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This paper develops a distributed algorithm for decision/awareness propagation in mobile-agent networks. A time-dependent
proximity network topology is adopted to represent a mobile-agent scenario. The agent-interaction policy formulated here
is inspired from the recently developed language-measure theory. Analytical results related to convergence of statistical
moments of agent states are derived and then validated by numerical simulation. The results show that a single (user-defined)
parameter in the agent interaction policy can be identified to control the trade-off between Propagation Radius (i.e. how
far a decision spreads from its source) and Localisation Gradient (i.e. the extent to which the spatial variations may affect
localisation of the source) as well as the temporal convergence properties.
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1. Introduction

Analysis and development of distributed decision propa-
gation and control mechanisms in mobile-agent networks
have drawn much attention due to their relevance in en-
gineering problems. For example, surveillance and recon-
naissance by autonomous vehicles with limited capabilities,
trust establishments in mobile ad hoc networks (MANETs)
(Baras & Jiang, 2005) and threat monitoring by mobile
sensor networks. In many applications, diffusion of ag-
gregated information is more relevant compared to indi-
vidual sensor information (Yildiz, Acemoglu, Ozdaglar,
& Scaglione, 2011; Yildiz, Scaglione, & Ozdaglar, 2010)
mostly due to its robustness to individual agent’s failure
in detection/communication. Furthermore, in a resource-
constrained environment, mobile agents have potential ad-
vantages over static networks in terms of coverage and time
criticality. In this context, this paper deals with global prop-
agation of a localised awareness in a leaderless environment
in a robust and completely distributed manner.

In general, there are two aspects of interacting agent
systems, namely (1) network topology and (2) agent in-
teraction dynamics. Network topology is inherently time
varying in the present context, which makes the analysis of
such complex systems much harder compared to their static
counterparts. Usually, similar time-varying situations arise
in social networks (Castellano, Fortunato, & Loreto, 2009)
and they are modelled by various graphical structures, such
as: multiple instances of uniform random graphs, scale-free
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networks and small-world networks (Albert & Barabasi,
2002). Synchronisation problems have been solved for
time-varying networks where essentially the network topol-
ogy is modelled as fast switching among a finite number
of instances of random graphs with same specifications
(Stilwell, Bollt, & Roberson, 2006). However, all such mod-
els do not necessarily consider the agent mobility statistics
or inter-agent communications due to proximity. Recently,
so-called proximity networks (Toroczkai & Guclu, 2007)
(also called the moving neighbourhood networks (Skufca &
Bollt, 2004)) has been analysed to model contact/collision-
based disease spreading. This may be considered as the
first step towards analysing the mobile-agent scenario in
an actual sense. In a recent paper (Sarkar, Mukherjee, Sri-
vastav, & Ray, 2010), the current authors used such devel-
opments to model mobile-agent networks for engineering
applications. The mobile-agent network used in this paper
follows the same structure. Regarding the second aspect of
the problem, distributed agent interaction dynamics for de-
cision propagation has several mechanisms available in lit-
erature, examples are game theoretic (Baras & Jiang, 2005),
biology inspired, physics inspired (Ising/Potts models)
(Sethna et al., 1993), bootstrap percolation (Solomon, Weis-
buch, de Arcangelis, Jan, & Stauffer, 2000) and major-
ity voting (Watts, 1999). Gossip algorithms are the most
studied interaction dynamics in the context of consensus
(Olfati-Saber & Murray, 2004). However, in many applica-
tions, large groups of agents do not seek consensus. Often
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localised percolation of decision is desired to localise the
information source.

The main contribution of this paper is the devel-
opment of a distributed decision propagation algorithm
inspired from the recently developed language-measure
theory (Chattopadhyay & Ray, 2006; Ray, 2005) for a
time-dependent network topology. A single parameter in
the algorithm is identified to control the trade-off between
propagation radius (i.e. how far a decision spreads from its
source) and localisation gradient (i.e. the extent to which
the spatial variations may affect localisation of the source).
An analysis of (up to second order) moment dynamics (Pre-
ciado & Jadbabaie, in press; Tahbaz-Salehi & Jadbabaie,
2010) is presented and the results are validated by numer-
ical simulation. Variance analysis is performed under the
following two conditions:

(1) Congruous timescale: when the evolution of net-
work topology and dynamics of agent interactions
have similar timescales.

(2) Disparate timescale: when faster dynamics of agent
interactions can be treated as singular perturbations
with respect to the slower evolution of network
topology.

The paper is organised in six sections including the
present one. The representation of a mobile-agent scenario
in terms of proximity networks and the agent interaction
policy are presented in Section 2. Section 3 presents the
main results including their physical significance. These
results are validated by numerical simulation in Section 4.
Finally, the paper is summarised and concluded in Section 5
with recommendations for future work. Two appendices are
provided to (1) explain the proximity networks in a greater
detail and (2) to briefly describe the basic concepts of the
language-measure theory.

2. Formulation of the problem

Let us consider the case of multiple agents performing
surveillance, where the agents are tasked with detection
of threats in a given region. A typical example of such a
threat could be plumes of harmful chemicals that have to
be detected. Taking into account the nature of these threats,
they may be modelled as a local hotspot within the surveil-
lance region. Only a few agents that search areas within the
hotspot have a non-zero probability of detecting the threat.
The aim of this paper is to develop a distributed and leader-
less algorithm for mobile agents that is able to disseminate
the information of a threat to other agents that may be far
off from the local hotspot in a controlled fashion. Previous
literature (Choi, Oh, & Horowitz, 2007) have extensively
studied the gradient-based approaches for detection of a
hotspot. These approaches primarily focus on the moving
agents towards the hotspot based on distributed estimation

of gradients. However, in this application, it is required
that all agents should become cognizant of the presence
of the threat while operating and monitoring in their own
respective local areas. In the proposed approach, the pres-
ence of a hotspot does not affect the motion of the agents.
Instead, the information states of other agents are updated
to reflect the required level of awareness that the agents
should possess regarding the threat. The motivation here
is to disseminate information away from the local hotspot
to the entire population of agents. This section describes
the setup of mobile-agent population in terms of proxim-
ity networks (Toroczkai & Guclu, 2007) and subsequently
formulates the agent interaction policy.

