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Real-time data-driven pattern classification requires extraction of relevant features from the observed

time series as low-dimensional and yet information-rich representations of the underlying dynamics.

These low-dimensional features facilitate in situ decision-making in diverse applications, such as

computer vision, structural health monitoring, and robotics. Wavelet transforms of time series have

been widely used for feature extraction owing to their time–frequency localization properties. In this

regard, this paper presents a symbolic dynamics-based method to model surface images, generated by

wavelet coefficients in the scale-shift space. These symbolic dynamics-based models (e.g., probabilistic

finite state automata (PFSA)) capture the relevant information, embedded in the sensor data, from the

associated Perron-Frobenius operators (i.e., the state-transition probability matrices). The proposed

method of pattern classification has been experimentally validated on laboratory apparatuses for two

different applications: (i) early detection of evolving damage in polycrystalline alloy structures, and (ii)

classification of mobile robots and their motion profiles.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Tools for real-time data-driven pattern classification facilitate
performance monitoring of complex dynamical systems if the
physics-based models are either inadequate or unavailable [1]. In
this regard, a critical issue is real-time analysis of time series for
information compression into low-dimensional feature vectors that
capture the relevant information of the underlying dynamics [2–4].
Time series analysis is a challenging task if the data set is voluminous
(e.g., collected at a fast sampling rate), high-dimensional, and noise-
contaminated. In general, the success of data-driven pattern classi-
fication tools depends on the quality of feature extraction from the
observed time series. To this end, several feature extraction tools,
such as principal component analysis (PCA) [3], independent
component analysis (ICA) [5], kernel PCA [6], dynamic time warping
[7], derivative time series segment approximation [8], artificial
neural networks (ANN) [9], hidden Markov models (HMM) [10],
and wavelet transforms [11–13] have been reported in technical
literature. Wavelet packet decomposition (WPD) [12] and fast
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wavelet transform (FWT) [13] have been used for extracting rich
problem-specific information from sensor signals. Feature extrac-
tion is followed by pattern classification (e.g., using support vector
machines (SVM)) [4,14].

Recently, the concepts of Symbolic Dynamics [15] have been
used for information extraction from time series in the form of
symbol sequences [1,16]. Keller and Lauffer [17] used tools of
symbolic dynamics for analysis of time series data to visualize
qualitative changes of electroencephalography (EEG) signals
related to epileptic activity. Along this line, a real-time data-driven
pattern identification tool, called Symbolic Dynamic Filtering (SDF)
[18,19], has been built upon the concepts of Symbolic Dynamics,
Information Theory, and Statistical Mechanics [1]. In the SDF
method, time series data are converted to symbol sequences by
appropriate partitioning [19]. Subsequently, a probabilistic finite-
state automata (PFSA) [18] are constructed from these symbol
sequences that capture the underlying system’s behavior by means
of information compression into the corresponding state-transi-
tion probability matrices. SDF-based pattern identification algo-
rithms have been shown by experimental validation in the
laboratory environment to yield superior performance over several
existing pattern recognition tools (e.g., PCA, ANN, Bayesian Filter-
ing, Particle Filter, Unscented Kalman Filtering, and Kernel Regres-
sion Analysis) in terms of early detection of small changes in the
statistical characteristics of the observed time series [20].

Partitioning of time series is a crucial step for symbolic
representation of sensor signals. To this end, several partitioning
techniques have been reported in literature, such as symbolic false
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Nomenclature

a scale in wavelet transform
Dt sampling interval
‘ length of window W
p feature vector (state probability vector)
xk time series data collected at instant k

C set of class labels
H coordinate set denoting the scale-shift data points
M mapping for conversion of time series to symbol

sequence
O reduction of the state set Q
Q set of all possible states in a window W �H
R interval spanning the range of wavelet coefficient

amplitudes
S wavelet surface profile
SS map defining symbolization of a wavelet surface

profile
W two-dimensional window of size ‘ � ‘ to convert a

symbol block to a state
m anomaly measure
O compact region in the phase space of the continuously

varying dynamical systems
Fi mutually exclusive and exhaustive cells in O

P state transition matrix
cs,t wavelet basis function c with scale factor s and time

shift t
S symbol alphabet
sk symbol generated byM from time series xk

ti slow-time epoch i
~f noise-corrupted version of original signal f

B signal bandwidth
d divergence measure
Fc center frequency that has the maximum modulus in

the Fourier transform of the wavelet
fp pseudo-frequency for scale generation
fs sampling frequency
Fs,t wavelet transform of function f ðtÞAH, where H is a

Hilbert space
k level of noise contaminating the signal f

m number of most probable symbols
O(N) time complexity of an algorithm to complete a pro-

blem of size N

oi element of the reduced set O
P map defining the partitioning of interval R
q state of a symbol block formed by the window W
w additive white gaussian noise with zero mean and unit

variance
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nearest neighbor partitioning (SFNNP) [21], wavelet-transformed

space partitioning (WTSP) [22], and analytic signal space partitioning

(ASSP) [23]. In particular, the wavelet transform-based method is
well-suited for time–frequency analysis of non-stationary signals,
noise attenuation, and reduction of spurious disturbances from the
raw time series data without any significant loss of pertinent
information [24]. In essence, WTSP is suitable for analyzing the
noisy signals, while SFNNP and ASSP may require additional
preprocessing of the time series for denoising. However, the
wavelet transform of time series introduces two new domain
parameters (i.e., scale and shift), thereby generating an image of
wavelet coefficients. Thus, the (one-dimensional) time series data
is transformed into a (two-dimensional) image of wavelet coeffi-
cients. In this context, for SDF-based analysis of wavelet-trans-
formed data, the prior work [18,22] suggested stacking of the
wavelet coefficients from multiple scales to represent the two-
dimensional scale-shift wavelet domain by a one-dimensional data
sequence. However, this procedure of conversion of the two-
dimensional domain to one-dimensional is non-unique and poten-
tially lossy depending on the choice of the stacking procedure.

This paper extends the concept of SDF for feature extraction in
the (two-dimensional) scale-shift domain of wavelet transform
without any need for non-unique conversion to one-dimensional
sequence. In addition, the proposed method is potentially applic-
able for analysis of regular images for feature extraction and
pattern classification. From these perspectives, the major contri-
butions of the paper are as follows:
1.
 Development of an SDF-based feature extraction method for
analysis of two-dimensional data (e.g., regular images and wavelet
transform of time series in the scale-shift wavelet domain).
2.
 Experimental validation (in the laboratory environment) of the
feature extraction method for pattern classification in two
different applications:
(i) Early detection of damage in structural materials for timely

prediction of forthcoming failures.
(ii) Behavior recognition in mobile robots by identification of

their type and motion profiles.
The paper is organized into seven sections including the present
one. Section 2 briefly describes the concepts of symbolic dynamic
filtering (SDF) and its application to wavelet-transformed data.
Section 3 presents the procedure of feature extraction from the
symbolized wavelet image by construction of a probabilistic finite
state automaton (PFSA). Section 4 describes the pattern classifica-
tion algorithms. Sections 5 and 6 present the experimental valida-
tions on two applications: (i) early detection of failures in
polycrystalline alloys and (ii) classification of mobile robots and
their motion profiles, respectively. The paper is concluded in
Section 7 along with recommendations for future research.

