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a  b  s  t  r  a  c  t

This  paper  presents  a symbolic  dynamic  method  for  health  monitoring  of permanent  magnet  synchronous
motors  (PMSMs),  which  involves  abstraction  of  a qualitative  description  from  a dynamical  system  repre-
sentation  of  the  PMSM.  The  underlying  algorithms  rely  on  state-space  embedding  of  the  PMSM’s  output
line  current  and  discretization  of  the resultant  pseudo-state  and  input  spaces.  System  identification  is
achieved  through  inference  of the  PMSM’s  dynamical  system  behavior,  and  the  deviation  of the system’s
output  behavior  from  the  nominal  expected  behavior  yields  a measure  of  the  estimated  fault.  A special-
purpose  test  bed  has  been  designed  and  fabricated  for  experimental  validation  of  the  health  monitoring
algorithm  via  controlled  accelerated  deterioration  of magnetization  in  the PMSM.  The  performance  of  the
proposed algorithm  has  been  compared  with  that of  a classical  motor  current  signature  analysis  (MCSA)
procedure  as  well  as  with  a benchmark  particle  filter  for  fault  detection  in  PMSMs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

With the advancement in modern direct drive motor/
generators, power conversion, and storage technologies, it is
now possible to replace several traditional mechanical, hydraulic
and pneumatic mechanisms with electrical configurations. As
the complexity of industrial power systems grows, their criti-
cal infrastructure increasingly depends on the reliable operation
of electrical subsystems. Consequently, it becomes imperative
to develop advanced technologies for prognostics, diagnostics
and health management of the power system. Among rotating
machines, recent years have witnessed an increasing use of the
permanent magnet synchronous motor, abbreviated as PMSM in
the sequel, to provide a viable and effective alternative to other
types of motors. Specifically, PMSMs  have many advantages that
include high speed operational capability, precise torque control,
high torque to current ratio, high power to weight ratio, high effi-
ciency, and robustness to exogenous disturbances.

As a consequence, basic research on fault detection and identi-
fication (FDI) of PMSMs  has gained considerable importance over
the last few decades [1].  In the course of its development, along
with the use of more traditional techniques, such as residual gen-
eration using parity-space tools, dedicated observer methods and
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parameter identification approaches for fault detections, there has
been efforts towards development of a relatively new branch of
fault-detection techniques involving data-driven machine learning
and non-linear time-series analysis (NTSA) using formal languages.
Several data-driven techniques such as statistical linearization [2],
Kalman filtering [3],  particle filtering (PF) [4,5], Markov Chain
Monte Carlo (MCMC) [6],  Bayesian networks [7],  artificial neural
networks (ANN) [8],  maximum likelihood estimation (MLE) [9],
wavelet-based tools [10], and genetic algorithms (GA) [11] have
been reported in the literature for fault detection, diagnosis and
prognosis. Very recently, Ruiz et al. [12] reported a time-frequency
method specifically focused on detection and diagnosis of demag-
netization faults in PMSMs  operating under non-stationary speed
conditions. However, in many practical cases, limited on-board
computational power severely restricts the use of these complex
algorithms and associated optimization techniques. Furthermore,
the need for data communication over bandwidth-limited wireless
sensor networks often makes dimensionality reduction and data
compression a necessity.

This paper addresses the problem of detection and identification
of demagnetization faults and estimation of the fault magnitude
in PMSMs, without a high-fidelity component-level model of the
system. Demagnetization in PMSMs  may  occur if induced eddy
currents cause overheating in the magnets. As the magnetic prop-
erties of the rare earth magnetic materials, such as Sm–Co and
Nd–Fe–Bi are highly temperature-dependent, over-heating may
induce partial demagnetization of the material, resulting in reduc-
tion of available torque, torque pulsation, vibration and excessive
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heat. Different fault detection and diagnostic methods have been
applied to detect motor faults, the most common of which are
frequency domain motor current signature analysis (MCSA) and
vibration analysis.

This paper reports the development of a robust non-invasive
and computationally inexpensive system identification technique
that is built upon formal-language-theoretic formulation, based
on symbolic information. A central step in the proposed system
identification method is discretization of the voltage and current
time-series data for conversion into a corresponding sequence
of symbols to achieve enhanced robustness and computational
efficiency [13–15].  Specifically, the fault detection algorithms are
designed to be robust with respect to sensor noise and, at the same
time, simple enough to be implemented within the sensors them-
selves. This method would also facilitate construction of a reliable
sensor network to serve as a backbone to the decision-making
hierarchy of a system-level health and energy management sys-
tem. Along with the development of the theoretical formulation,
this paper also reports a novel experimental procedure for achiev-
ing controlled accelerated deterioration of magnetic strengths in
PMSMs. The main contributions of this paper beyond the work
reported in the authors’ previous publications [13–15] are suc-
cinctly stated below.

• Formulation of a language-theoretic system identification
method for fault detection under diverse steady-state operating
conditions.

• Validation of the proposed fault detection, identification, and
estimation algorithms on an experimental test-bed that has been
designed and constructed for achieving controlled demagnetiza-
tion in PMSMs.

The paper is organized in six sections. Section 2 describes
the test apparatus on which the algorithms for fault detection in
PMSMs have been validated. The concept and theoretical aspects
of symbolic identification are presented in Section 3 along with a
necessary mathematical background. The resulting fault detection
scheme is developed in Section 4. The pertinent results of algorithm
validation on the experimental test-bed are presented in Section 5.
The paper is summarized and concluded in Section 6 along with
recommendations for future research.

2. Test apparatus for fault detection in a permanent
magnet synchronous motor (PMSM)

The experimental apparatus has been built and tested to vali-
date the proposed fault diagnostic algorithms that are targeted
towards detection of demagnetization failures in permanent mag-
net synchronous motors (PMSMs) in a realistic noisy situation. The
apparatus uses the Baldor BSM50N-133AF permanent magnet syn-
chronous motor (PMSM) that is commonly called a brushless AC
servomotor; this particular series of brushless servomotor has been
chosen because of its wide usage in aviation, robotics, and numer-
ous other industrial motion control applications. The specifications
of the PMSM are listed in Table 1.