2.1. Model description

Proximity network is a particular formulation of time-
varying mobile-agent networks, inspired from social net-
works. In this setup, mobile agents move around in an oper-
ational region with their own mobility characteristics. They
communicate with each other as they become proximal to
each other; a link is established from the network perspec-
tive between two communicating agents. The network links
do not necessarily affect the mobility characteristics of the
agents. Once a link is established, it is kept for a certain
time period (which is termed as the message lifetime in this
paper). As time progresses, more links are established and
at the same time, older links disappear after expiry of their
respective message lifetime. In this fashion, the network
evolves in time. A specific scenario considered in the paper
is formally presented in the sequel.

Let the area of a two-dimensional (2-D) (Euclidean)
operational region be A. In the present case, A is assumed
to be a square area with side length L, i.e. A = L2. Initially,
N agents are distributed randomly in the given area, and the
agent density is defined as ρ = N/A. The uniform radius
of communication for each agent is denoted by R, i.e. two
agents can only communicate (e.g. to exchange messages)
when the distance between them is less than R. The agents
move in a 2-D random walk fashion where the speed v is
same for all agents in the current setup. The random walk
is realised by independently choosing a direction of mo-
tion from a uniform distribution U(0, 2π ), by all agents at
each time step. During its motion, each agent broadcasts
a message over a certain time window that is called the
message lifetime Lm. In the present context, the message
can be information related to an agent’s belief regarding
its environment. At the same time, the agent receives simi-
lar messages from other proximal agents, which may come
within the communication radius R. After expiry of a mes-
sage lifetime, an agent possibly updates its belief based on
its own observation and messages from other agents. This
aspect is formally addressed in the next section.

In contrast to the faster timescale (t) of agent motion, the
algorithm for updating the agents’ beliefs runs on a slower
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timescale (denoted as τ ). The timescale for updating the
belief is chosen to be slower as it allows for sufficient inter-
actions among the agents, especially if the density of agents
is low. After the updating, an agent starts broadcasting its
new belief for another window of the message lifetime. For
example, if the message lifetime Lm is very small, then the
network may not be able to build up over time and possi-
bly remains sparse. On the other hand, the network would
eventually become fully connected as Lm → ∞. Thus, to
capture temporal effects in a realistic setting, Lm should be
appropriately chosen based on other network parameters.
It is noted that, although updating of messages may occur
in a non-synchronous manner in the agent population, only
synchronous updating is considered in this paper for an-
alytical tractability of the agent interaction policy without
explicitly addressing the issue of obstacle avoidance. In this
context, the notion of the degree of a network is introduced
below.

Definition 2.1 (Degree of a node (or an agent)): The
degree (di) of a node (i) is defined to be the number of
distinct nodes in the network, to which it connects (e.g. for
information communication) within a specified message
lifetime Lm.

A brief discussion on the nature of the distribution of
the degree of a node and the expected degree of this net-
work class is provided in Appendix A while the details are
reported in Sarkar et al. (2010).

2.2. Agent interaction policy

The agent interaction policy developed in this paper is es-
sentially inspired from the concepts of signed real measure
of probabilistic regular languages generated by probabilis-
tic finite state automata (PFSA) (Chattopadhyay & Ray,
2006; Ray, 2005). However, the details are not presented
here for simplicity and only the policy is described in a
self-sufficient way. A brief discussion on the theory of lan-
guage measure is provided in Appendix B.

The PFSA is developed on a graphical interaction model
among the agents by the process described below.

2.2.1. Interaction graph

The interaction graph is constructed in terms of the adja-
cency matrix of the mobile agent network after the expiry
of the message lifetime Lm. To this end, the following defi-
nitions are introduced.

Definition 2.2 (Adjacency Matrix Patterson, Bamieh, &
El Abbadi, 2010): Let a time-dependent (in the slow-scale
τ ) graph be denoted as G. The adjacency matrix A of the
graph G is defined such that its element aij in the ijth position
is unity if the agent i communicates with the agent j in
the time period of Lm; otherwise the matrix element aij is

zero. To eliminate self-loops, each diagonal element of the
adjacency matrix is constrained to be zero.

The algorithm for simulating a proximity network in
the current setting is provided below:

Algorithm 1: Proximity network simulation

Initialise locations of N agents randomly in a 2-D region
τend: Total simulation time in the slow scale
τ = 1
while τ < τend do

aij|τ = 0 for all i, j
for t = 1→ Lm (Fast timescale of agent mobil-

ity) do
Move each agent by one step with speed

v in randomly chosen directions
for all Agents i, j do

if dist(i, j ) < R (Euclidean dis-
tance between agents i, j less
than communication radius)
then

aij|τ = 1
end if

end for
end for
τ ← τ + 1

end while

Definition 2.3 (Laplacian Matrix Patterson et al., 2010):
The Laplacian matrix (L) of a graph G is defined as

L = D − A,

where the degree matrix D is a diagonal matrix with di as
its ith diagonal element, where di is the degree of the node
i (see Definition 2.1).

Definition 2.4 (Interaction Matrix Patterson et al., 2010):
The agent interaction matrix � is defined as

� = I − βL,

where the parameter β is chosen appropriately such that �

becomes a stochastic matrix and its second largest eigen-
value satisfies the condition |λ2(�)| < 1.

In the context of proximity networks, the requirement
of keeping � as a stochastic matrix in Definition 2.4 is
achieved by setting β = 1/(d̄ + 1), where d̄ is a (positive
integer) parameter that is pre-determined off-line. To sat-
isfy this condition online, an agent ignores communications
with distinct agents that are beyond the d̄ agents within the
message lifetime Lm. However, the expected degree distri-
bution of the network is obtained off-line too at the design
stage (see Appendix A); therefore, d̄ is chosen to be large
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International Journal of Control 1121

Figure 1. Illustration of a hotspot with radially symmetric
strength; probability of detection is maximum at the center and
decays to zero linearly with distance from the center.

enough such that the probability that the degree di > d̄ for
any node i is very low, i.e. Pr(di > d̄) ≤ ε ∀i (for simu-
lation exercises reported in this paper, ε has been taken to
be 0.001). Note that � is a stochastic and symmetric (i.e.
also doubly stochastic) matrix due to the above construction
procedure.

