of moving to a specific region is done in the IS.
We note that, if the node is not within the communication range
of the requester node, the node has to move into the requested
region in order to participate in data fusion and receive subsequent
messages. If the node is capable of moving and is not part of any
cluster, then the IS estimates the cost of moving per unit distance

cpud = 1/(P · ρ)

based on the node’s power P (the more power, the lower the
cost) and the density ρ, namely how many sensors of the same
modality exist within the node’s communication range (the lower
the density, the higher the cost). This value together with the speed
which is the average speed the sensor can move and the requester
ID is sent as themessage Available to theMDSTC.When theMDSTC
receives the message Available from the IS, it appends the node ID
and the node position and themessage is then sent to the neighbor
from which the message addNode has been received. On receiving
the message Available not addressed to itself, a node forwards it to
the node from which the message addNode has been received. On
receiving the message Available addressed to itself, the MDSTC of
the requester sends it to the IS. The information from themessages
Available received within the timeout period will be used by the IS
of the requester to select a number of sensors and request them to
move. The selection is based on (i) the cost per unit distance, (ii) the
interval of time necessary to move, computed using the speed of
the mobile sensor and its distance, and (iii) the number of sensors
that already exist in the region where the sensor will be required
to move, which we call obstruction.

Let C be the region of interest inwhich the sensorswill be asked
to move by a requester node; for simplicity we assume that C is a
circle of radius R. Sensors of the desired modality will be placed in
region C , which is included in the requester communication region,
in order for the requester to be able to form a cluster. Instead
of requiring sensors to move arbitrarily to any location in C we
propose a uniform placement of them. To this end, we propose
two methods in which C is partitioned into K desired regions (see
Section 4.3). For each of the available sensors, let us say M in
total, we compute the distance between the node and each desired
region. In Section 4.4 we present a Greedy algorithm that selects
nodes for each of the K regions, using theM × K such distances.

4.3. Partitioning a region of interest C

We propose two methods of partitioning C into K desired
regions:

(i) Concentric circles: Region C is partitioned into K equidistant
concentric circles (see Fig. 3(a)).

(ii) Circular sectors: Region C is divided into K circular sectors (see
Fig. 3(b)), of angle ⌈360/K⌉.

We compute the distance a node (whose modality is needed by
the requester node r) has to move in order to reach any of the K
partitions of C . For any node u, let Xu be the location of node u.

4.3.1. Concentric circles
Region C is partitioned intoK equidistant concentric circles (see

Fig. 3(a)). The K concentric circles, {Ci|i = 1, . . . , K}, create K − 1
rings or annulii,2 {CSi|i = 1, . . . , K−1}, with the cross-section size
R/K ; the radius of the circle Ci is i · R

K . By abuse of notation, let CS0
be the circle C1.

Wewill compute the distance a nodewhosemodality is needed
by the requester r has to move in order to reach any of the K
regions. Let w be such a node whose location Xw is outside C . Let
d(Xw; CSi), 0 ≤ i ≤ K − 1, be the distance between Xw and the
region CSi, which is the smallest distance the nodew needs tomove
in order to touch the boundary of CSi. Then

d(Xw; CSi) = Xw − (i + 1)R/K

for any i, 0 ≤ i ≤ K − 1.

4.3.2. Circular sectors
Wedivide C intoK equal circular sectors {Si, i = 1, . . . , K}, C =

∪
K
i=1 Si (see Fig. 3(b)). The central angle of each sector is β =

360
K .

For simplicity, we assume that 360 is divisible by K . Each Si is

2 An annulus is the region between two concentric circles of different radii.



D. Bein et al. / J. Parallel Distrib. Comput. 71 (2011) 460–470 465
(a) Concentric circles (b) Circular sectors

Fig. 3. Partitioning the communication region of the requester into K desired regions.
Fig. 4. Node w is outside C and needs to move inside C .

defined by the center Xr and the two radii R(i−1)·β and Ri·β : Si =

(Xr; R(i−1)·β; Ri·β).3 Note that two consecutive circular sectors Sj
and Sj+1 share the radius Rj·β .

Consider some node w whose modality is desired by the re-
quester r and whose location Xw is outside C . Let Dw be the dis-
tance from Xw and Xr and αw be the angle under which node w is
seen by node r (see Fig. 4).

Let d(Xw; Si), 1 ≤ i ≤ K , be the smallest distance between
Xw and any location in the sector Si, which represents the smallest
distance node w needs to move in order to touch the boundary of
Si. To compute d(Xw; Si), i, 1 ≤ i ≤ K , we have five cases.