Table 1
Specifications of the brushless AC servomotor.

PMSM Type Baldor BSM50N-133AF

Rated bus voltage 160 V DC
Bus voltage used for experiments 100 V DC
Peak current 5 A
Continuous stall current 1.9 A
Rated power 190 W
Rated angular speed 4000 rpm
Torque at continuous stall current 0.45 N m

The motor current and voltage were measured with a custom-
built circuit based on Hall-effect sensors, where A/D conversion
is performed by a dSpace DS1104 system that performs data
acquisition and control in the apparatus. The motor drive is a
custom-circuit driven by the PWM  outputs of the dSpace system.
The dynamometer for motor load control incorporates a Magtrol
model DSP6001 controller and Hysteresis Dynamometer model
HD-805-6N; however, measurements from the dynamometer were
manually recorded for the experiments reported in this paper.

The next subsection presents the governing equations for the
PMSM system and its electronic drive, followed by two more
subsections that describe the demagnetization procedure and the
experimental details, respectively.

2.1. Governing equations of the PMSM system

In state-space setting, the governing equations of the PMSM take
the following form:

dirq
dt

= vr
q − Rsirq − ωreLdir

d
− ωre�PM

Lq
(1)

dird
dt

= vr
d

− Rsird + ωreLqirq
Ld

(2)

dωr

dt
= Te − TL − Bωr

J
(3)

where the subscripts q and d have their usual significance of quadra-
ture and direct axes in the equivalent 2-phase representation, with
v, i, and L being the corresponding axis voltages, stator currents and
inductances. Rs is the stator resistance and ωre = (P/2)ωr is electrical
rotor velocity respectively, P being the number of pole pairs and ωr

being the rotor speed. �PM is the flux linkage of the rotor magnets
with the stator. The superscript r denotes that the equations have
been set up in the rotor reference frame.

The electromagnetic torque can be expressed as:

Te,3ph = 3P

4
�PM[−id sin(�re) + iq cos(�re)] (4)

where �re = (P/2)�r is the electrical rotor angle. The corresponding
expression for torque in the rotor reference frame is given by

Te,3ph = 3P

4
�PMirq (5)

In the above equation, the torque Te is proportional to the quadra-
ture axis current because the magnetic flux linkage �PM is constant.
The equation of motion is:

Te = TL + Bωr + J
dωr

dt
(6)

where TL is the load torque, B is the damping coefficient, and J is
the moment of inertia.

2.2. Demagnetization procedure

The electromagnetic torque in Eq. (4) is proportional to the
cross-product between the current vector and the permanent mag-
net flux linkage vector. For a given current magnitude, the torque
is maximized if the field generated by the stator windings is
orthogonal to that of the permanent magnet; and the pulse width
modulated (PWM)  controller manipulates the three-phase line cur-
rent to maintain this orthogonality.

It is noted that position feedback is vital to this scheme, since
3-phase (adc) to 2-phase (dq) conversion depends upon the rotor
angle. In the present experiment, during demagnetization, an off-
set is added to the encoder orientation so that, instead of being
orthogonal, the stator winding field opposes the field generated by
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Fig. 1. Inverter-driven permanent magnet synchronous motor system.

the permanent magnets. Thus, since the two fields are anti-aligned,
no torque is generated, instead the permanent magnets slowly lose
their magnetism. The considerable amount of heat generated in the
process enhances the loss of magnetic property in the permanent
magnets. The schematic of the entire experimental apparatus is
shown in Fig. 1. It is divided into several blocks, each of which is
described next.

2.2.1. Controller block
The PMSM used in the experiment is a 3-phase 4-pole device

rated at 160 V bus voltage, 4000 rpm; it is fed by a PWM  inverter.
The stator resistance of the motor is Rs = 11.95 �;  the quadrature-
axis and direct-axis inductances are: Lq = Ld = 16.5 × 10−3 H; and the
rotor inertia is J = 0.06774 kg cm2.

Two proportion-integral (PI) controllers regulate the power cir-
cuit that drives the PMSM.  The inner loop regulates the stator
currents, while the outer loop regulates the speed. In this con-
trol scheme, the difference between the measured speed and the
reference speed generates the command quadrature axis current,
which is directly proportional to the electromagnetic torque. The
line currents ia, ib, and ic are then measured. The reference values
are compared with the actual values of the currents, and the error
signal, thus constructed is used for generating the gate turn on/off
commands.

2.2.2. Direct magnetic flux linkage estimation block
As the permanent magnet inside the PMSM slowly deteriorates,

it is imperative to be able to measure the extent of demagnetization
by some kind of direct technique so that the degree of fault pre-
dicted by the proposed syntactic method is mapped to this physical
quantity.

Several researchers have estimated the flux of a PMSM and
the no-load test method has become very popular in this context,
where an auxiliary motor is required to drive the PMSM at a con-
stant speed. The windings of PMSM are kept open-circuit so that the

flux can be estimated by measuring the back-EMF of the PMSM.  The
two-phase stator voltage vr = [vr

d
vr

q]T in the rotor reference frame
is given by

vr = Ri
r + L

d

dt
i
r + ωre J(Li

r + �
r
PM) (7)

where

i
r =

[
ir
d

irq

]
, J �

[
0 −1

1 0

]
and �

r
PM =

[
�PM

0

]
are the current vector, 90◦ rotation matrix and the permanent
flux linkage vector, respectively. Under steady state conditions, the
derivative of the current vector is zero, and the voltage expression
becomes:

V
r = RI

r + ˝re J(LI
r + �

r
PM) (8)

where V, I and ˝re are the steady state voltage, current and electri-
cal rotor velocity. In open circuit there are no currents flowing in
the windings of the machine, so the voltage is entirely due to the
permanent magnet flux linkage, hence

‖V‖ = ‖˝re J �
r
PM‖ = P

2
˝r�PM (9)

The permanent magnet flux linkage is therefore

�PM = ‖V‖
(P/2)˝r

= (
√

(2/3)Vl−l)RMS

(P/2)((2� rpm)/60)
(10)

In this experiment, at each stage of demagnetization, the line-to-
line voltage and the motor speed in rpm is recorded. The permanent
magnet flux linkage is estimated from these, following Eq. (10).