Definition 2.5 (Hotspot Model): A hotspot (i.e. a region
where threats may exist) is modelled as a map for probabil-
ity of detecting the threat.

Let the probability of detection of a hotspot be denoted
by PD, which attains the maximum at the centre of the
hotspot and decays to zero linearly with distance from the
centre in a radially symmetric manner. In the present con-
text, a hotspot is detected only by agents proximal to them.
A hotspot is characterised by the following two parameters:

• The maximum probability of detection of the threat,
PDmax (=0.8 in this study)

• The effective radius (rhs) of the circular region within
which PD > 0.5, i.e. agents further than a distance of
rhs from the centre of the hotspot have less than 0.5
probability of detecting the threat.

The length scale λ = rhs/L of a hotspot is a non-
dimensional quantity, where L is the side length of the
operational area; the parameter λ = 0.1 in this paper. De-
tection depends on the proximity of the agent to the centre
of the hotspot, i.e. the value of PD at its current location.
An illustration of this scenario is presented in Figure 1.
Note that the hotspot model only considers the Type 2 (i.e.
missed detection) error of a sensor; the effects of the Type 1
(i.e. false alarm) error are not considered here for the sake
of model simplicity.

2.2.2. Decentralised strategy

The decentralised strategy proposed here involves two char-
acteristic variables associated with each agent. The first
variable is called the state characteristic function that sig-
nifies whether an agent has detected a hotspot or not. The
second variable is called the agent measure function that
signifies the level of awareness or belief of an agent regard-
ing the presence of a hotspot in the surveillance region.
Formal definitions are presented below.

Definition 2.6 (State characteristic function): The state
characteristic function (χ ) of the agent population is defined
as χ : Q→ {0, 1}, where Q denotes the set of agents (nodes)
and χ i = 1 signifies that the agent i has detected a hotspot
itself and χ i = 0 denotes otherwise.

Definition 2.7 (Agent measure function): The agent
measure function (ν) of the agent population is defined
as a real measure ν: Q→ [0, 1], where Q denotes the set of
agents (nodes). ν i encodes the level of awareness or belief
that agent i has about the existence of a hotspot in the oper-
ational area. ν i = 0 signifies that agent i has no knowledge
regarding a hotspot in the area, whereas ν i = 1 means that
agent i has maximum belief that a hotspot exists in the area
of surveillance.

Based on the current state characteristics functions (χ )
and measure functions (ν) of the agent population, syn-
chronous updating of measures are updated for all agents
after the expiry of one message lifetime Lm. Naturally, Lm is
homogeneous in the agent population. Although the global
objectives can be achieved through asynchronous updating
with heterogeneous distribution of Lm, a simpler condition
is considered here for the sake of analytical tractability, as
explained below.

If an agent i detects a hotspot, then the state character-
istic function is maintained at χ i = 1 till the next global
measure updating occurs even if the agent does not see the
hotspot anymore for the remaining part of the same mes-
sage lifetime. It is noted that, based on the discussion up to
this point, �, ν and χ are functions of the slow timescale τ

as discussed earlier in Section 2-A.
In the above setting, a decentralised strategy for mea-

sure updating in the mobile-agent population is intro-
duced below in terms of a user-defined control parameter θ

∈ (0, 1].

νi
θ |τ+1 = (1− θ )

∑
j∈{i}∪Nb(i)

�ij |τ νj

θ |τ + θχi |τ , (1)

where Nb(i) denotes the set of agents in the neighbourhood
of agent i, i.e. agents that communicate with the agent i
during the time span τ and τ + 1. It is noted that while
computing the future (awareness or belief) measure of an
agent, the parameter θ controls the trade-off between the
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1122 S. Sarkar et al.

Figure 2. Illustration of generalised gossip strategy: evolution of
measure νθ of agent i over slow-time epochs; superscript Nb de-
notes immediate neighbours and Nb2 denotes second-order neigh-
bours.

effects of current self-observation and current measures of
all agents.

Expansion of Equation (1) yields

νi
θ |τ+1 = (1− θ )

⎡
⎣(1− βdi)νi

θ |τ +
∑

j∈Nb(i)

βν
j

θ |τ
⎤
⎦

+ θχi |τ . (2)

The above Equation (2) signifies that the self-influence
for an agent reduces with increase of its degree. In other
words, the more neighbours an agent communicates to, the
less it relies just on its own observation. The evolution of
a measure for an agent over slow-time epochs is illustrated
in Figure 2. In the vector notation, the dynamics can be
expressed as

νθ |τ+1 = (1− θ )�|τ νθ |τ + θχ |τ . (3)

The recursive relation in the Equation (3) above is ex-
panded as

νθ |τ+1 = (1− θ )τ+1[�|τ�|τ−1 · · ·�|0]νθ |0 + θχ |τ
+ θ (1− θ )�|τχ |τ−1 + θ (1− θ )2�|τ�|τ−1χ |τ−2

+ · · · + θ (1− θ )τ�|τ�|τ−1 · · ·�|1χ |0. (4)

Thus, this policy is simply a gossip algorithm with vary-
ing input χ |τ and varying network topology represented by
�|τ . The memory of a past input fades as a function of the
parameter θ . Due to this notion, the above policy can be
called a generalised gossip algorithm with θ as the general-
ising parameter. The decentralised strategy is described in
an algorithmic form below:

Algorithm 2: Generalised gossip policy

Choose global parameters θ , β

τend: Total simulation time in the slow scale

τ = 1
νθ |τ = 0 Initialise Measure values for all agents
χ |τ = 0 Initialise State characteristics function for all

agents
while τ < τend do

Evaluate χ |τ based on observations made by
agents during slow-time epoch τ

for all Agent i do
Determine degree di for current slow-

time epoch
Current observation: χ i|τ
Current measure value: νi

θ |τ
Collect current measure values from

neighbours: ν
j

θ |τ ∀j ∈ Nb(i)
Compute future measure value:
νi

θ |τ+1 = (1− θ )[(1− βdi)νi
θ |τ

+∑
j∈Nb(i) βν

j

θ |τ ]+ θχi |τ
end for
χ |τ + 1 = 0 Reset State characteristics function

for all agents
τ ← τ + 1

end while

3. Convergence of statistical moments

The convergence results presented here naturally involve
expected quantities due to the inherent stochastic nature of
the problem. Thus, even in the steady state, νθ will always
fluctuate in the slow timescale due to the fluctuations in
� and χ . However, interesting observations regarding slow
time-scale evolution of the system can be made in terms of
statistical moments of νθ computed over the agent popu-
lation. In this paper, both average (over agents) Ma[·] and
variance (over agents) Va[·] of νθ are considered at a steady
state. Note, νθ |τ at a slow time instant τ is an N-dimensional
vector, where N is the number of agents in the population.
Hence, Ma[νθ |τ ] and Va[νθ |τ ] are, respectively, scalar av-
erage and variance values, where νθ |τ is considered as a
random variable with N samples. In general, the functions
Ma[·] and Va[·] are defined on an N-dimensional column
vector x = [x1, x2, . . . , xN ]T as follows:

Ma(x) = 1

n
1x = xavg, (5)

where 1 is a row vector with all elements as 1. After the
mean is subtracted, let the resulting vector be denoted as x̃,
i.e. x̃ = x− xavg1T . Therefore, Va(x) = x̃T x̃.

3.1. Convergence of measure average over agents

Recall the system dynamics as given in Equation (3),

νθ |τ+1 = (1− θ )�|τ νθ |τ + θχ |τ . (6)
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The following equation is obtained by pre-multiplying 1
n

1
on both sides of Equation (6),

ν
avg
θ |τ+1 = (1− θ )νavg

θ |τ + θχ avg|τ . (7)

Note, 1�|τ = 1, as �|τ is doubly stochastic. Expanding
Equation (7), one obtains

ν
avg
θ |τ+1 = (1− θ )τ+1ν

avg
θ |0 + θχ avg|τ

+ θ (1− θ )χ avg|τ−1 + θ (1− θ )2χ avg|τ−2

+ · · · + θ (1− θ )τχ avg|0. (8)

Considering the unrestricted 2-D random motion of the
agents in the entire region, the ensemble expectation of
χ avg|k is denoted as E[χ avg] ∀k (i.e. no time dependency).
In this case, E[χ avg] signifies the fraction of agents that visit
the hotspot on the average. Therefore, it is evident that, with
a constant strength of the hotspot, E[χ avg] remains constant
over time. Taking (ensemble) expectation on both sides of
Equation 8, the following relation is obtained at a steady
state (as τ →∞),

E[νavg
θ |∞] = θ [1+ (1− θ )+ (1− θ )2 + · · ·]E[χ avg]

= θ [1− (1− θ )]−1E[χ avg]

= E[χ avg] for θ ∈ (0, 1]. (9)

Therefore, using the notation of steady-state average (over
agents) introduced before, the steady-state expected mea-
sure average (over agents) is obtained as

E[Ma(νθ )] = E[Ma(χ )]. (10)

Convergence of the average measure to average χ implies
that, at a steady state, the sum of χ values over agents
is same as the sum of ν values over agents. In general,
the physical significance is that the detection decision of a
hotspot by few agents is being redistributed as awareness
over a (possibly) larger number of agents, where the total
awareness measure is conserved. From this perspective, it
is interesting to know the nature of measure distribution in
the agent population and measure variance (over agents)
provides an insight in this aspect. For example, an extreme
case would be when measure variance is zero, that is all
agents have the same measure and it is equal to the aver-
age measure of the population. In literature, this scenario
is known as consensus. An opposite extreme case is when
there is no awareness propagation; only those agents that
have detected a hotspot (i.e. have non-zero χ ) have non-
zero measure. The measure variance is equal to the vari-
ance of χ in this case and the hotspot can be localised very
well following the measure distribution due to a sharp lo-
calisation gradient. Thus, measure distribution essentially
dictates a trade-off between Propagation Radius and Local-

isation Gradient and variance of ν over agents quantifies
the position of the system in this trade-off scale.

3.2. Convergence of measure variance over
agents

For variance calculation, consider post-multiplication of 1T

on both sides of Equation (7),

ν
avg
θ |τ+11T = (1− θ )νavg

θ |τ 1T + θχ avg|τ 1T

⇒ ν
avg
θ |τ+11T = (1− θ )νavg

θ |τ�|τ 1T + θχ avg|τ 1T .

(11)

The above equation presents the mean dynamics for the
system. Now, the following equation is obtained by sub-
tracting the mean dynamics in Equation (11) from the sys-
tem equation in Equation (6),

ν̃θ |τ+1 = (1− θ )�|τ ν̃θ |τ + θχ̃ |τ . (12)

For calculation of variance (over agents),

(ν̃θ |τ+1)T (ν̃θ |τ+1) = (1− θ )2(ν̃θ |τ )T (�|τ )T (�|τ )(ν̃θ |τ )

+ θ2(χ̃ |τ )T (χ̃ |τ )

+ 2θ (1− θ )(ν̃θ |τ )T (�|τ )T (χ̃ |τ ).

(13)

At this point, one needs to take ensemble expectation on
both sides. Since closed form results may not be analyt-
ically tractable in general, certain assumptions are made
that may restrict the problem scenario to some extent. It is
evident from the discussion till now that there exists two
fundamental aspects of the problem, one related to network
evolution and the other related to agent state dynamics and
they can have very different timescales. Let us consider a
case, where the timescales of these two aspects are compa-
rable, which means that, at each slow-time epoch τ (when
the agent measures are updated), the system has an indepen-
dent agent interaction matrix � as well as an independent
state characteristic vector χ . Physically, this requires the
agents to move fast enough or the message lifetime to be
large enough so that temporal correlations die out between
two slow-time epochs. This case is referred to as the con-
gruous timescale (CTS) case in this paper. Formally, the
following assumptions are made for the CTS case.