Case (1) αw < (i − 1)β and (i − 1)β − αw < π
2 . Let γ =

(i − 1)β − αw (Fig. 5(a)–(b)). We have two subcases:
Case (1.1) Dw cos γ > R (Fig. 5(a)). The closest point in Si to Xw

is the intersection point of C and the radius R(i−1)·β . The distance
node w needs to move in order to reach Si is

d(Xw; Si) =


(Dw sin γ − R)2 + (Dw cos γ )2.

Proof. The distance d(Xw; Si) is the length a of the edge in Fig. 5(a),
and a =

√
b2 + c2 where b = Dw sin γ − R and c = Dw cos γ . �

Case (1.2)Dw cos γ ≤ R (Fig. 5(b)). The closest point in Si to Xw is
on the radius R(i−1)·β . The distance node w needs to move in order
to reach Si is

d(Xw; Si) = Dw sin γ .

Case (2) αw < (i − 1)β and (i − 1)β − αw ≥
π
2 (Fig. 5(c)). The

closest point in Si to Xw is Xr . The distance node w needs to move
in order to reach Si is

d(Xw; Si) = Dw + ϵ

where ϵ > 0 is a value close to 0 and is needed to ensure that the
sensor w will not be placed on the same location as r .

3 We denote by Rα the ray of C at the angle α from the x axis.
Case (3) (i − 1)β ≤ αw ≤ iβ (Fig. 5(d)). The closest point in Si
to Xw is the intersection point of C and the radius Rαw . The distance
node w needs to move in order to reach Si is

d(Xw; Si) = Dw − R.

Case (4)αw > iβ andαw − iβ < π
2 . This case is similar to Case 1.

d(Xw; Si) =


(Dw sin γ − R)2 + (Dw cos γ )2.

Case (5) αw > iβ ∧ αw − iβ ≥
π
2 . This case is similar to Case 2.

4.4. Placement algorithm

We propose Algorithm Choose-1-out-of -M . Executed at the
requester node r , it assigns to each circular sector an available
sensor with the lowest cost. Assigning sensors to concentric circles
can be done in similar manner, where CSis are considered instead
of Sis. The proposed algorithm can be easily extended to select D
sensors out of M for each region, or to assign different number of
sensors to different regions.

Algorithm Choose-1-out-of -M uses the following variables. For
each sensor i, 1 ≤ i ≤ M , the variable xi ∈ {0, 1, . . . , K} indicates
either the circular sector for which sensor i has been selected (xi ≥

1) or that the sensor i is still available (xi = 0). For each circular
sector j, 1 ≤ j ≤ K , the variable yj ∈ {0, 1, . . . ,M} indicates
either the sensor assigned to it (yj ≥ 1) or that the circular sector
is still available (yj = 0).

The algorithmhas atmostK+1 steps. Step 0 is the initialization.
The xis and yjs are set to zero. For each of the M sensors and
K circular sectors, we compute d(Xi; Sj), the minimum distance
sensor ineeds tomove in order to reach the boundary of the desired
region Sj, following the method described in Section 4.3. We then
compute cost(i, j), the cost of moving sensor i to region Sj as the
product of the distance d(Xi; Sj) and the cost per unit distance
cpud(i) of sensor i, reported by sensor i in the message Available.

At each step k, 1 ≤ k ≤ K , the algorithm selects an available
sensor that has the minimum cost for some region that has not
been occupied and invites that sensor to move in that region.
An optimal solution for Algorithm Choose-1-out-of -M seeks to
select moves of the minimum cost, ignoring the moving time.
Alternatively, we can consider moves of the shortest time as an
alternative for the objective function; in that case wewill compute
time(i, j) to be the time it takes for sensor i to move to region Sj,
which is simply the ratio between d(Xi; Sj) and the speed speed(i)
reported by sensor i in the message Available.

Theorem 2. Algorithm Choose-1-out-of -M assigns min{M, K} sen-
sors, one per circular sector.
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(a) Case 1.1. (b) Case 1.2. (c) Case 2. (d) Case 3.

