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Abstract – Microstructural degradation is a predominant source of damage in polycrystalline
alloys that are commonly used in diverse applications. For early diagnosis and prognosis of failures,
it is essential to understand the mechanisms of damage growth specifically in the crack initiation
phase, which is still an intriguing phenomenon for scientists due to sensing inaccuracies and
modeling uncertainties. Measurements of gradually evolving deformations on the material surface
during crack initiation provide early warnings of forthcoming widespread damage. In this paper,
a surface interferometer is used to generate 3-D surface profiles of polycrystalline alloy specimens
under oscillating load. The concepts of fractal geometry are used to quantify the changes in the
3-D surface profiles as early indicators of damage evolution in the crack initiation phase.

Copyright c© EPLA, 2012

Introduction. – Microstructural degradation is a
predominant source of damage in polycrystalline alloy
structures that are used in diverse applications [1]. The life
of these structures subjected to oscillating load patterns
is broadly classified into two phases: i) the crack initiation
and ii) the crack propagation. This classification implies
that there is a phase transition when microstructural
damage in the form of surface and subsurface deformi-
ties (e.g., voids, slip bands, inclusions, casting defects,
machining marks, and dislocations) develop into multiple
micro-cracks, that in turn coalesce together to develop
into a single large crack that propagates under oscillating
load [1]. Therefore, for early diagnosis and prognosis of
failures, it is essential to understand the mechanisms of
damage growth specifically in the crack initiation phase,
which is still an intriguing phenomenon for scientists due
to sensing inaccuracies and modeling uncertainties. In the
current state-of-the-art, early diagnosis in the crack initi-
ation phase is a critical challenge. Furthermore, fatigue
damage evolution is critically dependent on the initial
defects present in the materials, which may form random
crack nucleation sites [2]. This random distribution of
microstructural flaws may produce a wide uncertainty
in the crack initiation phase under similar loading condi-
tions [3], thereby making damage evolution a stochastic
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phenomenon. Since accurate identification of exact initial
conditions is infeasible, sole reliance on model-based
analysis in the crack initiation phase is inadequate due to
lack of requisite modeling accuracy [4,5].
Many model-based techniques have been reported in the

literature. Qian et al. [6] did a X-ray computed micro-
tomography study of the ductile fracture process of an
aluminum alloy. Stochastic approaches have been devel-
oped for modeling 2D crack propagation in heterogeneous
materials [7] and characterization of surface profiles [8].
Some studies attempted to model short cracks [9] while
others correlated the mechanical properties of materials
with the fractured surfaces [10,11]. Apparently, no exist-
ing model, solely based on the fundamental principles of
physics, can adequately capture the dynamical behavior
of damage evolution in the crack initiation phase.
Alternatively, data-driven techniques have been

proposed based on different sensing devices (e.g., acoustic
emission [12], eddy currents [13] and ultrasonics [14,15]).
While each of these methods has its own limitations,
ultrasonic sensing has been proven to be one of the
most successful methods for early detection of subsurface
damage during crack initiation, when no surface damage is
visible on a typical (100×) optical microscope. This paper
complements the prior work on ultrasonic sensing [3,15]
by studying the surface phenomenon that occurs during
crack initiation using the surface interferometry.
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Technical literature abounds with studies where the
concepts of fractal geometry [16] have been used to inves-
tigate the fundamental properties of complex systems in
a diverse range of scientific disciplines. For example, time
series analysis [17,18], fracture mechanics [19–21], earth-
quake modeling [22], material surfaces [23–25], medical
imaging [26], financial markets [27], and percolation in
porous media [28]. Mandelbrot et al. showed that frac-
tured surfaces are fractals in nature whose fractal dimen-
sion correlates with the toughness of the material [29].
Lung et al. [30] studied the relationship between the frac-
tal dimension and the roughness of surfaces. Bouchaud
et al. [31] developed models of small fractal-type cracks.
Canessa and Tanatar [32] developed a model of multi-
branched crack growth using fractal geometry.
The above attempts have been made to study the frac-

tal surfaces when short to large range cracks have already
appeared on the surface. In particular, the existing litera-
ture has mainly focused on the fractal-based modeling of
short cracks [33] and fractured surfaces of brittle materi-
als [34]. However, the study of gradual evolution of surface
deformations in the crack initiation phase in ductile mate-
rials, which ultimately leads to fully developed rapidly
propagating cracks, has not been reported. In this regard,
the contributions of this paper are as follows:

– Experimentation and measurement of surface defor-
mations during crack initiation using a surface inter-
ferometer and generation of 3-D surface profiles data.

