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This paper develops a novel strategy for prediction of lean blowout in gas turbine combustors based on symbolic

analysis of time series data from optical sensors, where the range of instantaneous data is partitioned into a finite

number of cells and a symbol is assigned to each cell. Depending on the cell to which a data point belongs, a symbolic

value is assigned to the data point. Thus, the set of time series data is converted to a symbol string.The (estimated) state

probability vector is computed based on the number of occurrence of each symbol over a given time span. For the

purpose of detecting lean blowout in gas turbine combustors, the state probability vector obtained at a condition

sufficiently away from leanblowout (reference state) is consideredas the reference vector.Thedeviationof the current

state vector from the reference state vector is used as an anomaly measure for early detection of lean blowout. The

results showed that the rate of change of the anomaly measure with equivalence ratio changed significantly as the

systemapproached leanblowout.This change in slope of the curvewas observedapproximately at a similar proximity

to lean blowout for different operating conditions and, hence, could be used as an early lean blowout precursor. The

actual location of the change of slope depended primarily on the choice of reference state. This technique performed

satisfactorily over a wide range of premixing.

I. Introduction

S TRINGENTemission norms require gas turbines to operatewith
extremely low NOx production. Ultralean combustion is one

commonly used approach forminimizingNOx production. However,
ultralean combustion is extremely susceptible to thermoacoustic
instabilities and lean blowout (LBO). LBO is extremely detrimental
for both power station gas turbines and aeroengines. In land-based
turbines, LBO leads to prolonged shutdown and relighting involving
productivity loss. For aeroengines during throttling operation, the
fuel flow is suddenly reduced. But, due to the inertia of the
compressor, reduction in airflow takes place at a much slower rate.
The consequent sudden decrease in equivalence ratio can lead toLBO
on aircraft engines, which can have fatal consequences. A priori
determination of the LBO margin may not be possible because it is
dynamically altered in the presence of thermoacoustic instabilities.
This calls for development of strategies for early detection of
imminent blowout and adoption of appropriate measures to mitigate
it. Although land-based gas turbines mostly operate in a lean
premixed mode, in aircraft engines, the fuel is admitted close to the
burner, leading to partially premixed combustion. The current paper

examines strategies for mitigation of LBO for both premixed and
partially premixed combustors.
A number of studies in the last fewyears attempted to identify LBO

precursors with the objective of mitigating it. De Zilwa et al. [1]
investigated the occurrence of blowout in dump combustors with and
without swirl. Chaudhuri and Cetegen [2,3] investigated the blowoff
characteristics of a bluff-body stabilized burner flame, representative
of afterburners of gas turbine combustors in the presence of spatial
gradients in mixture composition and velocity oscillations. They
used photomultiplier tubes with CH� chemiluminescence filters to
capture the optical signal and characterized the signal in the vicinity
of blowout. Chaudhuri et al. [4] and Stöhr et al. [5] used combined
particle image velocimetry (PIV)–planar laser induced fluorescence
(PLIF)-based diagnostics to explain the near LBO dynamics of
premixed and partially premixed combustors. However, these works
did not focus on developing strategies for mitigating LBO.
The LBO limit is dependent on a number of parameters related to

the combustor configuration and operating conditions, and real-time
monitoring for each of them requires a complicated and expensive
diagnostic system. Quantifiable dynamic characteristics of flame
preceding blowout has, therefore, been exploited in the past as LBO
precursors. References [6–9] used time series data from acoustic and
optical sensors for early detection and control of LBO in gas- and
liquid-fuelled combustors. Use of both acoustic and optical sensors in
the same combustor [9] demonstrated the superiority of optical
sensors due to faster response time.Nair andLieuwen [8]used spectral,
statistical, wavelet-based, and thresholding-based techniques to detect
blowout precursors. For statistical analysis, they used moving average
kurtosis. For thresholding approach, they identified certain events like
the peak pressure in a cycle falling below a certain threshold value. The
number of such events was found to increase monotonically as the
system approached extinction. For wavelet-based analysis, they used
Mexican Hat wavelet and a customized wavelet that matches with the
time series data of OH� chemiluminescence. Yi and Gutmark [10]
recommended two indices, namely, the normalized chemilumines-
cence root mean square and the normalized cumulative duration of
LBO precursor events for LBO prediction in real time. However,
groups headed by Lieuwen and Seitzmann [6–9] and Gutmark [10]
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both demonstrated their techniques for LBO prediction in premixed
combustors. The current work develops a novel technique based on
symbolic time series analysis for LBOprediction in both premixed and
partially premixed operating conditions.
Symbolic time series analysis (STSA) provides an elegant way of