2.2.3. Operating condition block
The desired rpm and the load torque is set in the operating con-

dition block. The load torque is directly set by the dynamometer.
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2.2.4. Input and output block
All the variables are captured and stored in the output block,

while the input voltage commands are also saved in the input block.
The sensors used in the experimental apparatus are (closed-loop
compensated) Hall Effect current transducers LA 55-P, procured
from the manufacturer Liaisons Electroniques et Mecaniques
(LEM). These current sensors are controlled by using a LM124 chip
that consists of four independent, high gain, internally frequency-
compensated operational amplifiers (Op-Amps). These Op-Amps
are designed specifically to operate from a single power supply
over a wide range of voltages. The LA 55-P sensors have a frequency
bandwidth of DC to 200 kHz and an accuracy of ±0.65% at 50 A, 25 ◦C
and ±15 V power supply.

It is noted that the controller block and the direct magnetic flux
linkage estimation block in Fig. 1 are never engaged simultaneously,
because that would result in a conflict between the external auxil-
iary motor and the PMSM controller.

2.3. Details of the experimental procedure

In each set of experiments, the following order of the procedure
is maintained.

1  A direct estimation of the magnetic flux is made and the temper-
ature is noted.

2 Voltage and line current data are recorded by making the motor
spin at 1000 rpm. Two sets of data are collected, correspond-
ing to the load torques of 0.170 N m (1.5 lbf in.) and 0.226 N m
(2.0 lbf in.), respectively. It is noted that the controller actively
adjusts for any deterioration in the system components in the
control loop.

3 The motor is demagnetized following the procedure outlined in
Section 2.2 until the temperature rises to a predetermined value.
In this experiment, the rise in temperature of the motor, which
is an effect of this demagnetization procedure, is also used as an
indicator of how much the demagnetization has progressed.

4 The procedure is repeated from Step 1.

The whole experiment has been repeated 14 times to assess the
robustness of the procedure. At the end of each individual demag-
netization run and the corresponding reduction in the magnetic
flux linkage is measured by the no-load test method described in
Section 2.2.2. Fig. 2 presents the profile of percent reduction in
magnetic flux as a function of the core temperature.

It is noted that the temperature of the permanent magnet serves
only as a qualitative guide to the experimenters to indicate that
the motor has demagnetized to a certain predetermined value.
The unique one-to-one correspondence between the temperature
and magnetic flux linkage was experimentally verified and the
result has been presented in Fig. 2. Apart from being used as this
preliminary guide, temperature has not been subsequently used
for determining the receiver operating characteristics (ROC) (see
Section 5). Direct tests, described in Section 2.2.2, have been per-
formed for that purpose. and these results have been used for
validating the predictions obtained by symbolic identification.

3. Concept of symbolic identification

Since sufficiently accurate and robust continuous-domain mod-
els of physical processes may  not be always available, it is logical to
construct a semantic model of such processes to capture their per-
tinent behavior. In this context, estimation of deviations of such a
system’s behavior from its nominal behavior can be realized in the
abstract symbolic domain with grammatical inference techniques.
Specifically for PMSMs, time-series data (that consist of voltage and

Fig. 2. Variation of magnetic flux linkage with temperature.

current signals recorded by a data-acquisition system) could be
discretized temporally and spatially to generate symbol strings as
representatives of their behavior. The underlying theory of symbol
generation, adopted in this paper, is based on the previous work of
the authors, which has been reported in recent literature [13,14,16].
The core concept here is built upon the fundamental principles of
symbolic dynamics, finite state automata, and pattern recognition
and is succinctly described below. Fig. 3 illustrates the concept of
partitioning.

A block of data (e.g., time series) is converted to a symbol string
by partitioning into finitely many discrete cells, ˚1, ˚2, . . .,  ˚m.
These cells form an exhaustive and mutually exclusive set, i.e.,

⋃|˙|

j=1
˚j =  ̋ and ˚j

⋂
˚k = ∅ ∀j /= k

where each cell is labeled as a symbol � ∈ ˙.  The resulting symbol
set  ̇ is called the alphabet ˙,  consisting of different symbols such
that the alphabet’s cardinality is |˙|. If a data point falls in a partic-
ular partitioning cell, then it is assigned the corresponding symbol
of that cell; thus, the data set is transformed into a symbol string
in this manner.

In the context of symbolization, the underlying structure of a
dynamical system, (in this case, the pertinent dynamics of PMSM)
is captured by a quantized representation of a continuous-time
continuous-state generalized dynamical system (GDS).

Fig. 3. Partitioning scheme for input and output data.
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Definition. (Generalized dynamical system [17]) A generalized
dynamical system (GDS) is defined as an 8-tuple automaton.

D  = (T, U, W,  Q, P, f, g, ≤)

where

• T is the time set (e.g., T = [0, ∞)),
• U  is the input set,
• W is the output set,
• Q is the set of internal states,
• ≤ is an order relation on T, expressed as: ≤ ⊆ T × T,
• f is the global state transition function defined as

f : T × T × Q × U → Q for time-varying systems

f : T × Q × U → Q for time-invariant systems

• g is the output function defined as

g : T × Q → W for time-varying systems

g : Q → W for time-invariant systems

Definition. (Qualitative dynamical system) The quantized
abstraction of a GDS is called a qualitative dynamical system (QDS)
that is represented as a 5-tuple

G = {Q, �,  ˙,  ı, �}

where

• Q � {q1, q2, . . . , qf } is the finite set of qualitative states of the
automaton.

• � � {	1, 	2, . . .,  	m} is the set of qualitative input events, called
the input alphabet.

•
 ̇ � {�1, �2, . . .,  �n} is the set of output symbols, called the output

alphabet, where the output symbols bear a one-to-one corre-
spondence with the quantized values of the dynamical system’s
outputs.