– Analysis of surface data using methods of fractal
geometry for damage characterization and to generate
early warnings of forthcoming widespread damage.

Experimental description. – A NewView 5000
surface interferometer, as shown in fig. 1, has been used
to generate the 3-D surface profiles of specimens subjected
to cyclic loading patterns. The interferometer measures
the surface heights ranging from 1nm to 5000µm with
a resolution of 0.1 nm at the vertical scan speeds of up
to 10µm/s. It uses a closed-loop piezoelectric scanner
employing low-noise capacitive sensors to ensure accurate
and repeatable linear motion over the full range of
scanned area. The interferometer can scan areas up to
50mm× 50mm using its unique stitching capabilities
and generates ultrahigh resolution surface profiles using
a non-contact scanning method based on white light
interferometry principle. Light from the microscope is
divided within the interferometric objective, where one
portion reflects from the test surface and the other portion
reflects from an internal high quality reference surface in
the objective. Both light wavefronts are directed onto a
solid state camera leading to interference that generates
fringes, which indicate the characteristics of the surface
being tested. Finally, the surface profiles are generated
as 3-D profiles, where two of these dimensions represent
the scanned area and the third dimension represents the

Fig. 1: (Colour on-line) The surface interferometer.

Fig. 2: A typical (cracked) side-notched test specimen.

pixel values that are isomorphic to the height of the local
region.
The test specimens, made of 2024-T6 aluminum (a

typical polycrystalline alloy), are 3mm thick, 50mm
wide and have a side notch of 1.58mm× 4.57mm as
seen in fig. 2. The notch is made to increase the stress
concentration to ensure crack initiation and propagation
around the notch. The specimens have been subjected to
tensile-tensile cyclic loading on an MTS 831.10 Elastomer
system at a frequency of 100Hz such that the far-field
stress oscillates between 86.67MPa and 3.33MPa (i.e.,
with a peak to valley ratio of 26). The ratio of the peak
stress to the ultimate tensile strength (476MPa) is ∼0.18.
The specimen surfaces have been observed under the
interferometer after every 7.5 kilocycles of the oscillating
load.
The physical phenomena of surface deformation are, in

general, qualitatively similar in different polycrystalline
alloys due to fatigue damage under cyclic (tensile) stresses,
provided that the environmental temperature is well below
approximately one third of the melting point of the
material [1]. The results of experimentation, reported
in this paper, are expected to be qualitatively similar
to the fatigue damage behaviors of other polycrystalline
alloys. The specimen surface is subjected to monotonically
increasing deformation due to grain dislocations within the
specimen. As precursors to the appearance of a crack on
the surface, these phenomena culminate as waviness on
the surface that is captured by interferometry.
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Fig. 3: (Colour on-line) Evolution of the surface deformation with microstructural damage.

Figure 3 shows the 3-D profiles of the specimen surface
near the notch for six different time epochs, each separated
by 7.5 kilocycles. As seen in fig. 3, surface deformation
is more prominent around the notch due to high stress
concentration. The six plots in fig. 3 show the gradual
spatio-temporal evolution of the surface deformations in
the crack initiation phase. While the plot in fig. 3(a)
shows a healthy (polished) specimen surface, the plot in
fig. 3(f) shows widespread surface damage that eventually
developed into a rapidly propagating crack. Transitions
from the crack initiation phase to the crack propagation
phase occurred in the vicinity of 37.5 kilocycles in all
specimens under this cyclic loading. Since the fatigue life
in the crack propagation phase is governed by significantly
different physical phenomena, this issue is not addressed
in this paper; results of fatigue life prediction in the crack
propagation phase are reported elsewhere [3,35].

Fractal analysis. – Mandelbrot illustrated that rough-
ness cannot be studied using general topological notions
and demands an altogether different toolbox, called frac-
tal geometry [16]. The basic principle to estimate frac-
tal dimension is based on the concept of self-similarity.
Consider a non-empty bounded subset F in the Euclidean
space Rn, where n∈N. The set F is said to be self-similar
when F is the union of N(r) distinct (non-overlapping)
copies of itself each of which is similar to F scaled down
by a ratio r. The most popular way to calculate the fractal
dimension is by box-counting [36]. Let N(r) be the small-
est number of sets of diameter r, with 0< r≪ 1, which
covers F . Then, the lower and upper box dimensions of F
are, respectively, defined [37] as follows:

D
F
� lim infr→0+

log2 N(r)

− log2 r
and

DF � lim supr→0+
log2 N(r)

− log2 r
.