2. Symbolic dynamics and encoding

This section presents the underlying concepts of symbolic
dynamic filtering (SDF) for feature extraction from time series of
sensor signals. Details of SDF have been reported in previous
publications for analysis of (one-dimensional) time series [18,19].
A Statistical Mechanics concept of time series analysis using
symbolic dynamics has been presented in [1]. This section briefly
reviews the concepts of SDF for self-sufficiency of the paper and
then presents the extension for analysis of (two-dimensional)
wavelet images for feature extraction. The major steps of the
SDF method for feature extraction are delineated as follows:
1.
 Encoding (possibly nonlinear) system dynamics from observed
sensor data (e.g., time series and images) for generation of
symbol sequences.
2.
 Information compression via construction of probabilistic finite
state automata (PFSA) from the symbol sequences to generate
feature vectors that are representatives of the underlying
dynamical system’s behavior.

2.1. Review of symbolic dynamics

In the symbolic dynamics literature [15], it is assumed that
the observed sensor time series from a dynamical system are
represented as a symbol sequence. Let O be a compact (i.e., closed
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and totally bounded) region in the phase space of the continuously
varying dynamical system, within which the observed time series
is confined [18,19]. The region O is partitioned into jSj cells
fF0, . . . ,FjSj�1g that are mutually exclusive (i.e., Fj \Fk ¼ |
8jak) and exhaustive (i.e.,

SjSj�1
j ¼ 0 Fj ¼O), where S is the symbol

alphabet that labels the partition cells. A trajectory of the dynamical
system is described by the discrete time series data as:
{x0,x1,x2,y}, where each xiAO. The trajectory passes through or
touches one of the cells of the partition; accordingly the corre-
sponding symbol is assigned to each point xi of the trajectory as
defined by the mapping M : O-S. Therefore, a sequence of
symbols is generated from the trajectory starting from an initial
state x0AO, such that

x0:s0s1s2 . . .sk . . . , ð1Þ

where sk9MðxkÞ is the symbol at instant k. (Note: The mapping in
Eq. (1) is called Symbolic Dynamics if it attributes a legal (i.e.,
physically admissible) symbol sequence to the system dynamics
starting from an initial state.) The next subsection describes how
the time series are transformed into wavelet images in scale-shift
domain for generation of symbolic dynamics.

2.2. Transformation of time series to wavelet domain

A crucial step in symbolic dynamic filtering [18,19] is partitioning of
the data space for symbol sequence generation [16]. Various partition-
ing techniques have been suggested in literature for symbol generation,
which include variance-based [25], entropy-based [26], and hierarchial
clustering-based [27] methods. A survey of clustering techniques is
provided in [2]. Another partitioning scheme, based on symbolic false

nearest neighbors (SFNN), was reported by Kennel and Buhl [21]. These
techniques rely on partitioning the phase space and may become
cumbersome and extremely computation-intensive if the dimension of
the phase space is large. Moreover, if the data set is noise-corrupted,
then the symbolic false neighbors would rapidly grow in number and
require a large symbol alphabet to capture the pertinent information.
Therefore, symbolic sequences as representations of the system
dynamics should be generated by alternative methods because
phase-space partitioning might prove to be a difficult task. Technical
literature has suggested appropriate transformation of the signal before
employing the partitioning method for symbol generation [18]. One
such technique is the analytic-signal-space partitioning (ASSP) [23] that
is based on the analytic signal which provides the additional phase
information in the sensor data. The wavelet-transformed space
partitioning (WTSP) [22] is well-suited for time–frequency analysis
of non-stationary signals, noise attenuation, and reduction of spurious
disturbances from the raw time series data without any significant loss
of pertinent information [24,19]. Since SFNNP and ASSP may require
additional preprocessing of the time series for denoising, this paper has
W
av

el
et

Tr
an

sf
or

m

Fig. 1. Symbol image generation via wavelet transform of the sensor time
used WTSP for construction of symbolic representations of sensor data
as explained below.

In wavelet-based partitioning, time series are first transformed
into the wavelet domain, where wavelet coefficients are generated at
different shifts and scales. The choice of the wavelet basis function and
wavelet scales depends on the time–frequency characteristics of
individual signals [19]. The wavelet transform of a function f ðtÞAH is
given by

Fs,t ¼
1ffiffiffi
a
p

Z 1
�1

f ðtÞc�s,tðtÞ dt, ð2Þ

where s40 is the scale, t is the time shift, H is a Hilbert space,
cs,tðtÞ ¼cððt�tÞ=sÞ and cAL2ðRÞ is such that

R1
�1

cðtÞ dt¼ 0 and
JcJ2 ¼ 1.

Wavelet preprocessing of sensor data for symbol sequence
generation helps in noise mitigation. Let ~f be a noise-corrupted
version of the original signal f expressed as

~f ¼ f þkw, ð3Þ

where w is additive white gaussian noise with zero mean and unit
variance and k is the noise level. The noise part in Eq. (3) would be
reduced if the scales over which coefficients are obtained are
properly chosen.

For every wavelet, there exists a certain frequency called the
center frequency Fc that has the maximum modulus in the Fourier
transform of the wavelet. The pseudo-frequency fp of the wavelet at
a particular scale a is given by the following formula [28]:

fp ¼
Fc

aDt
, ð4Þ

whereDt is the sampling interval. Then the scales can be calculated
as follows:

ai ¼
Fc

f i
pDt

, ð5Þ

where i¼1,2,y, and fp
i are the frequencies that can be obtained by

choosing the locally dominant frequencies in the Fourier transform.
The maximum pseudo-frequency fmax

p should not exceed the
Nyquist frequency [28]. Therefore, the sampling frequency fs for
acquisition of time series data should be selected at least twice the
larger of the maximum pseudo-frequency fmax

p and the signal
bandwidth B, i.e., fsZ2maxðf max

p ,BÞ.
Fig. 1 shows an illustrative example of transformation of the

(one-dimensional) time series in Fig. 1(a) to a (two-dimensional)
wavelet image in Fig. 1(b). The amplitudes of the wavelet coeffi-
cients over the scale-shift domain are plotted as a surface. Subse-
quently, symbolization of this wavelet surface leads to the
formation of a symbolic image as shown in Fig. 1(c).
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series data and partition of the wavelet surface in ordinate direction.
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2.3. Symbolization of wavelet surface profiles

This section presents partitioning of the wavelet surface profile
in Fig. 1(b), which is generated by the coefficients over the two-
dimensional scale-shift domain, for construction of the symbolic
image in Fig. 1(c). The x–y coordinates of the wavelet surface
profiles denote the shifts and the scales, respectively, and the z-
coordinate (i.e., the surface height) denotes the pixel values of
wavelet coefficients.