Fig. 5. Moving node w into the sectors of the desired region C .
Algorithm 4.1 Algorithm Choose-1-out-of-M
Input:

M total number of sensors
K total number of sectors
Xr location of the requester node
{ Xi | 1 ≤ i ≤ M} location of sensor i
cpud(i), 1 ≤ i ≤ M cost per unit distance of sensor i

Step 0 (Initialization):
for i = 1 toM do set xi = 0
for j = 1 to K do set yj = 0
for i = 1 toM do

for j = 1 to K do
compute d(Xi; Sj)
compute cost(i, j) = d(Xi; S − j) × cpud(i)

Step k, 1 ≤ k ≤ K:
L1 select i0 and j0 such that

cost(i0, j0) = min{cost(i, j)|(1 ≤ i ≤ M) ∧ xi = 0
∧(1 ≤ j ≤ K) ∧ yj = 0}

L2 if no sensor is available then STOP
L3 set xi0 = j0; set yj0 = i0 // assign sensor to that region

Proof. After step 0, the condition xi = 0 ∧ yj = 0 is true for all
sensors i, 1 ≤ i ≤ M , and all circular regions j, 1 ≤ j ≤ K .

In step 1, the instruction L1 selects the minimum cost value
among all sensors and all circular sectors. The sensor i0 and the
circular sector j0 with that minimum cost will be assigned to each
other by the instruction L3. Neither the sensor i0 nor the circular
sector j0 will be considered for future selection by the instruction
L2 executed during some step k, 1 < k ≥ K , since xi0 = j0 and
j0 ≥ 1, and yj0 = i0 and i0 ≥ 1.

At each step k, 1 ≤ k ≤ K , one sensor gets assigned to a single
circular region, so the number of available sensors is decremented
by one. IfM , the number of sensors, is less than or equal to K , then
the instruction L1 will be executed exactly M times and all the M
sensors will be assigned to M regions. The instruction L2 will stop
the algorithm in case M < K . If M > K then the instruction L1
will be executed exactly K times and K sensors will be selected
and assigned to K circular sectors. �

The following communication occurs:

– On receiving one or more messages Available, the IS decides
which nodes are to be invited to move and where they will be
placed.

– The MDSTC of a node that receives the message moveNode not
addressed to it forwards it to the neighbor that has forwarded
the message Available to it.

– On receiving the message moveNode, the MDSTC of the desired
node arranges for the node to move.
5. Application—tracking a mobile target in an urban scenario

In an urban environment, the ambient noise for certain type
of sensors is more prevalent than in an open field or underwater
due to buildings, people, motor vehicles, and so on. We simulated
the sensor network in an urban environment in NS-2, using
sensory data collected during training experiments executed in
our laboratory for locating and tracking a Segway RMP robot (as
the moving object). Each sensor from the laboratory has been
simulated in NS-2 and its readings were emulated using the
readings of that sensor in the lab during the training phase. The
spatial-temporal information of the Segway’s movement collected
by individual sensors are fused in NS-2 by clustering the sensors
along the estimated path of the Segway. The cluster heads of each
of the formed clusters then estimate the Segway’s position and
velocity. The urban scenario in NS-2 simulates the positioning of
the sensors in the lab as follows. Three types of sensors were
deployed on roads arranged as a Manhattan-like grid (see Fig. 6):
pressure sensors, video sensors (cameras), andmagnetic sensors. A
large brown block represents a building and a yellow dashed line
is a road marking for a 20-feet wide two-way street.

312 fixed pressure sensors are embedded in the ground of two-
way streets. Each pressure sensor generates an analog voltage due
to the pressure applied when an object goes over it. This voltage
is fed into a 10-bit A/D channel and thereby the output ranges
from 0 to 1023. Video sensors, mounted on the buildings, have
adjustable view angles so that the sensing coverage can be easily
changed; there are six of them on each building. A video sensor
takes snapshots of the scene within its view at a certain frequency
and these images are used to construct PFSA. 72 magnetic sensors
are initially positioned close to the street intersections and are
mounted on somemobile platforms that canmove freely along the
streets; they can be quickly relocated if necessary.

Nodes communicate wirelessly using the two-ray ground re-
flection radio model. Each sensor node uses the 802.11 channel
access scheme. The AODV algorithm is employed as the routing
protocol for the entire network. The transmission power of a single
node is 0.3 W and the reception power is 0.2 W. We recall that a
sensor broadcasts its observed subpattern only if the stimulus cre-
ated by the target is above a certain threshold. To savemore energy,
we consider a sleep-and-awake schedule for the sensor nodes,
A-SAS, proposedby [26]. For a 1500 second-simulation, around50%
of the nodes are awake at any moment. Table 2 gives the energy
consumption of the nodes when A-SAS is used or not. We note that
the nodes that have joined a cluster consumemore energy than the
sensing only nodes. We have incorporated and run the rest of the
simulations using the A-SAS schedule.