• ı : Q × � → Q is the state transition function that maps the cur-
rent state into the next state upon receiving the input 	. If the
state transition function is probabilistic, then

ı : Q× � → FQ

where FQ is the probability distribution function of the qualitative
states Q.

• � : Q →  ̇ is the output generation function that determines the
output symbol from the current state. In its full generality, � can
be probabilistic as well, i.e.,

� : FQ → F˙

where F˙ is the probability distribution function of the output
alphabet ˙.

Definition. (Qualitative abstraction) A QDS G is derived from a
GDS D via a vector function, � : D  → G where � ≡ (
TQU, 
Q, 
W) is
a 3-tuple vector function consisting of three individual abstraction
functions: defined as


TQU : T × Q × U → �


Q : Q → Q

W : W → ˙

Fig. 4. Graphical representation of the consistency postulates.

In the above context, Kokar [17] introduced a set of necessary
and sufficient conditions as “consistency postulates” that the pair
(G, �) must satisfy in order to be a valid representation of the gen-
eral dynamical system. In this paper, since the transition function
ı of the QDS is probabilistic, the consistency postulates have been
redefined in a probabilistic sense. The modified consistency postu-
lates are stated as follows.

Definition. (Consistency postulates) Let D, G and � represent a
GDS, QDS and an abstraction function respectively. Then the pair
(G, �) represents the consistency postulates in a probabilistic sense
if, ∀t ∈ T, q ∈ Q, u ∈ U,

Consistency postulate #01:
Q (f (t, q, u))∼ı(
Q (q), 
TQU(t, q, u))

(11)

Consistency postulate #02:�(
Q (q)) = 
W (g(q)) (12)

where the notation (X ∼ P) implies that the random variable X is
distributed according to the probability distribution P.

Postulate #01 essentially restates the conditions of homomor-
phism, which means that partitioning followed by transition in
the discrete domain is the same as transition in the continuous
domain followed by partitioning, in a probabilistic sense. Postulate
#02 requires that partitioning the output function is equivalent to
applying the output function to the partition function. Fig. 4 along
with the governing equations for GDS and QDS, introduced earlier,
illustrates the concept and the following theorem presents a formal
statement.

Theorem 3.1 (Kokar [17]). Let W� ≡ (W1, . . .,  Wn) be a finite parti-
tion of a GDS’s output space W,  which is given by 
−1

W :  ̇ → W� . Let
Q� be a partition of Q defined as an inverse image of W� under g, i.e.,

Q� = g−1(W�),

and let TQU� be a partition of T × Q × U defined as an inverse image of
Q� under f,

TQU� = f −1Q�.

Then, Q� is a maximal admissible partition of Q, and TQU� is an admis-
sible partition of T × Q × U.

Theorem 3.1 is interpreted as follows:

• A critical hypersurface partition in Q is an image of the partition
in W under g−1.
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Fig. 5. Relative entropy variation with embedding dimension and delay.

• A critical hypersurface partition in T × Q × U is an image of the
partition in Q under f−1.

If the system model (i.e., the functions f and g governing the
GDS) is known, then the critical hypersurfaces or partitions can be
analytically evaluated and utilized as delineated above. However,
in the absence of model equations, the following steps are used.

1 There should be an alternate way of constructing the phase space
from the output only without the model equations.

2 There should be an alternate way of arriving at the proposed par-
tition without the information about the state transition function
f and the output function g.

Next we delineate a method for construction of GDS and QDS.
Phase space construction: In the absence of a state-space model,

starting from the output signal captured by suitable instrumenta-
tion, a pseudo phase-space is constructed from the delay vectors
using Taken’s theorem [18]. The embedded phase-space is denoted
by

x(k) = [xk−�, . . . , xk−m�] ,

where � is the time lag, and m is the embedding dimension. Takens’
theorem [18] guarantees that, in the noise-free case, a system of
state dimension n can be embedded by using a maximum of mT

lags where mT ≤ 2n + 1.
Many optimization routines have been reported in literature to

find optimum values of the embedding parameters m,  n and �. In
this paper, the Kozachenko–Leonenko (KL) [19] estimate of the dif-
ferential entropy Rent (e.g., obtained from the output current signal
ic of the PMSM)  is minimized to find the optimal set of embedding
parameters (m* , � *). Fig. 5 shows the variation of Rent with increas-
ing m and �, where the infimum occurs at m * =3 and � * =67 for the
PMSM system.

In the very next step, the phase space and the input space are
individually discretized. The crux of the method is to place the par-
titions in such a way, that there is a change in both input and output
alphabets at exactly the same instant.

Partitioning: Time series sensor data are obtained from the
input and output data streams of the dynamical system D0
under nominal condition under different input conditions. Let Y =
{y1, y2, . . .}, yk ∈  ̇ denote the discretized output sequence. The
next step is to construct a probabilistic finite state automaton
(PFSA). In this paper, a D-Markov machine is next constructed, with
states defined by symbol blocks of length D from Y.  The reader is

Fig. 6. Learning scheme for system identification.

referred to Refs. [13] and [14] for an in-depth description of the
procedure.

3.1. Identification and learning

A partition constructed in this way is admissible [20], but may
not be maximal, since this partition is a subpartition of the origi-
nal partition proposed in Theorem 3.1.  Next we  present a learning
scheme, depicted in Fig. 6, that explains identification of the state
transition function ı from the input–output symbol sequences
obtained from experiment on the system while it is under nominal
condition.

It is assumed that inputs and outputs are time-synchronized.
The state transition function ı can be expanded into two  dimen-
sional matrices ı	i , indexed by the input variable alphabets. That
means

ı = {ı	1 , ı	2 , . . . , ı	m } (13)

where ı	i : qj × 	i → Pr{Q} maps the current state qj and input 	i
to the probability distribution over all possible states in the set Q.
The algorithm for estimating the matrices ı	i is straightforward and
involves counting the frequency of each transition in the learning
phase. Since the state transition matrices are constructed simply
by counting, this method is well-suited for implementing in the
sensor electronics for real-time prognoses.