Definition 1 (Wavelet Surface Profile). Let H9fði,jÞ : i,jAN,1
r irm,1r jrng be the set of coordinates consisting of (m�n)
pixels denoting the scale-shift data points. Let R denote the
interval that spans the range of wavelet coefficient amplitudes.
Then, a wavelet surface profile is defined as

S :H-R: ð6Þ

Definition 2 (Symbolization). Given the symbol alphabet S, let the
partitioning of the interval R be defined by a map P :R-S. Then,
the symbolization of a wavelet surface profile is defined by a map
SS � P3S such that

SS :H-S ð7Þ

that labels each pixel of the image to a symbol in S.

The wavelet surface profiles are partitioned such that the
ordinates between the maximum and minimum of the coefficients
along the z-axis are divided into regions by different planes parallel
to the x–y plane. For example, if the alphabet is chosen as
S¼ fa,b,c,dg, i.e., jSj ¼ 4, then three partitioning planes divide
the ordinate (i.e., z-axis) of the surface profile into four mutually
exclusive and exhaustive regions, as shown in Fig. 1(b). These
disjoint regions form a partition, where each region is labeled with
one symbol from the alphabetS. If the intensity of a pixel is located
in a particular region, then it is coded with the symbol associated
with that region. As such, a symbol from the alphabet S is assigned
to each pixel corresponding to the region where its intensity falls.
Thus, the two-dimensional array of symbols, called symbol image, is
generated from the wavelet surface profile, as shown in Fig. 1(c).

The surface profiles are partitioned by using either the maximum
entropy partitioning (MEP) or the uniform partitioning (UP) meth-
ods [22,19]. If the partitioning planes are separated by equal-sized
intervals, then the partition is called the uniform partitioning (UP).
Intuitively, it is more reasonable if the information-rich regions of a
data set are partitioned finer and those with sparse information are
partitioned coarser. To achieve this objective, the maximum entropy

partitioning (MEP) method has been adopted in this paper such that
the entropy of the generated symbols is maximized. The procedure
for selection of the alphabet size jSj, followed by generation of a
MEP, has been reported in [19]. In general, the choice of alphabet size
depends on specific data set and experiments. The partitioning of
wavelet surface profiles to generate symbolic representations
enables robust feature extraction, and symbolization also signifi-
cantly reduces the memory requirements [19].

For the purpose of pattern classification, the reference data set is
partitioned with alphabet size jSj and is subsequently kept
constant. In other words, the structure of the partition is fixed at
the reference condition and this partition serves as the reference
frame for subsequent data analysis [18].
Fig. 2. Conversion of the symbol image to the state image.
3. Feature extraction via construction of probabilistic finite-
state automata

This section presents construction of a probabilistic finite state

automaton (PFSA) for feature extraction based on the symbol image
generated from a wavelet surface profile.
3.1. Conversion from symbol image to state image

For analysis of (one-dimensional) time series, a PFSA is con-
structed such that its states represent different combinations of
blocks of symbols on the symbol sequence. The edges connecting
these states represent the transition probabilities between these
blocks [18,19]. Therefore, for analysis of (one dimensional) time
series, the ‘states’ denote all possible symbol blocks (i.e., words)
within a window of certain length. Let us now extend the notion of
‘states’ on a two-dimensional domain for analysis of wavelet surface
profiles via construction of a ‘state image’ from a ‘symbol image’.

Definition 3 (State). Let W �H be a two-dimensional window of
size ð‘ � ‘Þ that is denoted as jWj ¼ ‘2. Then, the state of a symbol
block formed by the window W is defined as the configuration
q¼ SSðWÞ.

Let the set of all possible states (i.e., two-dimensional words or
blocks of symbols) in a window W �H be denoted as Q9fq1,q2,
. . . :; qjQjg, where jQj is the number of (finitely many) states. Then,
jQj is bounded above as jQjr jSjjWj; the inequality is due to the
fact that some of the states might have zero probability of
occurrence. Let us denote Wi,j �H to be the window where (i,j)
represents the coordinates of the top-left corner pixel of the
window. In this notation, qi,j ¼ SSðWi,jÞ denotes the state at pixel
ði,jÞAH. Thus, every pixel ði,jÞAH corresponds to a particular state
qi,jAQ on the image. Every pixel in the image H is mapped to a
state, excluding the pixels that lie at the periphery depending on
the window size. Fig. 2 shows an illustrative example of the
transformation of a symbol image to the state image based on a
sliding window W of size (2�2). This concept of state formation
facilitates capturing of long range dynamics (i.e., word to word
interactions) on a symbol image.

In general, a large number of states would require a high
computational capability and hence might not be feasible for
real-time applications. The number of states, jQj, increases with
the window size jWj and the alphabet size jSj. For example, if ‘¼ 2
and jSj ¼ 4, then the total number of states are jQjr jSj‘2

¼ 256.
Therefore, for computational efficiency, it is necessary to compress
the state set Q to an effective reduced set O9fo1,o2, . . . :; ojOjg [19]
that enables mapping of two or more different configurations in a
window W to a single state. State compression must preserve
sufficient information as needed for pattern classification, albeit
possibly lossy coding of the wavelet surface profile.

In view of the above discussion, a probabilistic state compres-
sion method is employed, which chooses the m most probable
symbols, from each state as a representation of that particular state.
In this method, each state consisting of ‘ � ‘ symbols is compressed
to a reduced state of length mo‘2 symbols by choosing the top m

symbols that have the highest probability of occurrence arranged in
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descending order. If two symbols have the same probability of
occurrence, then either symbol may be preferred with equal
probability. This procedure reduces the state set Q to an effective
set O, where the total number of compressed states is given as:
jOj ¼ jSjm. For example, if jSj ¼ 4, jWj ¼ 4 and m¼2, then the state
compression reduces the total number of states to jOj ¼ jSjm ¼ 16
instead of 256. This method of state compression is motivated from
the renormalization methods in Statistical Physics that are useful in
eliminating the irrelevant local information on lattice spin systems
while still capturing the long range dynamics [1]. The choice of jSj, ‘
and m depends on specific applications and noise level as well as
the available computational power, and is made by an appropriate
tradeoff between robustness to noise and capability to detect small
changes. For example, a large alphabet may be noise-sensitive while
a small alphabet could miss the information of signal dynamics [19].
3.2. Construction of PFSA

A probabilistic finite state automaton (PFSA) is constructed such
that the states of the PFSA are the elements of the compressed state
set O and the edges are the transition probabilities between these
states. Fig. 3 shows an example of a typical PFSA with four states.
The transition probabilities between states are defined as

YðokjolÞ ¼
Nðol,okÞP

ku ¼ 1,2,...,jOjNðol,okuÞ
8ol,okAO, ð8Þ

where N(ol,ok) is the total count of events when ok occurs adjacent
to ol in the direction of motion. The calculation of these transition
probabilities follows the principle of sliding block code [15]. A
transition from the state ol to the state ok occurs if ok lies adjacent to
ol in the positive direction of motion. Subsequently, the counter
moves to the right and to the bottom (row-wise) to cover the entire
state image, and the transition probabilities YðokjolÞ, 8ol,okAO are
Fig. 4. An example of feature extraction from the state image.