• By problem setup, � at any slow-time epoch depends
on the mobility characteristics of the agent popula-
tion and the message lifetime Lm, neither of which is
affected by the presence of a hotspot. On the other
hand, the vector χ at any slow-time epoch captures
the information regarding hotspot detection by agents
irrespective of inter-agent communication. Hence, it
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1124 S. Sarkar et al.

is assumed that �|i and χ |k are independent for every
i and k.

• In this set up, the motion dynamics of an agent take
place at a fast timescale, denoted by t, and � cap-
tures the inter-agent communication characteristics
(due to agent motion) for a window of fast timescale.
Now, for a large enough window (i.e. a large value
of Lm), it is assumed that the fast timescale mobility
correlation dies out within a relatively short period.
As a consequence, �|i and �|j become mutually in-
dependent for every i and j.

• The agents move fast enough (or in other words, the
hotspot length scale is reasonably small compared to
the scale of agent motion) such that χ |i and χ |j are
independent for every i and j.

The first two assumptions are feasible under fairly gen-
eral conditions, whereas the third one requires a special
condition of agent mobility. The simulation scenario pre-
sented in Section 4 provides an example. Future studies will
explore the feasibility conditions of these assumptions in
greater details.

By an application of Equation (13) under the above
assumptions, it follows that the ensemble expectation (given
ν̃θ |τ ) on both sides is

E[(ν̃θ |τ+1)T (ν̃θ |τ+1)|ν̃θ |τ ] =
(1− θ )2(ν̃θ |τ )T E[(�|τ )T (�|τ )](ν̃θ |τ )

+ θ2E[(χ̃ |τ )T (χ̃ |τ )]

+ 2θ (1− θ )(ν̃θ |τ )T E[(�|τ )T ]E[(χ̃ |τ )]. (14)

Since all the agents perform a random walk motion, they
are equally likely to visit the hotspot. This implies that
E[(χ̃ |τ )] = 0. Furthermore,

(1− θ )2(ν̃θ |τ )T E[(�|τ )T (�|τ )](ν̃θ |τ ) ≥ 0. (15)

Therefore, for the lower bound

E[(ν̃θ |τ+1)T (ν̃θ |τ+1)|ν̃θ |τ ] ≥ θ2E[(χ̃ |τ )T (χ̃ |τ )]

⇒ E[(ν̃θ |τ+1)T (ν̃θ |τ+1)] ≥ θ2E[(χ̃ |τ )T (χ̃ |τ )]. (16)

The expected (steady-state) variance is expressed as:
E [Va[νθ ]] = E[(ν̃θ |τ+1)T (ν̃θ |τ+1)]. Using a similar nota-
tion for χ , one has

E [Va[νθ ]]

E [Va[χ ]]
≥ θ2. (17)

Note, by construction ν̃θ |τ ⊥ 1T (Boyd, Ghosh, Prabhakar,
& Shah, 2005). Also, 1 is the stationary vector (left eigen-
vector corresponding to the unity eigenvalue) of a doubly

Figure 3. Upper bounds of the variance ratio E[Va [νθ ]]
E[Va [χ ]] as a

function of θ and �|τ under CTS assumptions; lower bound is
independent of 2 and coincides with the upper bound for 2 =
0.

stochastic matrix. Therefore,

(ν̃θ |τ )T E[(�|τ )T (�|τ )](ν̃θ |τ ) ≤ 2(ν̃θ |τ )T (ν̃θ |τ ), (18)

where, 2 = λ2(E[(�|τ )T(�|τ )]). Therefore, for the upper
bound

E[(ν̃θ |τ+1)T (ν̃θ |τ+1)|ν̃θ |τ ] ≤ (1− θ )22(ν̃θ |τ )T (ν̃θ |τ )

+ θ2E[(χ̃ |τ )T (χ̃ |τ )]

⇒ E[(ν̃θ |τ+1)T (ν̃θ |τ+1)] ≤ (1− θ )22E[(ν̃θ |τ )T (ν̃θ |τ )]

+ θ2E[(χ̃ |τ )T (χ̃ |τ )]. (19)

At a steady state, E [Va[νθ ]] = E[(ν̃θ |τ+1)T (ν̃θ |τ+1)] =
E[(ν̃θ |τ )T (ν̃θ |τ )]. Therefore,

E [Va[νθ ]]
[
1− (1− θ )22

] ≤ θ2
Va[χ ]

⇒ E [Va[νθ ]]

E [Va[χ ]]
≤ θ2

1− (1− θ )22
. (20)

Note, θ ∈ (0, 1] and 2 ∈ [0, 1].
Figure 3 presents the plot of upper bounds of the vari-

ance ratio E[Va [νθ ]]
E[Va [χ]] with θ for three possible values of

2. Note that the lower bound of the variance ratio is
independent of 2 and coincides with the upper bound
for 2 = 0.

It is understood that CTS is a special case in the spec-
trum of timescale comparison of network evolution and the
associated information propagation. In the CTS case, these
timescales are congruous or comparable. On the other end
of this spectrum, one can consider a situation where the two
timescales are very different such that, the network evolu-
tion (the slow dynamics) and the agent state updating (the
fast dynamics) can be treated independently as it is done
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in the Singular Perturbation theory. The problem becomes
much simpler in this case as one may assume that � and χ

remain time invariant over the course of transience in the
agent state dynamics, i.e. agent measures converge before
there is a change in � and χ . This case is referred to as
the disparate timescale (DTS) case in this paper. Under the
DTS assumptions, � and χ are not necessarily functions of
τ . Therefore, from Equation (4), as τ →∞, one has

νθ |∞ = θχ + θ (1− θ )�χ + θ (1− θ )2�2χ

+θ (1− θ )3�3χ · · · . (21)