The learning algorithm has to make sure that the probability
values of ıi converge. In this context, convergence of the prob-
ability values require that the sensor time-series data collected
should be statistically stationary [13]. This can be ensured if the
data collection for FDI analysis is scheduled during only steady state
operation of the motor. The convergence depends on the length of
the input–output symbol sequences. In this work, a stopping rule
[16] has been used for detecting the optimal data length. In the
learning phase, it has to be ensured that the grammar G is trained
with sufficient input data belonging to a particular equivalence
class. This is the so-called coverage problem.

4. Fault detection scheme

The concept of fault detection is largely similar to that of the
learning scheme in Fig. 6 with the following exception. The input
and output time series data from the actual plant are discretized to
form symbol sequences, which are fed to the trained fixed-structure
automaton. The discretization is performed using the same par-
titioning as was done during the learning phase. It is noted that
the resulting finite sate automaton (FSA) uses the output from the
actual system in addition to the input, and hence cannot serve
as an independent ‘system identification’ procedure in the clas-
sical sense of the term. Nevertheless the automaton can serve as
a system emulator if the state transition function ı is completely
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deterministic. That is, given the current state qj and the current
input symbol 	i,

ı	i (qj, 	i) =
[

pq1 pq2 · · · pq|˙|
]T

(14)

where pqk
= 1 for one and only onek (15)

= 0 otherwise (16)

By redefining the partitioning and depth used for the con-
struction of states, a stochastic automaton can be converted to a
deterministic finite state automata [21]. But that transformation
inevitably leads to state explosion and uneconomical growth in the
computational complexity.

Instead, in the current scheme, the state transition probability
vectors �	iqj

, which are the rows of the state transition matrix ı, serve
as feature vectors, and are used for the purpose of fault detection. An
extremely convenient feature of using state transition probabilities
as feature vectors, and using stochastic methods to define distances
between nominal and off-nominal behavior of plants is that this
technique is very robust to noise.

This paper proposes a pseudo-learning technique of utiliz-
ing the stochastic state transition function ı for the purpose of
fault detection. In this method, the actual state transitions inside
the fixed-structure automaton in the fault detection phase occur
according to the output symbol sequence obtained from the actual
system; and, at each instant of state transition, the trained automa-
ton produces a state transition probability vector �n [21] that
represents the characteristics of the nominal system corresponding
to inputs at this nth instant.

It is noted that the pattern vector �n, produced by the trained
automaton, is characteristic of the nominal behavior of the plant
given the past history of input, state and output. The current (pos-
sibly off-nominal) condition of the plant is characterized by another
state probability vector �̃n. This is defined for the actual system out-
put at an instant n, for which only one element of the vector will
be 1, rest are zeros. The next step is to use the sequences of instan-
taneous State Probability vectors {�n} and { �̃n} obtained at each
time instant, to construct a pattern vector. Under the assumption
of ergodicity of the system, a pattern can be generated from fre-
quency count of the state visits over a wide time window in case
of symbolic time series analysis [13]. The equivalent process in the
present case would be calculation of mean State Probability vectors
p and p̃ from the collections {�1, �2, . . .,  �n} and { �̃1, �̃2, . . . , �̃n}
respectively over time instants 1, 2, . . .,  n. It may  be noted that in
an ideal case, p should converge to p̃, while they should start to
diverge from each other as the fault progresses. Thus any measure
of divergence of the two probability vectors, such as the difference,
p − p̃ is a natural choice for constructing the pattern vector corre-
sponding to that specific fault condition. Once the pattern vectors
for a fault condition are obtained, a suitable classification algorithm,
such as a support vector machine [22] can be utilized to create
the hyperplane separating the nominal patterns from the possibly
off-nominal pattern vectors.

Remark. In the Learning Automata literature, learning [21] is done
by continuous feedback from environment to the automaton at
each time instant. Here also similar feedback technique is taken
but not for learning or changing the structure or internal functions
of the finite state machine, but only to provide actual history of past
outputs to the nominal automaton based model. Thus the technique
is called pseudo learning.

5. Results and discussion

This section presents the results of experimental validation of
the symbolic identification algorithm for fault detection in PMSMs.
The training set is comprised of the input signal profile of one of

the three line voltages (vc) and the output signal profile of the line
current (ic) for different load conditions. Fault detection and identi-
fication (FDI) techniques using the stator current vector in the rotor
(Park’s) reference frame have been widely reported in literature in
the past. However, in this paper, only ic and vc have been utilized
in order to validate the effectiveness of the analysis technique with
only partially available sensor data. Moreover, directly using sensor
data leads to simpler hardware and software design.

The data from different load conditions are concatenated to
form the complete output set. The resulting time series is then dis-
cretized by using the maximum entropy partitioning (MEP) [14] to
construct probabilistic finite state automata (PFSA) [13] for three
different values, 5, 15, and 25, of the alphabet size |˙|. The objec-
tive here is to evaluate the impact of the alphabet size |˙|  (and
hence the number of PFSA states) on the performance of the detec-
tion algorithm. Following the procedure outlined in Section 3.1,
the embedding dimension and time lag are chosen to be m* = 3 and
�* = 67, respectively. The variation of relative entropy with the delay
and embedding dimension is plotted in Fig. 5. The augmented input
space is then constructed by discretizing the input and phase space.
The input specific probabilistic state transition matrices are next
constructed, which concludes the training of the PFSA.

In the validation part, the input and output data correspond-
ing to a single fault level (e.g., a loss of 0.39% of PMSM magnetic
strength) are fed into the algorithm for different load conditions.
The pattern vector cluster, formed by the data from multiple
runs and different load conditions, corresponding to this fault
condition is calculated according to the algorithm described in
Section 4. The data set in its entirety consists of 14 experiments,
where each experiment consists of two load conditions and six
(de)magnetization levels. In other words, each (de)magnetization
level is characterized by 28 data sets, and consequently 28 pattern
vectors. As an example, for distinction between the nominal and
0.39% demagnetized level (say), there are 28 × 2 =56 pattern vec-
tors out of which 28 belong to the nominal class and the remaining
28 belong to the 0.39% demagnetized class. The success or failure of
the algorithm depends on how these patterns can be distinguished
from the pattern cluster generated by the machine when the motor
was running in its nominal health state, albeit at different load
conditions.