Fig. 3. An example of a 4-state PFSA.
computed using Eq. (9). Therefore, for every state on the state
image, all state-to-state transitions are counted, as shown in Fig. 4.
For example, the dotted box in the bottom-right corner contains
three adjacent pairs, implying the transitions o1-o2, o1-o3, and
o1-o4 and the corresponding counter of occurrences N(o1,o2),
N(o1,o3) and N(o1,o4), respectively, are increased by one. This
procedure generates the stochastic state-transition probability
matrix of the PFSA given as

P¼

Yðo1jo1Þ . . . YðojOjjo1Þ

^ & ^

Yðo1jojOjÞ . . . YðojOjjojOjÞ

2
64

3
75, ð9Þ

where P� ½pjk�with pjk ¼YðokjojÞ. Note: pjkZ0 8j,kAf1,2, . . . jOjg
and

P
kpjk ¼ 1 8jAf1,2, . . . jOjg.

In order to extract a low-dimensional feature vector, the sta-
tionary state probability vector p is obtained as the left eigenvector
corresponding to the (unique) unity eigenvalue of the (irreducible)
stochastic transition matrix P. The state probability vectors p serve
as the ‘feature vectors’ and are generated from different data sets
from the corresponding state transition matrices. These feature
vectors are also denoted as ‘patterns’ in this paper.

3.3. Summary of SDF for feature extraction

The major steps of SDF for feature extraction are summarized
below:
�
 Acquisition of time series data from appropriate sensor(s) and
signal conditioning as necessary.

�
 Wavelet transform of the time series data with appropriate

scales to generate the wavelet surface profile.

�
 Partitioning of the wavelet surface profile and generation of the

corresponding symbol image.

�
 Conversion from symbol image to state image via probabilistic

state compression strategy.

�
 Construction of PFSA and computation of the state transition

matrices that in turn generate the state probability vectors as
the feature vectors (i.e., patterns).

The advantages of SDF for feature extraction and subsequent
pattern classification are summarized below:
�
 Robustness to measurement noise and spurious signals.

�
 Adaptability to low-resolution sensing due to the coarse grain-

ing in space partitions [18].

�
 Capability for detection of small deviations because of sensi-

tivity to signal distortion.

�
 Real-time execution on commercially available inexpensive

platforms.

4. Pattern classification using SDF-based features

Once the feature vectors are extracted in a low-dimensional
space from the observed sensor time series, the next step is to
classify these patterns into different categories based on the
particular application. Technical literature abounds in diverse
methods of pattern classification, such as divergence measure, k-
nearest neighbor (k-NN) algorithm [29], support vector machine
(SVM) [14], and artificial neural network (ANN) [30]. The main
focus of this paper is to develop and validate the tools of Symbolic
Dynamic Filtering (SDF) for feature extraction from wavelet surface
profiles generated from sensor time series data. Therefore, the SDF
method for feature extraction is used in conjunction with the
standard pattern classification algorithms, as described in the
experimental validation sections.
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Pattern classification using SDF-based features is posed as a
two-stage problem, i.e., the training stage and the testing stage. The
sensor time series data sets are divided into three groups:
(i) partition data, (ii) training data, and (iii) testing data. The
partition data set is used to generate partition planes that are used
in the training and the testing stages. The training data set is used to
generate the training patterns of different classes for the pattern
classifier. Multiple sets of training data are obtained from inde-
pendent experiments for each class in order to provide a good
statistical spread of patterns. Subsequently, the class labels of the
testing patterns are generated from testing data in the testing stage.
The partition data sets may be part of the training data sets,
whereas the training data sets and the testing data sets must be
mutually exclusive.

Fig. 5 depicts the flow chart of the proposed algorithm that is
constructed based on the theory of SDF. The partition data is
wavelet-transformed with appropriate scales to convert the one-
dimensional numeric time series data into the wavelet image. The
corresponding wavelet surface is analyzed using the maximum

entropy principle [22,19] to generate the partition planes that
remain invariant for both the training and the testing stage. The
scales used in the wavelet transform of the partitioning data also
remain invariant during the wavelet transform of the training and
the testing data. In the training stage, the wavelet surfaces are
generated by transformation of the training data sets correspond-
ing to different classes. These surfaces are symbolized using the
partition planes to generate the symbol images. Subsequently,
PFSAs are constructed based on the corresponding symbol images,
and the training patterns (i.e., state probability vectors p or state
transition matrices P) are extracted from these PFSAs. Similar to
the training stage, the PFSA and the associated pattern is generated
for different data sets in the testing stage. These patterns are then
classified into different classes using pattern classifier, such as
SVM, k-NN and ANN.

Consider a classification problem of jCj classes, whereC is the set
of class labels. In the training stage, feature vectors pCi

j , j¼1,2,y,ni

are generated from the training data sets of class Ci, where ni is the
number of samples in class Ci. The same procedure is carried out for
all other classes. In the testing stage, a testing feature vector ptest

with unknown class labels is generated using SDF. Two examples of
using the pattern classifiers with SDF are provided here. For k-NN
algorithm, the estimated class label of a testing feature vector ptest

is equal to the most frequent class among the k-nearest training
features [29]. For SVM, a separating hyperplane/hypersurface is
generated based on training feature vectors (pCi

j , j¼1,2,y,ni). The
estimated class label of the testing feature vector ptest depends on
Fig. 5. Flow chart of the pr
which side of the hyperplane/hypersurface the testing feature
vector falls [14].
5. Application I: damage detection in structural materials

Behavioral pattern changes may take place in dynamical
systems due to accumulation of faults and progression of anomalies
(i.e., deviations of the evolving patterns from the nominal pattern).
The pattern changes are characterized by a scalar-valued non-
negative function, called anomaly measure (m). In this application,
efficacy of the symbolic dynamic filtering (SDF) tool is demon-
strated for damage detection in polycrystalline alloys.

The proposed algorithm has been experimentally validated on a
laboratory apparatus for damage detection in 7075-T6 aluminium
alloy specimens [31]. The apparatus is a special-purpose uniaxial
fatigue damage testing machine that is instrumented with ultrasonic
flaw detectors and an optical traveling microscope, as shown in
Fig. 6(a). The experimental apparatus is operated under load control
or strain control at speeds up to 12.5 Hz. The tests were conducted
using center notched 7075-T6 aluminium specimens at a constant
amplitude sinusoidal load, where the maximum and minimum loads
were kept constant at 87 and 4.85 MPa. The specimens used are
3 mm thick and 50 mm wide, and have a slot of 1.58 mm�4.5 mm
at the center. The central notch is made to increase the stress
concentration factor that ensures crack initiation and propagation at
the notch ends. The test apparatus is equipped with two types of
sensors that have been primarily used for damage detection:
traveling optical microscope and ultrasonic flaw detector [19].
Fig. 6(b) shows the aluminum specimen and an illustration of the
ultrasonic flaw detector mounted on the specimen. The sampling
frequency of the ultrasonic sensing device is 20 MHz, while the
maximum pseudo-frequency fp

max is 5 MHz (see Section 2.2).

5.1. Notion of two-time scales

Anomaly detection from sensor time series data is posed as a two-
time-scale problem as depicted in Fig. 7. The fast time scale is related
to the response time of the process dynamics. Over the span of data
acquisition, the dynamic behavior of the system is assumed to
remain invariant, i.e., the process is quasi-stationary at the fast time
scale. On the other hand, the slow time scale is related to the time
span over which the dynamical system undergoes non-stationary
evolution due to gradual growth of anomalies. SDF detects the
statistical changes in behavioral patterns over slow-time-scale
epochs, that are simply referred to as epochs in the sequel.
oposed methodology.