The following equation is obtained by subtracting the mean
dynamics from Equation (21):

ν̃θ |∞ = θχ̃ + θ (1− θ )�χ̃ + θ (1− θ )2�2χ̃

+ θ (1− θ )3�3χ̃ · · · . (22)

Using the above equation, the measure variance over agents
is calculated as

Va[νθ ] = θ2χ̃T χ̃ + θ2(1− θ )χ̃T �χ̃ + θ2(1− θ )χ̃T �T χ̃

+ θ2(1− θ )2χ̃T �T �χ̃ + θ2(1− θ )2χ̃T �2χ̃

+ θ2(1− θ )2χ̃T (�2)T χ̃ · · · . (23)

As � is symmetric, one has

Va[νθ ] = θ2χ̃T χ̃ + 2θ2(1− θ )χ̃T �χ̃

+3θ2(1− θ )2χ̃T �2χ̃ · · · . (24)

Since �k s are positive definite for k ∈ N, the lower bound
is obtained as

Va[νθ ]

Va[χ ]
≥ θ2. (25)

Using the same logic as before, it is evident that χ̃T �kχ̃ ≤
λ2(�k)χ̃T χ̃ for k ∈ N. Also, λ2(�k) = λk

2(�) and λ2(�) is
denoted simply as λ2 in the sequel. Therefore,

Va[νθ ] ≤ θ2
Va[χ ]+ 2θ2(1− θ )λ2Va[χ ]

+ 3θ2(1− θ )2λ2
2Va[χ ] · · · . (26)

Based on the infinite sum, the upper bound is obtained as

Va[νθ ]

Va[χ ]
≤ θ2

[1− (1− θ )λ2]2
. (27)

Note, θ ∈ (0, 1] and λ2 ∈ [0, 1]. The upper bound for the
variance ratio calculated above is valid for a particular �.
Figure 4 presents the plot of upper bounds of the variance
ratio Va [νθ ]

Va [χ ] with θ for three possible values of λ2. Note that
the lower bound of the variance ratio is independent of λ2

and coincides with the upper bound for λ2 = 0.

Figure 4. Upper bounds of the variance ratio Va [νθ ]
Va [χ ] as a function

of θ and � under DTS assumptions; lower bound is independent
of λ2 and coincides with the upper bound for λ2 = 0.

It is observed in both cases that the upper bound and
lower bound coincide as θ approaches extreme values, 0
or 1 and as seen in Section 4, Va[νθ ]→ 0 as θ → 0 and
Va[νθ ]→ Va[χ ] as θ → 1. In other words, the agent pop-
ulation approaches consensus as θ → 0 (but �= 0). In this
case, although the entire population becomes aware of the
hotspot, there is no localisation gradient as every agent has
the same measure. On the other hand, with θ → 1, the
localisation gradient improves at the cost of propagation
radius. In general, Va[νθ ] decreases with a reduction in θ .
The other system component affecting the variance ratio is
the � matrix. In both CTS and DTS cases, this effect is
realised through the second largest eigenvalue of �. Re-
duction in the magnitude of the second largest eigenvalue
of � signifies more connectivity among agents. This fact
explains the reduction in variance ratio with a decrease in
the second largest eigenvalue.

4. Validation by numerical simulation

An example problem of surveillance and reconnaissance
is presented in this section, which involves the mobile
multi-agent network and the interaction policy as explained
in Sections 2-A and 2-B.

4.1. Problem statement

Let us consider a surveillance and reconnaissance mission
for a region of area A performed by N mobile agents, where
each agent has a radius of communication R. The agents
are moving in the region with a 2-D random walk fashion
with speed (i.e. displacement per unit time) v. The individ-
ual mission goal of the agents is to detect the existence of
any possible hotspot in the region and communicate this
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1126 S. Sarkar et al.

Figure 5. Propagation of global awareness for hotspot length scale λ = 0.10 on a mobile-agent network with message lifetime Lm =
30. Plates (a), (b) and (c) show the time evolution of average (over agents) of χ and ν and plates (d), (e) and (f) show the time evolution
of variance (over agents) of χ and ν; hotspot is switched on at τ = 2 and switched off at τ = 280 for θ = 0.01 and at τ = 70 for
θ = 0.10 and 0.90.

information to their neighbouring agents. The information
that an agent wants to communicate based on its recent
observation, has a message lifetime Lm units in the fast
timescale (corresponding to the agent’s motion). Thus, an
epoch τ in the slow timescale spans over Lm units of time in
the fast timescale. However, the detection of a hotspot does
not affect mobility characteristics of agents. The global
mission objective is to control the extent of information
propagation across the mobile agent network. For the sim-
ulation study, the parameters are chosen as follows: A =
10002, N= 100, R= 100 and v = 20. The message lifetime
(Lm) is taken to be 30 time units. As described earlier, the
state characteristic function χ i of agent i becomes 1 upon
detecting a hotspot; otherwise, χ i remains 0. Also given
the detection model described in Section 2-B, probability
of successful detection depends on the proximity of the
agent to the centre of the hotspot. After the expiry of mes-
sage lifetime Lm, the χ value of an agent resets to 0. The
values of agent measure (ν) are updated based on the agent
interaction policy described earlier.

Simulation runs have been conducted with different val-
ues of θ . In this paper, observations regarding convergence
of statistical moments (e.g. mean and variance) of νθ with
θ = 0.01, 0.10 and 0.90 are presented. Top three plates,
(a), (b) and (c), in Figure 5 present the time evolution of
average (over agents) and the bottom three plates, (d), (e)
and (f), present the corresponding variance (over agents)

for time-series of χ and ν. The hotspot is switched on at
τ = 2 for all experiments and switched off at τ = 280 for
θ = 0.01 and at τ = 70 for θ = 0.10 and 0.90.

4.2. Results and discussions

It is observed in plates (a), (b) and (c) of Figure 5 that,
after the appearance of hotspot, the average (over agents) ν

converges to the average (over agents) χ at the steady state
for three different values of the control parameter θ , where
the convergence time decreases with an increase in θ . The
above observation is explained below.