A support vector machine (SVM) with linear kernel [22] has
been used to classify the nominal condition from the off-nominal
conditions. For plotting the receiver operating characteristic (ROC)
curves for each fault condition, 55 out of the 56 patterns were used
as training data, and the remaining 1 as the test data. This process
was then repeated 56 times, each time choosing a different pattern
vector as the test case. This procedure, called ‘leave-one-out-cross-
validation’ [22], yielded 56 instances of the test case being correctly
or incorrectly classified. From this information, the true positive
rate (TPR), true negative rate (TNR), false positive rate (FPR) and
false negative rate (FNR) were calculated, where “positive” denotes
nominal behavior and “negative” denotes off-nominal behavior.
Thus, a false positive implies a missed event, i.e., a faulty motor
is classified as healthy, and a false negative implies a false alarm,
i.e., a healthy motor is misclassified as faulty.

The SVM classifier is trained with both nominal and faulty data.
This process necessitates collection of faulty data by demagnetizing
a machine and then using this data-bank to tune the SVM classifier
to be subsequently used for similar machines. In order to assess the
effectiveness of the fault detection technique in different machines,
data generated by a model has been used for training, which will
make the approach ‘machine-invariant’. However, the usefulness
of this approach could be limited due to intrinsic inadequacies of
the lumped parameter models to generate representative data as
well as due to the limitations of obtaining the machine parame-
ters. As an alternative, one may  adopt external validation, where
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Fig. 7. Receiver operating characteristics (ROC) of symbolic identification and support vector classification for different alphabet size |˙|.

the data generated from one machine are used for training and
the data generated from other machines are used for testing. This
approach is expected to yield a more accurate estimate of the effec-
tiveness of the underlying algorithm. This issue is a topic of future
research.

The three plates in Fig. 7 show three families of receiver oper-
ating characteristic (ROC) plots of the SVM classifier when applied
to pattern vectors corresponding to different motor health condi-
tions. The left hand plot in Fig. 7(a) shows that, for |˙|  = 5, the ROC
curves move away from the top left hand corner implying that this
alphabet size lacks the resolving capacity to distinguish between
nominal signal and weak fault signatures. Only for larger levels
of fault, does the ROC move closer to the left hand top corner. In
Fig. 7(b), where |˙|  is increased to 15, the family of ROC plots moves
toward the top left hand corner, which shows that both detection
and false alarm rates improve although the trend remains similar;
this shows that it is possible to choose a |˙|min below which the
classifier performance becomes unacceptable. In Fig. 7(c),where |˙|
is further increased to 25, it is seen that even a deviation as small as
0.39% is correctly detected at different levels of demagnetization,
where TPR →100% and FPR →0%. Thus, both TPR and FPR improve
as the alphabet size |˙|  is increased up to a certain level. A pos-
sible reason for this performance enhancement is that an increase
in |˙|  is equivalent to reduced effects of quantization due to finer
partitioning of the time series. However, this performance gain is
achieved at a higher computational cost (i.e., increased execution
time and memory requirements). Optimal selection of |˙|  by trade-
off between detection performance and computation cost is a topic
of future research.

Table 2
Computational cost for different alphabet size |˙|.

Computational cost Alphabet size

5 15 25

Execution time (s) 57.65 110.80 1137.73
Memory required (MB) 142 157 295

Table 2 presents a comparative evaluation of the computational
cost (i.e., execution time and memory requirements of the algo-
rithm different alphabet size |˙|. These results were obtained by
executing the MATLAB R2011a codes on a Dell Inspiron Worksta-
tion with 8GB of RAM and an Intel Xeon dual processor CPU.

Tables 3–5 list the data for TPR and FPR to represent the fami-
lies of ROC plots in the three plates of Fig. 7 for |˙|  = 5, 15 and 25,
respectively. For each demagnetization level, only the significant
data points have been reported. For example, in Table 5, since the
curves for |˙|  = 25 are perfect straight lines indicating ∼100% detec-
tion rate, only three points, namely TPR/FPR = 0/0, 1/0 and 1/1 are
reported to represent the ROC data, omitting the points in between.

5.1. Comparison with motor current signature analysis (MCSA)

The previous section shows that fault detection procedure based
on symbolic identification performs with nearly 100% accuracy,
where incipient faults with subtle fault signatures are detected on
an experimental apparatus in the presence of process and observa-
tion noise. Nevertheless, it is important to compare the proposed
method of fault detection with an established procedure. One such
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Table 3
Receiver operating characteristic data showing true positive rates (TPR) and false positive rates (FPR) for different levels of demagnetization using alphabet size |˙| = 5.

Threshold level ��PM
�PM

= 0.39% ��PM
�PM

= 0.87% ��PM
�PM

= 1.35% ��PM
�PM

= 1.90%

TPR FPR TPR FPR TPR FPR TPR FPR

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 0.5000 1.0000 0.2857 1.0000 0.2857 1.0000 0.2143
3  0.9643 0.3929 0.8929 0.2500 0.9286 0.1786 0.9643 0.1429
4 0.8929 0.2857 0.7143 0.1429 0.8214 0.1071 0.8929 0.1071
5  0.7857 0.2500 0.6071 0.1071 0.7857 0.0714 0.7500 0.0714
6  0.5357 0.0714 0.4643 0.0714 0.6786 0.0714 0.6786 0
7  0.0714 0 0.1071 0 0.5357 0.0357 0 0
8 0 0 0 0 0.5000  0.0357 – –
9 – – – –  0.0714 0 – –

10 –  – – – 0 0 – –

Table 4
Receiver operating characteristic data showing true positive rates (TPR) and false positive rates (FPR) for different levels of demagnetization using alphabet size |˙| = 15.