Fig. 6. Computer-instrumented apparatus for fatigue testing and schematic of ultrasonic sensors on a test specimen. (a) Fatigue testing apparatus and (b) specimen and

mounting of the ultrasonic sensors.

Fig. 7. Pictorial view of the two time scales: (i) slow time scale of anomaly evolution

and (ii) fast time instants of data acquisition.
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5.2. Experimental procedure

The ultrasonic sensing device was triggered at a frequency of
5 MHz at each peak of the (	 12:5 Hz) sinusoidal load. The slow-
time epochs were chosen to be 1000 load cycles (i.e., 	 80 s) apart.
At the onset of each slow-time epoch, the ultrasonic data points
were collected on the fast scale of 50 cycles (i.e., 	 4 s) which
produced a string of 15,000 data points. It is assumed that during
this fast scale, no major changes occurred in the crack behavior. The
nominal condition at the slow-time epoch t0 was chosen to be
1.0 kcycles to ensure that the electro-hydraulic system of the test
apparatus had come to a steady state and that no significant
damage occurred till that point. The anomalies at subsequent slow-
time epochs, t1,t2, . . . ,tk . . ., were then calculated with respect to
the nominal condition at t0. There are in total 46 epochs, which are
taken every 1 kcycle in the fatigue testing.
5.3. Pattern analysis for anomaly detection

This section explains how the anomaly detection algorithms are
formulated using SDF and are compared with several other pattern
recognition tools, including principal component analysis (PCA),
radial basis function Neural Networks (rbfNN), and multilayer
perceptron Neural Networks (mlpNN). For the anomaly detection
problem, the training information is chosen to be the ultrasonic
data collected at the nominal condition t0 that generates the
reference pattern, and is also used for construction of the partition-
ing. Subsequently, the testing is conducted at all other time epochs
for anomaly detection. Note that ‘anomaly’ is defined as a con-
tinuous deviation of the pattern obtained at the current epoch with
the reference pattern. In this regard, the different pattern analysis
methods mentioned above are used for feature extraction from
sensor data at different slow time epochs. Once the features (i.e.,
patterns) are obtained, then a divergence measure, as shown later
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in Eq. (10), is used for continuous quantification of anomaly as the
distance between the extracted patterns from the nominal pattern.

For SDF the parameters are chosen as alphabet size jSj ¼ 8,
window size ‘ � ‘¼ 3� 3, and reduced state length m¼1 (see
Section 3.1); the wavelet basis function is chosen to be gaus3
because it closely matches the shape of the ultrasonic response
signals. Absolute values of the wavelet data are used to generate the
partition, because of the symmetry of the data sets about their mean.
This combination of parameters is capable of capturing the anoma-
lies significantly earlier than the images created by the optical
microscope. Increasing the alphabet size jSj further does not
improve the results and increasing the reduced state length m

creates a larger number of states of the probabilistic finite state
automata (PFSA), many of them having very small or near-zero
probabilities. An increased number of states also requires a larger
data set at each epoch to (numerically) stabilize the state probability
vectors of PFSA. The state probability vector p0 is obtained at the
nominal condition of time epoch t0 and the state probability vectors
p1,p2,y,pk

y. are obtained at subsequent epochs t1,t2, . . . ,tk . . . :
The mlpNN consists of three hidden layers with 50 neurons in

each one of them and an output layer with one neuron. Tangent
sigmoid functions have been used in the hidden layers as transfer
functions, while the output layer uses a linear function. On the
other hand, the rbfNN uses only one hidden layer and one output
layer (with one neuron). Optimal training was obtained using 100
neurons in the hidden layer. The hidden layer uses a radial basis
function, whereas the output layer uses linear function as transfer
functions. Several other variants of these combinations have also
been used; however, these choices yielded the best results.

Several divergence measures can be defined for anomaly
detection using the SDF [19] and the other pattern analysis
methods. One such measure is called the anomaly measure m that
is computed from the state probability vector p at each time epoch
ti such that:

mi � dðpi,p0Þ, ð10Þ
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Fig. 8. Pictorial view of crack damage, corresponding ultrasonic sensor measurements a

(b) internally damaged (15 kcycles), (b) appearance of surface crack (23 kcycles), and (
where dð�,�Þ is an appropriately defined divergence function and pi

and p0 are the state probability vectors for the ith and the nominal
data set, respectively. A possible choice for dð�,�Þ is mi � Jpi�p0Jr

where J�Jr for rA ½1,1Þ is the Hölder norm of �. In this paper, r¼2
(i.e., the Euclidean norm) is used. It is emphasized that the anomaly
measure is relative to the nominal condition which is fixed in
advance and should not be confused with the actual damage at an
absolute level.
5.4. Experimental results and discussion

The three rows of plates in Fig. 8, respectively, show (i) two-
dimensional microscopic images of a specimen surface, (ii) time
series data from ultrasonic sensors, and (iii) corresponding histo-
grams of probability distribution of PFSA states. The four columns
of plates in Fig. 8 correspond to four different (slow-time) epochs,
approximately at 1, 15, 23 and 35 kcycles, exhibiting gradual
evolution of damage. In each column from (a) to (d), the top plate
exhibits the surface image of the test specimen as seen by the
optical microscope. As exhibited on the top plate in each of the four
columns, the crack originated and developed on the right side of the
notch at the center. The time series exhibited in the middle plate of
each of the four columns displays the evolution in ultrasonic signals
in slow time scale. The histogram in the bottom plate of each of the
four columns show the state probability vector corresponding to
damage growth on the test specimen at the respective (slow-time)
epoch, signifying how the probability distribution gradually
changes from nearly uniform distribution (i.e., minimal informa-
tion) to delta distribution (i.e., maximum information).

The top plate in Fig. 8(a) shows the image at the nominal
condition (i.e., 1 kcycles) with no indication of surface damage as
seen by the optical microscope, which is considered to be the
reference point with the anomaly measure equal to zero. The top
plate in Fig. 8(b) still does not have any indication of surface crack
(as seen by the optical microscope). Although the middle plate in
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−150
−100

−50
0

50
100
150

time (sec)
0 1 2 3 4

−150
−100

−50
0

50
100
150

time (sec)

2 4 6 8
0

0.2
0.4
0.6
0.8

1

State Index

Pr
ob

ab
ili

ty

2 4 6 8
0

0.2
0.4
0.6
0.8

1

State Index

Pr
ob

ab
ili

ty

nd probability distribution (from top to bottom). (a) nominal condition (1 kcycles),

d) broken specimen (35 kcycles).



Table 1
Comparison of computational complexity of anomaly detection methods.