It follows from Equation (3) that the system dynam-
ics depend on the largest eigenvalue of (1 − θ )�|τ . Since
�|τ is an irreducible stochastic matrix, Perron–Frobenius
theorem ensures that its largest eigenvalue is 1; thus, the
largest eigenvalue of (1 − θ )�|τ is (1 − θ ). Therefore, it
is expected that the convergence time will increase with
the decrease in θ . Moreover, the first-order dynamics can
be observed in the time evolution of average ν; this can be
attributed to the uniqueness of the largest eigenvalue of �.
Plates (d), (e) and (f) of Figure 5 show that the steady-state
variance (over agents) of ν increases with the increase in
θ ; also, Va[ν]→ 0 as θ → 0 and Va[ν]→ Va[χ ] as θ →
1. These observations regarding the dependence of steady-
state statistical moments of the agent measure on system
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Figure 6. Simulation-based verification of bounds on variance under CTS and DTS assumptions. (a) Variance ratio E[Va [νθ ]]
E[Va [χ ]] under CTS

assumptions. (b) Variance ratio Va [νθ ]
Va [χ ] under DTS assumptions.

parameters further validate the analytical claims made in
the previous section.

Figure 6 shows the results of numerical simulation for
verification of upper and lower bounds on the variance
ratios E[Va [νθ ]]

E[Va [χ]] and Va [νθ ]
Va [χ] for CTS and DTS assumptions,

respectively. The results for CTS are presented in Figure
6(a), where the simulation results to closely follow the
upper bound for this particular case. While the expected
degree of the network is kept as 3, high speed (v ∼ 100)
is assumed for agents to achieve the conditions described
in the CTS assumptions. Results of numerical simulation
for DTS are presented in Figure 6(b) that shows the data
for two cases with expected degree of the network as 3
and 7. The agent speed is kept non-zero but very low (v
∼ 5) to achieve the conditions described under the DTS
assumptions.

Remark 4.1: It is noted that the upper bounds on the vari-
ance ratio for both CTS and DTS cases are found to be
functions of the second largest eigenvalue of the agent in-
teraction matrix � which, in turn, is a function of the degree
of the network. However, the degree is not the only network
parameter that determines the decision propagation char-
acteristics as it is observed in the simulation for both CTS
and DTS cases. Therefore, it is evident that, apart from the
network degree, comparability between timescales of net-
work evolution and agent state dynamics also plays a key
role in determining the network system characteristics.

5. Summary, conclusions and future work

This paper addresses the problem of decision/awareness
propagation in a mobile-agent network environment for

surveillance and reconnaissance. A distributed decision
propagation algorithm has been constructed based on the
concepts of recently developed language-measure theory
(Chattopadhyay & Ray, 2006; Ray, 2005). A completely
decentralised implementation of this algorithm is shown
to be useful for propagation of awareness regarding a local
hotspot in the operational area. Analytical results have been
obtained for convergence of (awareness level) measure dis-
tribution in the agent population. A (user-defined) critical
parameter θ controls the trade-off between the propagation
radius and the localisation gradient, where θ has both tem-
poral effects (e.g. convergence time) and ensemble effects
(e.g. the measure distribution characteristics in the agent
population). In this setting, consensus can be achieved as
θ → 0.

Two cases, CTS and DTS, relating the timescales of
network topology and agent interaction are presented and
validated by numerical simulation on a test bed for a typi-
cal example problem. In this algorithm, the system is reset
automatically upon removal of a hotspot. Another advan-
tage of this approach is that it naturally extends to mul-
tiple hotspot scenarios. However, it will be interesting to
investigate such conditions with both homogeneous and
heterogeneous hotspots. Following are the future research
directions that are currently being pursued:

• Analytical evaluation of the expected characteris-
tics of � (e.g. the second largest eigenvalues),
given the expected characteristics of the proximity
network.

• Analysis of convergence dynamics/time under the
current framework.
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1128 S. Sarkar et al.

• Investigation of scenarios with asynchronous mea-
sure updating and heterogeneous message lifetime
distribution.

• Exploration of the feasibility conditions of the as-
sumptions made for the CTS case and the possibility
of relaxing these assumptions for variance calcula-
tion.

• Identification of quantitative rules to distinguish be-
tween a CTS case and DTS case.

• Evaluation of generalised gossip policy with more
realistic hotspot detection model (e.g. inclusion of
false alarm possibility).

• Extension of the decentralised policy presented here
to be used for event-triggered or self-triggered
co-operative control problems.
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Appendix 1 Analysis of proximity networks
This appendix analyses the effects of Lm on the time-averaged
proximity network topology that is primarily represented by the
statistics of the degree of a network node. Although these def-
initions are straightforward for static networks, they need to be
carefully constructed in the present context of dynamic networks.

Definition 5.1 (Degree and Degree Distribution): The degree
k of a node (agent) is defined to be the number of network nodes
to which it is connected; and the degree distribution P(k) for a
network is defined to be the probability distribution of degrees
over the entire network. Let P(k|Lm, i) be the distribution (com-
puted over time) of the number of distinct nodes that communicate
with a given node i within its message lifetime Lm(i). The degree
distribution is defined as

P (k|L̄m) � 1

n(L̄m)

∑
i:Lm(i)=L̄m

P (k|L̄m, i), (A.1)

where n(L̄m) is the number of nodes in the network with message
lifetime L̄m. Finally, the overall network degree distribution is
defined as the expected value of P(k|Lm), i.e.

P (k) � 1

N

∑
Lm

n(Lm) P (k|Lm), (A.2)
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where N is the total number of nodes in the network.

It is reported in literature (Gonzleza, Linda, & Herrmann,
2006; Toroczkai & Guclu, 2007) that the degree distributions for
proximity networks have different structures (e.g. Poisson dis-
tribution and power law distribution as in scale-free networks),
depending on the parameters of the mobile-agent dynamics. For
the parameters selected in Section 4, the time-averaged degree
distribution P(k|Lm) follows the Poisson distribution as explained
below.