Threshold level ��PM
�PM

= 0.39% ��PM
�PM

= 0.87% ��PM
�PM

= 1.35% ��PM
�PM

= 1.90%

TPR FPR TPR FPR TPR FPR TPR FPR

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2  1.0000 0.1071 1.0000 0.0714 1.0000 0.0357 1.0000 0
3  0.9286 0.1071 0.9643 0.0357 0.9643 0 0 0
4  0.8214 0.0714 0.8929 0.0357 0 0 – –
5  0.7500 0.0357 0.8571 0.0357 – – – –
6  0.6429 0 0.0714 0 – – – –
7  0 0 – – – – – –

Table 5
Receiver operating characteristic data showing true positive rates (TPR) and false positive rates (FPR) for different levels of demagnetization using alphabet size |˙| = 25.

Threshold level ��PM
�PM

= 0.39% ��PM
�PM

= 0.87% ��PM
�PM

= 1.35% ��PM
�PM

= 1.90%

TPR FPR TPR FPR TPR FPR TPR FPR

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2  1.0000 0 1.0000 0 1.0000 0 1.0000 0
3  0 0 0 0 0 0 0 0

procedure is based on motor current signature analysis (MCSA),
which is widely used for detecting broken rotor bars [23] and sta-
tor winding faults [23] especially in 3-phase induction motors, and
has also been used for PMSM fault detection [1].  The MCSA-based
fault detection procedure is non-invasive and needs only the line
currents of the motor, where the computation merely involves the
fast Fourier transform (FFT) of the time series data. The execution
of the FFT algorithms on a PMSM with a faulty rotor gives rise to
different harmonics [1,24],  which can be identified as

ff = fe

(
1 ± k

P

)
(17)

where ff is the fault frequency, fe is the electrical fundamental fre-
quency, k is a positive integer, and P is the number of pole pairs. It
has been shown by Roux et al. [1] that these integer multiples of
the rotor frequency are the best frequency components to monitor
when detecting rotor faults. The lowest fault frequency is the stator
synchronous frequency divided by the number of pole pairs. In the
case of the four-pole machine used in this study, the lowest fault
frequency is ff,min = fe/2 ≈16.67 Hz corresponding to a rotor speed of
1000 rpm = 16.67 Hz, and an electrical frequency of fe = P/2 * rotor
speed = 33.33 Hz. Fig. 8 shows the stator current spectrum of the
demagnetized motor and its comparison with that of a normal
motor over the pertinent range of frequencies. However, the spectra
of the faulty motor and the normal motor appeared to be essentially
identical, i.e., no component could be unambiguously identified as
an artifact of the demagnetization process.

Most of the motor faults investigated and reported in litera-
ture involve disruption(s) induced into the axisymmetric structure
of the motor. Examples include a broken rotor bar [23,25] and

static or dynamic eccentricities [1],  where the disruption of the
symmetry results in the creation of new frequency peaks in the
current spectrum. To address the problem of detecting unknown
and unstructured faults at an early stage, the demagnetization pro-
cess has been used in this paper to generate uniform weakening of
the magnetic field, which represents an incipient fault of no spe-
cific nature. In this case, it is not a straight-forward task to visually

Fig. 8. Stator current spectrum (FFT) for a constant rotor speed of 1000 rpm oper-
ating  at a load torque of 0.226 N m. Inset: Current spectrum details at the fault
frequency.
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Fig. 9. Average (computed over all experiments) signal strength at (a) the fault frequency (16.67 Hz) and (b) the odd harmonics (16.67 Hz, 50 Hz and 83.35 Hz) of the lowest
fault  frequency as a function of degradation.

distinguish the effects of demagnetization from the current spec-
tra. Furthermore, the lack of signature in the current spectrum is
due to the low levels of demagnetization under consideration. A
more severe demagnetization will no doubt have a much more
noticeable effect and can be possibly detected by mere inspection
of the line currents.

In order to quantify the change in the frequency content around
the lowest fault frequency ff,min ≈ 16.67 Hz, the signal strength is
computed around the fault frequency. Fig. 9(a) shows a clear trend
in the average signal strength, computed over all the runs of the
experiment and plotted against the demagnetization levels for the
individual load conditions. Further analysis of the cumulative fre-
quency contents around the fault (see Eq. (17)) shows a similar
trend, as seen in Fig. 9(b). However, it appears from the close prox-
imity of the profiles at different load conditions and small slopes
of the individual plots in Fig. 9(a) and (b) that the MCSA procedure
would lead to high probabilities of false alarms and missed events.
In other words, MCSA may  not be able to yield acceptable detection
performance under modest levels of demagnetization and other
unstructured faults.

5.2. Comparison with a dedicated observer method

Since the widely used MCSA technique failed to provide a robust
criterion for classifying healthy from faulty motors, an observer-
based technique, namely, the particle filter [26] is next chosen to
serve as a benchmark fault detection algorithm.

A review of the PMSM model equations reveals the presence
of two nonlinearities ωreir

d
and ωreirq in the first two state equa-

tions. Consequently, either particle filter or an extended/unscented
version of the Kalman filter [5] become an obvious choice. The rea-
son behind the choice of the particle filter is that, this filter works
under general assumptions of non-Gaussian noise structures and
non-linearities in process dynamic models.

The main features used for fault detection and the underlying
algorithm are presented next for completeness of the paper.

5.3. Fault detection with particle filtering

Particle filtering involves generating a number of particles
according to an initial distribution, and then passing these particles
through an initial model of the system. After the first observation,
the particles are weighted according to their Euclidean distance
from the true observation. Sequential importance sampling (SIS)
and sampling importance resampling (SIR) filters differ in the stage
where the particles are resampled. In SIR filtering, the particles are

redistributed with particles of greater weight being given higher
probabilities. In SIS filtering, the distribution is allowed to evolve
without the effect of these weights. The histogram of these parti-
cles represents a multi-point approximation of the density function
of the physical process evolving with time, and the mean and con-
fidence intervals for the state estimates are determined from this
distribution. The particle filter algorithm is presented below.