Anomaly

detection

method

Training stage Testing stage

Execution

time (s)

Memory

requirement

(MB)

Execution

time (s)

Memory

requirement

(MB)

PCA 1.06�100 126.3 9.85�10�3 87.8

SDF 3.51�10�1 87.3 2.94�10�1 78.5

mlpNN 3.02�102 175.0 2.20�10�1 120.0

rbfNN 6.90�102 814.5 4.50�10�1 95.8
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Fig. 8(b) indicates only an insignificant attenuation in the ampli-
tude of the ultrasonic signal compared to the middle plate in
Fig. 8(a), the bottom plate of Fig. 8(b) does exhibit a noticeable
deviation from the nominal condition in the bottom plate of
Fig. 8(a). This is an evidence that the analysis, based on SDF using
ultrasonic sensor data, produces damage information during crack
initiation, which is not available by simple optical microscopy. The
top plate in Fig. 8(c) exhibits the first noticeable appearance of a
crack on the specimen surface, which may be considered as the
boundary of the crack initiation and crack propagation phases. The
histogram of probability distribution in the bottom plate of
Fig. 8(c) at 23 kcycles shows further deviation from the correspond-
ing distribution in Fig. 8(b) at 15 kcycles. The top plate in Fig. 8(d) at
35 kcycles exhibits the image of a completely broken specimen.

Fig. 9 compares SDF with Multi-Layer Perceptron Neural Net-
work (mlpNN), Radial Basis Function Neural Network (rbfNN), and
Principal Component Analysis (PCA) for detection of anomaly
patterns. Each of the normalized anomaly measure curves in
Fig. 9 shows a transition from the crack initiation phase to the
crack propagation phase, where the slope of the anomaly measure
changes dramatically indicating onset of the crack propagation
phase. First appearance of a crack on the specimen surface, as
detected by the optical microscope at approximately 23 kcycles, is
indicated by the dashed vertical line in Fig. 9. The critical
information lies in the region to the left of the vertical line where
no crack is visible on the specimen surface by the optical micro-
scope. This is the region where multiple damage sites are possibly
formed inside the specimen, which cause small changes in the
ultrasonic signal profile. An abrupt change in the slope (i.e., a sharp
decrease in the curvature) of the anomaly measure profile provides
a clear insight into the forthcoming failure.

The family of anomaly measure profiles m in Fig. 9 exhibits
gradual increase until after the phase transition at 	 23 kcycles.
Changes in the value of m, its slope, and its curvature provide early
warnings for a forthcoming major change in the system dynamics.
From this perspective, the performance of SDF is superior to that of
both types of Neural networks (i.e., rbfNN and mlpNN) and PCA,
especially in the crack initiation phase that lies on the left side of
the vertical line. Table 1 presents a numerical comparison of
execution time and memory requirement of the afore-mentioned
methods for computation of the anomaly measure m. In each case,
the execution time for a single operation cycle at a time epoch is
obtained from the average of execution times for operation cycles
at 46 consecutive slow-time epochs on a 2.83 GHz Quad Core CPU
desktop computer in the Matlab 7.9.0 environment.
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Fig. 9. Performance comparison for fatigue damage detection.
Table 1 also shows that, in the testing stage, the execution time
varies from about ten milliseconds for PCA to about half a second for
rbfNN. All methods shown in Table 1 are implementable in real time
since the execution time is much shorter than the time spent in data
acquisition. SDF is the fastest among all anomaly detection methods
in the training stage, and has similar execution time in the testing
stage. PCA is at least one order faster than the other methods, while
rbfNN, mlpNN and SDF have comparable execution time in the testing
stage. As for the memory requirement, SDF requires the least memory
among the four methods, as shown in Table 1. The memory
requirement in other methods in the testing stage is more or less
similar (around 100 MB), which is insignificant for a commercially
available computer. However, for rbfNN and mlpNN, the training
stage requires significantly longer time (6.90�102 s for rbfNN and
3.02�102 s for mlpNN) and more memory (814.5 MB for rbfNN and
175.00 MB for mlpNN) than the other methods.
6. Application II: classification problems in mobile robots

This section presents the experimental validation of the pro-
posed wavelet-based feature extraction method for behavior
recognition in mobile robots. The objective here is to identify the
robot type and the behavior (i.e., the motion type) based on the
time series data obtained from the pressure sensitive floor. These
experiments are inspired from various real-life applications of
pattern classification, such as (i) classification of enemy vehicles
across the battlefield through analysis of seismic and acoustic time
series data and (ii) classification of human and animal movements
through analysis of seismic time series data.
6.1. Experimental procedure

The experimental set up consists of a wireless network incorpor-
ating mobile robots, robot simulators, and distributed sensors as
shown in Figs. 10 and 11. A major component of the experimental set
up is the pressure sensitive floor that consists of distributed piezo-
electric wires installed underneath the floor to serve as arrays of
distributed pressure sensors. A coil of piezoelectric wire is placed
under a 0.65 m�0.65 m square floor tile as shown in Fig. 11(a) such
that the sensor generates an analog voltage due to pressure applied on
it. This voltage is sensed by a BrainstemTM microcontroller using one of
its 10-bit A/D channels thereby yielding sensor readings in the range
of 0 to 1023. The sampling frequency of the pressure sensing device
that captures the dynamics of robot motion is 10 Hz, while the
maximum pseudo-frequency fp

max is 4.44 Hz (see Section 2.2). A total
of 144 sensors are placed in a 9�16 grid to cover the entire laboratory
environment as shown in Fig. 11(b). The sensors are grouped into four
quadrants, each being connected to a stack consisting of 8 networked
Brainstem microcontrollers for data acquisition. The microcontrollers
are, in turn, connected to two laptop computers running Player [32]



Fig. 10. The Robot Hardware: Pioneer 2AT and Segway RMP.

Table 2
Parameters used for various types of motion.

Motion type Parameter Value

Circular Diameter 4 m

Square Edge length 3 m

Random Uniform distribution x-dir 1 to 7 m

y-dir 1 to 4 m

Sensor

Distribution of Sensors

Fig. 11. Sensor layout in the laboratory environment: (a) sensor and (b) distribution

of sensors.

X. Jin et al. / Pattern Recognition 44 (2011) 1343–13561352
server that collects the raw sensor data and distributes to any client
over the wireless network for further processing.

Fig. 10 shows a pair of Pioneer robots and a Segway RMP that
have the following features:
�
 Pioneer 2AT is a four-wheeled robot that is equipped with a
differential drive train system and has an approximate weight of
35 kg.

�
 Segway RMP is a two-wheeled robot (with inverted pendulum

dynamics) that has a zero turn radius and has an approximate
weight of 70 kg.

Since Pioneer is lighter than Segway and Pioneer’s load on the
floor is more evenly distributed, their statistics are dissimilar.
Furthermore, since the kinematics and dynamics of the two types of
robots are different, the texture of the respective pressure sensor
signals are also different.