Let the node i have the message lifetime Lm and let the prob-
ability that an agent j (j �= i) is within the zone of communication
of i within the time window Lm be denoted as pij(Lm) (that is ob-
viously an increasing function of Lm). At a given stage of network
evolution, let the probability that i and j communicate in the next
time step be modelled as αgigj( ≤ 1), where gl is called the gre-
gariousness (i.e. the tendency to communicate with other agents)
of agent l in accordance with social network literature (Gonzleza,
Linda, & Herrmann, 2006; Toroczkai & Guclu, 2007) and let α be
a parameter that incorporates spatial information of the network
(e.g. agent density). Note that gl is a function of the radius of
communication and velocity of agent l.

With this model and assuming independent activity at each
time step, the probability that the nodes i and j (i �= j) do not
communicate within Lm is (1− αgigj )Lm . Therefore, pij (Lm) =
1− (1− αgigj )Lm . The expected value <k> i of the degree of the
node i is obtained as

<k>i =
N∑

j=1

pij (Lm)

� αLmgi

⎛
⎝∑

j

gj

⎞
⎠ f or αLm � 1. (A.3)

The assumption of αLm � 1 is realised if α is very small and
at the same time Lm is not very large; a small α provides an upper
bound on the maximum number of nodes that the node i can com-
municate in one time step; this is called the exclusion constraint
(Toroczkai & Guclu, 2007). In this paper, the radius of communi-
cation and velocity are kept invariant for every node, implying that
all nodes share a uniform gregariousness g. Therefore, pij(Lm) is
independent of agent specifications i and j and is denoted as p(Lm)
or simply p. Also, all agents are assumed to have same message
lifetime Lm. With these assumptions, numerical experiments are
performed to calculate the expected degree <k> of the network
for various values of homogeneous Lm. Figure A1 shows the result
obtained from these experiments and an approximately linear rela-
tion between <k> and Lm (as derived before) is observed beyond
Lm = 9. Now, with homogeneous p and Lm across the network, the
degree distribution P(k|Lm) is written as

P (k|Lm) =
(

N
k

)
pk(1− p)N−k

� < k >k

k!
e−<k> f or N >> 1. (A.4)

Figure A2 shows the degree distribution P(k|Lm) obtained
from numerical experiments performed for Lm = 1, 20, 30 to be
Poisson in nature. Note that the degree distribution for Lm = 1
represents the characteristics of a static proximity network.

However, it is shown in Toroczkai and Guclu (2007) that by
choosing non-homogeneous pij(Lm), one may obtain other types
of degree distributions (e.g. power-law distribution) as well. Thus,

Figure A1. Variation of expected degree <k> of the network
with homogeneous message life Lm.

Figure A2. Plots of degree distribution P(k|Lm) of the mobile-
agent network for Lm = 1, 20, 30.

degree distribution and expected degree of the network (i.e. the
expected network topology) can be controlled by varying Lm.

Appendix 2 Basic notions of language-measure
theory

This appendix summarises the concept of real measure of prob-
abilistic regular languages generated by PFSA (Chattopadhyay
& Ray, 2006; Ray, 2005). However, since the topic of regu-
lar languages is beyond the scope of this paper, the concept of
real measures have been restricted only to irreducible Markov
chains.

A2.1 Brief review
Let a stationary Markov chain be denoted by the three-tuple (Q,
�, χ ), where Q = {q1, q2, . . ., qN} is the set of states; the state
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transition function �: Q × Q → [0, 1] depicts the transition
probabilities of the Markov chain and � is expressed in the form of
an N × N stochastic matrix; and the state characteristic function
χ : Q→ R assigns a signed real weight to each state. As the
number of states is finite, the vector form of the characteristic
function is written as χ = [χ 1, χ 2, . . .χN]T.

A real measure νi
θ for state i is defined as

νi
θ �

∞∑
τ=0

θ (1− θ )τ vi�τχ, (A.5)

where θ ∈ (0, 1] is a user-specified parameter; and vi , defined as
a 1 × N vector

[
vi

1, v
i
2, . . . , v

i
N

]
, is given by

vi
j =

{
1 if i = j
0 if i �= j.

(A.6)

Remark 5.1 (Physical Significance of Real Measure): Let us
assume that the current state of the Markov precess is i, i.e. the
(1 × N) state probability vector is vi . At an instant τ time-steps in
the future, the state probability vector is given by vi�τ . Further, the
expected value of the characteristic function is given by vi�τχ .
The measure of state i, as described by Equation (A.5), is the
weighted expected value of χ over all the time-steps in future
for a the Markov process that begins in state i. The weights for
each time-step (θ (1 − θ )τ ) is a function of the single parameter

θ . In addition, the weights form a decreasing geometric series
whose sum equals to 1. As a result, the measure νi

θ is a convex
combination of all the elements of the χ vector and minj χj ≤
νi

θ ≤ maxj χj ∀i ≤ N.

The expression for the the measure in Equation (A.5) is ex-
pressed in an alternative equivalent form,

νi
θ = θvi (I − (1− θ )�)−1 χ. (A.7)

The inverse is guaranteed to exist for θ ∈ (0, 1].
From Equation (A.5), the measure of all the states denoted by

the vector νθ =
[
ν1

θ , ν
2
θ , . . . , ν

N
θ

]T
is written as

νθ = θ (I − (1− θ )�)−1 χ. (A.8)

Remark 5.2 (The effects of the parameter θ ): The parameter
θ determines the weights (θ (1 − θ )τ ) assigned to the expected
characteristic function for time step τ . In particular, θ controls the
the rate at which the weights decrease with increasing values of
τ . Large values of θ force the weights to decay rapidly, thereby
placing more importance to the characteristic functions of states
that are adjacent (connected with fewer hops) to the initial state i.
In fact, θ = 1 implies that νi

θ = χi . On the other hand, small
values of θ captures the interaction with a large neighbourhood
of connected states. As θ → 0, the dependence of on the initial
state i slowly decays (provided � is irreducible) and all the states
converge to the same value of measure.

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
9:

59
 1

3 
Ju

ne
 2

01
3 