In Section 3 we showed how subpatterns for pressure, mag-
netic, and video sensors are constructed during the training phase.
We consider composite patterns that are 3-tuple of subpatterns,
one from each modality. During the operational phase we locate
and track vehicles carrying large amounts of metallic material.
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Fig. 6. Urban multi-modal sensor network.
Table 2
Average energy consumption per sensor node during a 1500 -second simulation
(in J).

Sensing only nodes Nodes once in a cluster

Without A-SAS 0.2194 0.2905
With A-SAS 0.1052 0.2068

Such a vehicle will trigger subpattern matches at the pressure,
video, and magnetic sensors that are geographically closer to its
moving location. Thus a composite pattern that involves PFSA from
thesemulti-modal sensors could be identified and a heterogeneous
cluster that contains the sensors that matched the subpattern be
formed. Such a vehicle is deemed by our sensor network as suspi-
cious and ismarkedwith yellow color in Fig. 6. Vehicles that do not
carry large amounts of metal will not trigger a subpatternmatch at
any magnetic sensor, thus a composite pattern that involves PFSA
from pressure, video and magnetic sensors cannot be identified.
Such a vehicle is considered by our sensor network as benign and
is marked with green in Fig. 6.

Based on the speed of the robot and the fact that a cluster needs
some time to form, we fix the maximum lifetime of any cluster to
be 80 s and the minimum lifetime of any cluster to be 50 s.

Target location estimation is done at the cluster head after the
cluster is formed. We use a triangulation scheme based on the
location of the cluster members to estimate the target location
which works as follows. When a cluster has been formed, each
cluster member starts estimating its distance to the target and
sends that distance to the cluster head. Then the cluster head
collects these local estimators including its own estimator and
finalizes a localization via a non-linear least squares triangulation
algorithm [13]. Such a triangulation algorithm requires at least
three estimators from the nodes in a cluster. In general, more
nodes lead to better localization. If the size of a cluster is less
than three, a localization cannot be properly done. We consider
only that the magnetic and the pressure sensors contribute to the
triangulation for heterogeneous clusters. This is justified on the
basis that while a video sensor may be more important for long
distance surveillance, for target localization the utility of magnetic
sensor data and the pressure data is much higher. Both magnetic
and pressure sensors are assumed to be isotropic, which means
that the sensor measurement depends only on the distance to the
target.

The triangulation scheme used by the cluster head has a smaller
error than individual estimations sent by individual sensor nodes,
Fig. 7. Tracking a suspicious vehicle using composite patterns.

Fig. 8. Snapshot of homogeneous clustering.

since, without clustering, the localization error of a pressure sensor
could be of 1 m.

Fig. 7 shows a snapshot of the NS-2 simulation for heteroge-
neous clustering. Arrows indicate the estimated direction of the
target (estimated velocity) and the origin of the arrow indicates the
estimatedposition of the target. Homogeneous clustering using the
same sensor network is shown in Fig. 8; three homogeneous clus-
ters, corresponding to the threemodality sensors, form around the
target. However, only the cluster of pressure sensors generates tar-
get location estimation useful for tracking, because the other two
clusters do not have good location estimation.
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(a) Heterogeneous clusters. (b) Homogeneous clusters.

Fig. 9. Histogram of the number of clusters formed.
Using only homogeneous clusters, it is impossible to do a proper
classification when two targets can trigger similar subpatterns for
some modality sensors but not for all, unless we add another layer
of inter-cluster communication. Thus the main disadvantage of a
homogeneous cluster is that it cannot properly distinguish benign
targets and malicious targets, except for the cluster of magnetic
sensors, and the network cannot selectively track the targets,
which leads to unnecessary cluster formation and thereforewastes
the network resources. In Fig. 7, when two vehicles are present,
one labeled as ‘‘suspicious’’ and one labeled as ‘‘benign’’, the
benign vehicle carries little metal and will not trigger subpattern
generation at themagnetic sensors, due to the fact that itsmagnetic
sensory data does not reach the threshold imposed (see Section 3).

To compare the localization performance, wemodify MDSTC to
formeither heterogeneous or homogeneous clusters in two scenar-
ios: (1) homogeneous clustering (homog_Clus), (2) heterogeneous
clustering (heter_Clus).