The objective is to identify the robot type and motion type from
the time series data. The Segway RMP and Pioneer 2AT robots are
commanded to execute three different motion trajectories, namely,
random motion, circular motion and square motion. Table 2 lists the
parameters for the three types of robot motion. In the presence of
uncertainties (e.g., sensor noise and fluctuations in robot motion), a
complete solution of the robot type and motion identification
problem may not be possible in a deterministic setting because the
patterns would not be identical for similar robots behaving
similarly. Therefore, the problem is posed in the statistical setting,
where a family of patterns is generated from multiple experiments
conducted under identical operating conditions. The requirement
is to generate a family of patterns for each class of robot behavior
that needs to be recognized. Therefore, both Segway RMP and
Pioneer 2AT robots were made to execute several cycles of each of
the three different types of motion trajectories on the pressure
sensitive floor of the laboratory environment. Each member of a
family represents the pattern of a single experiment of one robot
executing a particular motion profile. As a robot changes its type of
motion from one (e.g., circular) to another (e.g., random), the
pattern classification algorithm is capable of detecting this change
after a (statistically quasi-stationary) steady state is reached.
During the brief transient period, the analysis of pattern classifica-
tion may not yield accurate results because the resulting time
series may not be long enough to extract the features correctly.

Fig. 12(a) shows an example of the sensor reading when the robot
moves over it. The voltage generated by the piezoelectric pressure
sensor gradually increases as the robot approaches the sensor, and
discharge occurs in the sensor when the robot moves away from the
sensor and hence the voltage resumes to be 0. The choice of mother
wavelet depends on the shape of the sensor signal; the mother
wavelet should match the shape of the sensor signal in order to
capture the signature of the signal. Haar wavelet (db1), as shown in
Fig. 12(b), is chosen to be the mother wavelet in this application. The
sensor data collected by the 9�16 grid is stacked sequentially to
generate a one-dimensional time series. For each motion trajectory
consisting of several cycles, the time series data collected from the
pressure sensors was divided into 40 to 50 data sets. The length of
each data set is 3.0�105 data points, which corresponds to about
three minutes of the experiment time. The data sets are randomly
divided into half training and half testing. Among the training data, 10
sets are chosen to serve as the partitioning data sets as well.
6.2. Pattern analysis for robot and motion classification

This subsection provides a description of the application of
different pattern analysis methods to time series data of pressure
sensors for classification of the robots and their motion types.
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Fig. 13. Ensemble mean of the state probability vectors (feature vectors) for pattern classification: (a) Segway random, (b) Segway circle, (c) Segway square, (d) Pioneer

random, (e) Pioneer circle, and (f) Pioneer square.
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For feature extraction using SDF, each data set of a family (or
class) is analyzed to generate the corresponding state probability
vectors (i.e., patterns). Thus, the patterns pCi

j , j¼1,2,y,ni, are
generated for ni samples in each class Ci corresponding to robot
type and motion. Following the SDF procedure, each time-series
data set is analyzed using jSj ¼ 8, ‘¼ 2 and m¼1. Ensemble mean of
pattern vectors for different motion profiles of Segway and Pioneer
robots is shown in Fig. 13. It can be observed in Fig. 13 that the state
probability vectors of Segway and Pioneer robots are quite distinct.
Following Fig. 5, for each motion type, the state probability vectors
pCi

j were equally divided into training sets and testing sets.
In this application, the efficacy of SDF for feature extraction is

evaluated by comparison with PCA. The time series data are
transformed to the frequency domain for noise mitigation and
then the standard PCA method is implemented to identify the
eigen-directions of the transformed data and to obtain an ortho-
gonal linear operator that projects the frequency-domain features
onto a low-dimensional compressed-feature space. For the purpose
of comparison, the dimension of this compressed feature space is
chosen to be the same as that of the feature vectors obtained by
SDF. In this application, the support vector machine (SVM), k-NN
algorithm, radial basis Neural Network (rbfNN), and multilayer
perceptron Neural Network (mlpNN) have been used as the pattern
classifiers to identify different classes of feature vectors extracted
by SDF and PCA. The pattern classifiers identify the type of the robot
and its motion profile, based on the acquired statistical patterns.
Since, in this pattern classification problem, there are two robots
and each robot has three different types of motion profiles, it is
natural to formulate this problem as a two-layer classification
problem, where the robot type is identified in the first layer
followed by identification of the motion type in the second layer.
Thus, the above problem is formulated using a tree-structure
classification as shown in Fig. 14.
6.3. Experimental results and discussion

The performance comparison between SDF and PCA that are used
in conjunction with different classifiers is presented in Table 3. The
left part of Table 3 shows the results of robot type and robot motion
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classification using SDF for feature extraction, and the right part
shows the corresponding results using PCA for feature extraction. As
stated earlier, SVM, k-NN, rbfNN, and mlpNN have been used as
pattern classifiers in both cases. The polynomial kernel is used in SVM
[33], and a neighbor size of k¼5 is used in the k-NN classifier. The
rbfNN uses one hidden layer and one output layer with a single
neuron. Optimal training is obtained with 100 neurons in the hidden
layer that uses a radial basis function, while the output layer uses a
linear transfer function. The mlpNN utilizes a feed-forward back-
propagation network that consists of one hidden layer with 50
neurons and an output layer with a single neuron; the tangent
sigmoid function has been used in the hidden layers as a transfer
function, while the output layer uses a linear function.

It is noted that since the tree structure is used for pattern
classification, the motion recognition results are affected by the
robot recognition results. For example, the samples that are
Fig. 14. Tree structure for pattern classification.

Table 3
Results of robot and motion classification.

Feature extraction using SDF

Pattern Robot recognition Motion recognition

Classifier Robot Result Motion Result Total

SVM Segway 100% Random 92% ð23
25Þ

95%

ð58
58Þ

Circular 92% ð12
13Þ ð55

58Þ

Square 100% ð20
20Þ

Pioneer 94% Random 100% ð20
20Þ

94%

ð61
65Þ

Circular 90% ð18
20Þ ð61

65Þ

Square 92% ð23
25Þ

k-NN Segway 100% Random 88% ð22
25Þ

91%

ð58
58Þ

Circular 85% ð11
13Þ ð53

58Þ

Square 100% ð20
20Þ

Pioneer 94% Random 95% ð19
20Þ

94%

ð61
65Þ

Circular 100% ð20
20Þ ð61

65Þ

Square 88% ð22
25Þ

rbfNN Segway 100% Random 84% ð21
25Þ

91%

ð58
58Þ

Circular 92% ð12
13Þ ð53

58Þ

Square 100% ð20
20Þ

Pioneer 97% Random 95% ð19
20Þ

97%

ð63
65Þ

Circular 100% ð20
20Þ ð63

65Þ

Square 96% ð24
25Þ

mlpNN Segway 100% Random 96% ð24
25Þ

98%

ð58
58Þ

Circular 100% ð13
13Þ ð57

58Þ

Square 100% ð20
20Þ

Pioneer 100% Random 100% ð20
20Þ

100%

ð65
65Þ

Circular 100% ð20
20Þ ð65

65Þ

Square 100% ð25
25Þ
incorrectly classified in the robot recognition stage will be incor-
rectly classified for motion recognition also. However, this parti-
cular aspect is application dependent and the tree structure for
classification can be redesigned accordingly. The classification
results are presented in Table 3 that show the accuracy percentage
equal to (# correct classifications/# total data sets�100). In the left
part of Table 3, the combination of SDF with all four classifiers yield
good accuracy in recognizing the robot type, namely, 100% for
Segway and more than 94% for Pioneer. Although not explicitly
shown in Table 3, but all four classifiers successfully identified the
three types of motions of the Pioneer robot with 100% accuracy in
the robot motion classification stage. The errors in the motion
recognition, as seen in Table 3, originate from the robot recognition
stage. The success rate in recognizing Segway motion is slightly
lower due to the following possible reasons: (i) complicated
kinematics of the Segway robot, and (ii) the non-stationarity in
the samples due to uncertainties in the laboratory environment
(e.g., floor friction). It is expected that this accuracy would further
improve if the number of stationary samples is increased. The right
part of Table 3 shows that PCA yields slightly worse (but still
comparable) results than SDF in robot recognition. However, SDF
significantly outperforms PCA in motion recognition, because the
feature vectors extracted by PCA lack class separability among
different types of motions, which in turn yields poor motion
recognition accuracy.