Algorithm 1. Particle Filter

1: Initialization: Initialize time at k = 0 and sample N particles
{

xi
k

}N

i=1
from

an  initial distribution which is assumed to be Gaussian.
2: whilek  ≤ kfinal do
3: fori  = 1 : N do
4: Draw xi

k
∼q(xk |xi

k−1
, yk)

5: Evaluate the importance weights up to a normalizing constant

w̃i
k

∝ wi
k−1

p(yk |xi
k

)p(xi
k
|xi

k−1
)

q(xi
k
|xi

k−1
,yk )

6: end for
7: for i = 1 : N do

8: Normalize wi
k

= w̃i
k∑N

j=1
w̃j

k

9: end for
10: if N̂eff = 1∑N

i=1
(wi

k
)2

< Nthresh then

11: Resample
12: end if
13: end while

Knowledge of the posterior density p(xk| Yk) enables calculation
of the state estimate x̂k for minimum mean-squared error (MMSE),
where the estimation errors are used for fault detection in the
system. The basic principle is that Bayesian techniques track the
system states more effectively when the system is closer to a nom-
inal condition, and the error would be greater when the system is
in an anomalous condition.

The filter is calibrated at the nominal condition of the perma-
nent magnet flux linkage �PM = 0.322 V s, and the filter is designed
to track all three states (e.g., ir

d
, irq and ωre), where 50 particles

are used for the particle filter, as a tradeoff between tracking per-
formance in the nominal conditions and CPU execution time and
memory requirements. For the particle filter, the variance of the
zero-mean Gaussian process noise is set to 0.01 and the variance
for zero-mean Gaussian measurement noise is 0.05. The Monte
Carlo Markov Chain (MCMC) analysis for particle filtering has been
carried out on 10,000 data points, sampled at every Ts = 0.001 s.

It is noted that, even though the particle filter does track the
states successfully, the residual is not exactly zero. This is because,
the parameters provided by the PMSM manufacturer are not neces-
sarily exact and are prone to variations within the tolerance limit.
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Fig. 10. Receiver operating characteristics (ROC) using particle filtering.

However, more serious is the lack of accurate information on some
of the parameters that were experimentally evaluated (e.g., the
bearing friction by spin-down test). There is no doubt that a serious
fault, which has a noticeable fault signature, would be reflected in
the particle filter state estimate error. Such faults are expected to
be detected by thresholding techniques. However, in the present
case, since the objective is to detect incipient faults as early as pos-
sible and having marginal effects on the system performance, the
error incurred due to uncertainties in the initial model parameters
would mask the fault. In short, a simple thresholding is inadequate.

Instead of using the innovation sequences directly, the his-
tograms of the innovation sequences are obtained, where the
innovation is defined as the difference between the measured out-
put and the predicted output. In the nominal condition, the model
is a close approximation of the data that are generated, and the
system is able to estimate the states with a small error, i.e., the
mean and standard deviation of the innovation sequence distri-
bution are small. As the anomaly increases, the model becomes
less accurate and the estimation errors become more pronounced.
Thus, the histogram of the innovation sequence shows an increase
in the variance and the distribution moves away from the nominal
distribution. Ultimately, the histograms are expected to converge
to a uniform distribution if the filters no longer track the system.
The same SVM classifier as before is used with these error his-
tograms as pattern vectors to classify nominal operation from an
off-nominal operation. Fig. 10 shows the results of using the parti-
cle filter to classify these error patterns. For relatively severe faults,
such as 1.90% demagnetization of the PMSM,  the fault detection
performance of symbolic identification in Fig. 7(a) is modestly bet-
ter than that of particle filtering in Fig. 10;  however, the overall
performance of symbolic identification, as seen in all three plots in
Fig. 7, significantly exceeds that obtained by using particle filtering.
The rationale for superior performance of the symbolic technique
is that the nominal model of the PMSM is not assumed and the
parameters are not estimated; rather the model is learned from
the specific PMSM at hand.

6. Summary, conclusions, and future work

In this paper, some of the critical and practical issues regarding
the problem of health monitoring of multi-component human-
engineered systems have been discussed, and a syntactic method
of fault detection has been proposed. The two primary features of
the proposed concept are: (i) symbolic identification and (ii) pseudo-
learning. This paper also reports a novel experimental procedure
for achieving controlled accelerated deterioration of magnetic
strengths in PMSMs. The theoretical framework has been applied

to data obtained from these demagnetization experiments and has
been shown to be able to detect incipient faults with subtle fault
signatures in the presence of process and measurement noise.

The reported work is a step toward building a real-time
data-driven tool for estimation of parametric conditions in non-
linear dynamical systems. Further theoretical, computational, and
experimental work is necessary before the symbolic dynamic
filtering (SDF)-based fault detection tool can be considered for
incorporation into the instrumentation and control system of
commercial-scale plants. The following theoretical aspects are cur-
rently under investigation:

• Development of a multi-dimensional partitioning for a multi-
input multi-output (MIMO) system, which should be computa-
tionally inexpensive.

• Estimation of a theoretical bound on the error incurred in this
process of fault detection.

• Estimation of a lower bound |˙|min for the alphabet size.
• Investigation of sensitivity of the algorithm on the signal to noise

ratio (SNR).
• Fault detection based on statistically non-stationary data col-

lected during transient operations.
• Construction of a multi-class support vector machine for fault

detection and fault class identification.
• External validation, where the data generated from one machine

is used for training and the data from other different machines for
testing, to provide a more accurate estimate of the effectiveness
of the underlying algorithms.

Appendix A. List of symbols

Nomenclature
i stator current (A)
v voltage (V)
Rs stator resistance (�)
L inductance (H)
ω rotor velocity (rad/s)

 ̋ steady state rotor velocity (rad/s)
T torque (N m)
B bearing friction coefficient (N m s)
J rotational moment of inertia (kg m2)
P number of pole pairs
�PM permanent magnet flux linkage (V s)
� rotor angle (rad)
J 90◦ rotation matrix

Superscripts and subscripts
d direct axis in equivalent 2-phase representation
q quadrature axis in equivalent 2-phase representation
r rotor reference frame
e electrical reference frame
3ph 3 phase
a, b, c three phases in the 3-phase representation
l–l line to line
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