If the above two limits are equal, then the box dimension
DF of F is defined as

DF � lim
r→0+

log2 N(r)

− log2 r
. (1)

The box-counting approach to compute the fractal
dimension yields a systematic procedure that applies to
any structure in a texture plane and can be adapted for
structures in multi-dimensional spaces. For 3-D surface
profiles, the idea of this approach is to partition the (3-D)
data with regular cubic boxes with each side of size r. The
grid is progressively made finer by reducing r and thus the
number N(r) increases. The fractal dimension is obtained
as the slope of the straight line, as shown in fig. 4(a). One
advantage of the fractal analysis method is that it provides
a measure of absolute damage as compared to some other
methods that provide a relative measure by comparison of
the current observed pattern with the nominal pattern [3].
The surface profiles obtained from the interferome-

ter are preprocessed before using the box-counting algo-
rithm. The pre-processing is done for: i) filtering noisy
data, ii) filling the vacant (i.e., unmeasured) points, and
iii) mitigating the effects of orientation of the specimen.
The details of these methods are omitted for brevity.
Image registration is done to make sure that data from the
same region on the specimen surface is analyzed, by fitting
the notch edge with a circular arc and finding the coordi-
nates of the center. The center and the notch of each image
are matched by translation and rotation. Finally, a rectan-
gular region of 1024× 1024 pixels (∼0.64mm× 0.64mm)
is clipped from each image for further analysis.
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Fig. 4: (Colour on-line) Fractal analysis of the surface defor-
mation profiles.

Figure 4(b) shows the evolution of fractal dimension
at different time epochs for three different specimens.
The fractal dimension increases with the surface damage,
which is consistent with the damage evolution observed in
fig. 3. The curves in fig. 4(b) can be broadly classified into
three distinct regions: i) the initial region of sharp increase
in the fractal dimension, ii) the middle region that forms
a plateau of slowly evolving changes, and iii) the final
region that shows a sharp increase in the fractal dimension.
These observations are explained as follows. Initially, when

the specimen is loaded for the first time, there is an
appreciable change in the surface profile. After that there
is a phase of dormancy, when not much change is observed
in the surface profile. This is followed by widespread
surface damage that leads to a phase transition to the
crack propagation phase. During the initial loading cycles,
the atomic structure of the specimen is well-organized
and the surface is polished. Thus, rapid deformations
occur during the initial few cycles. Subsequently, with
the formations of multiple slip bands and dislocations,
the surface becomes hard and further damage growth is
slowed down. Finally, after a sufficient number of cycles,
when the effects of hardening are overcome, the surface
deformations begin to grow at a rapid pace and lead to a
phase transition when multiple micro-cracks form that in
turn coalesce to form a single macro-crack that is visible
on a standard optical microscope.
A higher fractal dimension for a surface means greater

amount of space it occupies in a compact 3-D space. A
surface X is rougher than a surface Y if X has more
singular (i.e., non-differentiable) points than Y, in other
words, X has a higher fractal dimension than Y [16].
Figure 4(c) shows the surface profiles at a particular
longitudinal section close to the notch, at four different
time epochs: i) a fresh specimen, ii) 7.5 kilocycles, iii) 22.5
kilocycles, and iv) 37.5 kilocycles. The surface profile of
the fresh specimen is smooth with small kinks due to
polishing imperfections. The evolution of these profiles
show how the roughness increases with damage as time
progresses.

Lacunarity analysis. – Lacunarity analysis is a multi-
scale method of determining spatial dispersion, i.e., the
deviation of a geometric object, such as a fractal, from
translational invariance [38,39]. Translationally invariant
objects, that are homogeneous (i.e., all gaps sizes being
the same), have low lacunarity. In contrast, translationally
non-invariant objects, that are heterogeneous (i.e., a wide
range of gap sizes), have high lacunarity. Note that transla-
tional invariance is scale-dependent, i.e., objects that are
heterogeneous at small scales may look homogeneous at
larger scales and vice versa.
Lacunarity is computed using the gliding box algo-

rithm [40]. Figure 5 shows examples of three 8× 8 maps
with their lacunarity values. Lacunarity is computed by
sliding a box of size r× r (e.g., r= 2) on the map by
moving it by one cell at a time. The number of occupied
sites (i.e., symbol 1) within the box, called the box mass,
is counted for each position over all rows and columns to
get the frequency of box masses. The number of boxes
of size r with k occupied sites is denoted by n(k, r) and
the total number of boxes is denoted by N(r). For an
M ×M map, N(r) = (M − r+1)2. The probability distri-
bution of the box mass is given as P (k, r) = n(k, r)/N(r).
The first and the second moments of the probability
distribution P (k, r) are obtained as Z1(r) =