Fig. 15 exhibits the effects of changing the number of neighbors
in the k-NN classifier on the performance (i.e., error magnitude) and
robustness (i.e., error fluctuation) by comparing the SDF-based and
PCA-based features. Fig. 15 shows that SDF-based classification is
consistently superior to PCA-based classification in terms of both
performance and robustness. For kZ3, the error in robot identi-
fication using SDF-based features has a decreasing trend and
Feature extraction using PCA

Pattern Robot recognition Motion recognition

Classifier Robot Result Motion Result Total

SVM Segway 91% Random 84% ð21
25Þ

81%

ð53
58Þ

Circular 77% ð10
13Þ ð47

58Þ

Square 80% ð16
20Þ

Pioneer 100% Random 20% ð 4
20Þ

65%

ð65
65Þ

Circular 65% ð13
20Þ ð42

65Þ

Square 100% ð25
25Þ

k-NN Segway 100% Random 84% ð21
25Þ

52%

ð58
58Þ

Circular 69% ð 9
13Þ ð30

58Þ

Square 0% ð 0
20Þ

Pioneer 88% Random 0% ð 0
20Þ

51%

ð57
65Þ

Circular 55% ð11
20Þ ð33

65Þ

Square 88% ð22
25Þ

rbfNN Segway 100% Random 92% ð23
25Þ

72%

ð58
58Þ

Circular 31% ð 4
13Þ ð42

58Þ

Square 75% ð15
20Þ

Pioneer 95% Random 0% ð 0
20Þ

66%

ð62
65Þ

Circular 100% ð20
20Þ ð43

65Þ

Square 92% ð23
25Þ

mlpNN Segway 100% Random 96% ð24
25Þ

98%

ð58
58Þ

Circular 100% ð13
13Þ ð57

58Þ

Square 100% ð20
20Þ

Pioneer 100% Random 85% ð17
20Þ

92%

ð65
65Þ

Circular 95% ð19
20Þ ð60

65Þ

Square 96% ð24
25Þ
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Fig. 15. Classification error vs. neighbor size in k-NN classifiers.

Table 4
Comparison of computational complexity of feature extraction methods.

Feature

extraction

method

Training stage Testing stage

Execution

time (s)

Memory

requirement

(MB)

Execution

time (s)

Memory

requirement

(MB)

SDF 5.21 65.2 5.17 64.9

PCA 6.62 233.85 0.04 37.5
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negligible fluctuations as the neighbor size increases. The corre-
sponding errors of motion classification for both Segway and
Pioneer are nearly consistent without any noticeable fluctuations.
In contrast, the error in robot identification using PCA-based
features is relatively large and has an increasing trend as the
neighbor size increases. The corresponding error of motion classi-
fication for Pioneer suffers from large fluctuations, while these
fluctuations for Segway are much smaller although the error
magnitude is very large. These results show that the SDF-based
features yield a significantly better separability among different
classes as compared to PCA-based features.

The proposed SDF-based method has a computational complex-
ity of O(N) for a given algebraic structure of the PFSA, with a leading
constant that is proportional to the number of scales used in the
wavelet transform [34]. A comparison of the computational com-
plexity of SDF and PCA is presented in Table 4 in terms of execution
time and memory requirements for processing each data set. For
the data set consisting of 3.0�105 data points, which is about
3.5 min of the experimentation time, it takes an average of 5.21 s
for SDF and 6.62 s for PCA to process each data set in the training
stage, respectively. The memory requirement is 65.2 MB for SDF,
and 233.9 MB for PCA. PCA takes longer execution time and
consumes more memory in the training stage because it needs
to calculate the covariance matrix using all training data sets. In the
testing stage, the execution time and memory requirement for SDF
are almost the same as those in the training stage, while the PCA
requires less time and memory than those in the training stage.
Both feature extraction methods have real-time implementation
capability since the execution time in the testing stage is much less
than the experiment time spent for collecting each data set. The
rationale for SDF taking longer time than PCA in the testing stage is
that the SDF-based method involves wavelet transformation and
PFSA construction from the two-dimensional wavelet image in
both training and testing stages, while the PCA-based method only
involves Fourier transform and finding the projection of the testing
data set using the projection matrix that is already constructed in
the training stage; this is a price paid for the superior performance
and robustness achieved in SDF-based feature extraction (see
Fig. 15 and Table 3). It is anticipated that the PCA-based method
will be relatively slower if the raw time-series is (more effectively)
de-noised by wavelet transform instead of Fourier transform. In
these experiments, the data analysis was performed on a 2.83 GHz
Quad Core CPU desktop computer with 8.0 GB of RAM.
7. Summary, conclusions and future work

This paper presents a feature extraction method for pattern
classification in complex dynamical systems. These features are
extracted as statistical patterns using symbolic modeling of the
wavelet images, generated from sensor time series. An appropriate
selection of the wavelet basis function and the scale range allows
the wavelet-transformed signal to be de-noised relative to the
original (possibly) noise-contaminated signal before the resulting
wavelet image is partitioned for symbol generation. In this way, the
symbolic images generated from wavelet coefficients capture the
signal characteristics with larger fidelity than those obtained
directly from the original signal. These symbolic images are then
modeled using probabilistic finite state automata (PFSA) that, in
turn, generate the low-dimensional statistical patterns, also called
feature vectors. This process is referred to as symbolic dynamic
filtering (SDF).

The proposed SDF-based feature extraction and pattern classi-
fication methodology is executable in real time on commercially
available computational platforms. A distinct advantage of this
method is that the low-dimensional feature vectors, generated
from sensor time series in real time, can be communicated as short
packets over a limited-bandwidth wireless sensor network with
limited-memory nodes.

The feature extraction and pattern classification methodology
has been experimentally validated on laboratory apparatuses for
two different applications: (i) early detection of evolving damage in
polycrystalline alloys and (ii) behavior recognition in mobile robots
by identification of their type and motion profiles. Experimental
results in these two specific applications show that the proposed
SDF-based methodology has superior performance relative to some
of the common pattern recognition tools (e.g., principal component
analysis).

Further theoretical and experimental research is recommended
in the following areas:
1.
 Exploration of other wavelet transform techniques for wavelet
image generation, such as fast wavelet transform and wavelet
packet analysis.
2.
 Optimization of the partitioning scheme for symbolization of
the wavelet images.
3.
 Experimental validation in other applications.
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