For both scenarios, only one target is included since a homo-
geneous cluster cannot distinguish between the benign and mali-
cious target. We consider different paths for the target. The path
parameter p gives the ratio of the distance between the target and
the right building and thewidth of the road. For example, when p is
0.5, the target moves exactly in the middle of the street. We range
p from 0.4 to 0.6 by the increment of 0.05 in the simulation. We
conduct a 1500-second simulation for each p in each scenario.

Fig. 9 gives the histogram of the number of clusters formed
during the 1500-second simulation for homogeneous clusters and
heterogeneous clusters. The average number of clusters is around
ten or eleven, while in the case of homogeneous clustering the
average is over 50.

Table 3 gives the average error of position estimation for various
path parameters using heterogeneous and homogeneous cluster-
ing. We note that the heterogeneous clustering provides a better
localization for the malicious target than the homogeneous one.
The reason is that in the heterogeneous scenario, the number of
clusters formed is smaller than the homogeneous scenario, but the
cluster size is larger. A larger cluster results in a better triangulation
estimation.We also note that for some path parameters, the homo-
geneous clustering does not give any estimation. This is due to the
fact that the cluster size should be at least 3 for the triangulation
scheme to work and in the homogeneous scenario, either themag-
netic sensors are geographically far away from each other or the
pressure sensors have a relatively short sensing range. It is very
difficult for the target to trigger three magnetic sensors or three
pressure sensors roughly at the same time.

Table 4 gives the total number of estimations done for both
scenarios. We note that the heterogeneous clustering does many
more estimations than the homogeneous one because it allows
Table 3
Average localization estimation error in meters for homogeneous and heteroge-
neous scenarios and various path parameter values. (None means there is no es-
timation during the simulation.)

Scenarios\path p 0.4 0.45 0.5 0.55 0.6

heter_Clus 0.5917 0.5644 0.5443 0.6050 0.6822
homog_Clus None 0.7950 0.6468 None None

Table 4
Number of estimations done in both scenarios and various path parameter values.

Scenarios\path p 0.4 0.45 0.5 0.55 0.6

heter_Clus 35 28 59 11 14
homog_Clus 0 6 39 0 0

different types of sensors to be included in one cluster. Hence our
heterogeneous clustering makes the tracking more robust.

All three types of sensors must be present in the vicinity of the
target to be able to form a heterogeneous cluster. If the sensor
field is not dense enough, more likely a malicious target will be
missed. To show the need of moving sensors and the purpose of
our proposed moving algorithm, we purposely put somemagnetic
sensors to sleep. In this way we create a local area sparse in
magnetic sensors. As shown in Fig. 10, sensors number 5 and 34
(gray dash boxes) are sleeping and no magnetic sensor monitors
that intersection. Thus the track of the malicious target will be lost
when it reaches that intersection since no cluster will be formed
without at least one magnetic sensor. We have implemented the
first method of dividing the region of interest using concentric
circles and the placement algorithm. That will trigger themagnetic
sensor number 27 to move to that intersection, as shown in
Fig. 11. For our simulations, sincewe consider that every composite
pattern needs at least one node of each modality, we have a
degenerated case of themethod using concentric circles, since only
onemagnetic sensor is requested tomove. A heterogeneous cluster
is formed in the vicinity of the intersection around the malicious
target and the track of the target is followed further.

6. Conclusion and future work

We proposed a network controller that is responsible for clus-
tering multi-modal sensor nodes only in the space–time vicinity
of a moving object, thus improving data fusion and localizing and
tracking the object that has triggered the composite pattern. We
showed that in general composite-base estimation is more accu-
rate than individual estimation, i.e. multi-modal (heterogeneous)
clusters offer better estimation than homogeneous clusters. Thus
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Fig. 10. Sparse sensing area at some intersection.

Fig. 11. A magnetic sensor moves to a sparse sensing area.

multi-modal clusters are better for estimation, as well as for clas-
sification.

Our multi-modal clustering algorithm MDSTC considers only
one-hop clusters. In order to save energy, sensor nodesmay reduce
their transmission power so they may need to form multi-hop
clusters in order to group enough sensors of various modalities.
We plan to use the work of [17,11] to extend the results of a one-
hop cluster to amulti-hop clusterwhere the transmission schedule
of the nodes within the cluster plays a much more important
factor than it does in an one-hop cluster. We plan also to design
a traffic analyzer that observes the local traffic at a node in order to
predict future events and alter the transmission schedule based on
patterns of communication detected in the past and stored locally
at the node.
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