∑
k
kP (k, r)

and Z2(r) =
∑
k
k2P (k, r), respectively. The lacunarity is
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(a) Λ(2) = 1.53 (b) Λ(2) = 1.18

(c) Λ(2) = 1.00

Fig. 5: Examples of lacunarities of three 8× 8 maps.

defined as

Λ(r) =Z2(r)/Z
2
1 (r). (2)

In general, sparse maps have higher lacunarities than
dense maps, for the same gliding box. Also higher lacu-
narity indicates greater clumping. Figure 5(a) shows a
map with a large patch of occupied cells, with Λ(2) = 1.53.
Figure 5(b) shows a random map with Λ(2) = 1.18, where
the probability of occupancy of a cell is p= 0.5. Figure 5(c)
shows a perfectly regular map with Λ(2) = 1.00. The algo-
rithm can be easily extended to multi-dimensional data.
For lacunarity analysis, the surface profiles (see fig. 3)

are converted into 3-D binary data sets by partitioning. A
window of size 1024× 1024 pixels (∼0.64mm× 0.64mm)
is selected near the notch. The range of the surface height
at each pixel is divided into 512 segments, which yields
a 3-D cellular structure of size 1024× 1024× 512. A cell
is labeled with a 1 if a data point falls in any of the
cells directly above it; otherwise, it is labeled with a 0.
Lacunarity of these data sets are calculated for different
box sizes (r).
The three plots in fig. 6 show the evolution of lacunar-

ity at different time epochs for three different specimens,
respectively. Lacunarity of the surface profile of a damaged
specimen is normalized relative to the initial value of lacu-
narity (Λ0), i.e., lacunarity of the surface with no damage.
Each plot in fig. 6 shows the curves of log2(Λ0/Λ) vs. the
load cycles for different box sizes r= 2, 4, 8, 16 and 32. All
these curves show similar trend of decreasing lacunarity
(i.e., increasing log2(Λ0/Λ)) with increasing load cycles.
A smoother surface has a higher lacunarity because the
material is concentrated in the lowest segments of the
partition. In contrast, a rougher surface is distributed in
the entire range of the surface height and results in lower
lacunarity. Furthermore, it is observed that the lacunarity
of a surface profile is invariant with respect to the scale
size, which confirms its fractal nature [38].
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Fig. 6: (Colour on-line) Lacunarity analysis of the surface
profiles at different scales.

The lacunarity plots suggest that the surface deforma-
tion rate is maximum at the beginning of the damage
process and as damage increases, the rate of change
in surface deformation decreases. This phenomenon is
explained in terms of strain hardening in low-cycle fatigue.
As loading starts, the material near the notch under-
goes plastic deformation due to a high stress-concentration
factor causing strain hardening [1], that in turn reduces
the damage rate. The sudden change in the slope of lacu-
narity in all three specimens, as seen in the three plots
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of fig. 6, at 30 kilocycles indicates the onset of a phase
transition from crack initiation to crack propagation; this
observation is in agreement with the evolution of fractal
dimension in fig. 4(b). At this point the material becomes
abruptly weaker. It is to be noted that, during the middle
phase of crack initiation, the fractal dimension does not
change significantly; however, the upward slope of lacu-
narity in this region suggests that the surface texture (i.e.,
the distribution of peaks and valleys) changes even when
a dormant phase is seen in terms of fractal dimension.

Conclusions and future work. – This paper presents
an analysis of the evolution of surface deformations in
polycrystalline alloys during crack initiation using the
methods of fractal geometry. White light interferome-
try has been used to measure the 3-D surface topolo-
gies of aluminium specimens. It has been found that as
the surface deforms, its fractal dimension increases and
the lacunarity decreases. The nature of the fractal dimen-
sion and lacunarity curves provides insights into surface
roughening behavior during crack initiation. The follow-
ing topics are recommended for future research: i) multi-
fractal analysis of the surface during crack initiation and
ii) Calibration of the results of fractal analysis with ultra-
sonic sensors for online recursive estimation of remaining
life.
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