analyzing the dynamics of nonlinear systems [11]. Tang et al. [12]
and Daw et al. [13] described the technique of generating symbolic
time series by discretization of experimental or simulated time series.
Rajagopalan andRay [14], Subbu andRay [15], Sarkar et al. [16], and
Jin et al. [17] developed different procedures for generation of
symbolic time series. They also developed a procedure for early
detection of anomalous behavior in dynamical systems based on
symbolic dynamic filtering (SDF) and applied it for detecting
anomalous behavior in diverse physical systems [18–21]. Gupta et al.
[22], Datta et al. [23], and Chakraborty et al. [24] applied SDF for
predicting extinction in mathematical models of pulse combustors.
Daw et al. [25] and Green et al. [26] used symbolic time series to
characterize the dynamics of spark ignition engines. However, this
procedure has not been in much use for early detection of anomalies
using experimental data in combustion systems where measurement
uncertainties and sensor noise invariably complicate the analysis.
The objective of the present work is to explore the suitability of using
symbolic time series analysis for early prediction of LBO in model
gas turbine combustors. The work of Flynn et al. [27] on condition
monitoring in flames has a similar objective although there are
significant differences in details.

II. Experimental Details

Based on the earlier works of Williams et al. [28], Meier et al. [29],
Nair et al. [6], Chaudhuri and Cetegen [2], and Yi and Gutmark [10], a
swirl-stabilized dump combustor was designed as a laboratory-scale
model of a generic gas turbine combustor, schematically shown in
Fig. 1. The combustion air is supplied at ambient temperature from the
compressor to the bottom port provided on the premixing tube, and
metered upstream of the combustor using a calibrated mass
flow controller (MFC) (Aalborg range 0–500 litres perminute (LPM)).
The fuel (liquefied petroleumgas, LPG) is supplied from a pressurized
cylinder fitted with a needle valve to control the flow rate and metered
upstream of the combustor by a calibrated Aalborg mass flow
controller (range 0–10 LPM.). To investigate the effects of premixing
on flame dynamics, six side ports are provided 50 mm apart along the
length of the premixing tube. This allows the fuel to be injected at
different axial positions of the premixing tube, thereby providing

different premixing lengths. The ports are numbered 1 to 6 from the
bottom of the premixing tube. Thus, the fuel injected through port 1
allows greatest premixing whereas port 6 allows the least premixing.
The fuel is injected to one of the side ports of the premixing tube. The
fuel–air mixture entered the combustor through an inlet swirler in the
annulus around a center body, located just prior to the dump plane in
the premixing section. The inner diameter of the premixing section is
2.3 cm, and the diameter of the center body is 0.8 cm. The inlet swirler
has six vanes positioned at 60 deg to the flow axis. A quartz tube is
provided in the combustion zone having an internal diameter of 6 cm
and length 20 cm to facilitate optical diagnostics.
The heat release rate is measured by the chemiluminescence

emitted from the CH� radicals (λ ∼ 431 nm) of the flame. The time
series data are obtained with a photomultiplier tube (PMT) fitted
with an optical band pass filter (λpass � 430 nm, full wave half width
(FWHM) 10 nm). The PMToutput signal (voltage) is acquired using
a 16-bit analog input channel on a National Instruments PXI-6250
data acquisition card mounted in a National Instruments PXI-1050
chassis having a built-in 08 channel SCXI-1125 signal conditioner
module. A time series of 215 data points is acquired at a sampling
frequency of 2 kHz in each experiment using National Instruments
Lab VIEW® 7.1. Video images of the flame are recorded in order to
visualize LBO phenomenology and correlate the same with the
optical signal. Still color images of the flame are also acquired
simultaneously using the digital single lens reflex camera at suitable
exposure to avoid pixel saturation. Further details of the experimental
setup and instrumentation are available in Chaudhari [30].
Experiments were carried out using LPG as fuel. A major reason

for choice of LPG as fuel was that LPG consists of mainly propane
and butane, which are the simplest hydrocarbons whose combustion
exhibits chemical behavior, flame speed, and extinction limits closer to
the heavier andmore complex hydrocarbon fuels [31]. The experiment
involved first using stoichiometric air–fuelmixture (Φ � 1). Then, at a
given airflow rate, the fuel supply is gradually decreased to generate
progressively lean reacting mixtures. Because the air constitutes the
bulk of the incoming reactant mixture, a constant airflow rate ensures
that the flow time remains practically constant.

III. Symbolic Time Series Analysis

The procedure for anomaly detection using STSA has been
described in detail by Ray [11], Rajagopalan and Ray [14], and Jin
et al. [17]. Here it will be only briefly reviewed.

Fig. 1 Experimental setup.
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A. Generation of Symbolic Time Series

STSA encodes the behavior of (possibly nonlinear) dynamical
systems from the preprocessed time series by symbolization and state
machine construction. This is followed by computation of the state
probability vectors that are representatives of the evolving statistical
characteristics of the dynamical system.
Figure 2 outlines the concept of STSA to encode the dynamical

behavior of systems from observed time series data, state machine
construction, and computation of the state probability vectors that are
representatives of the evolving characteristics of the dynamical
system. The ensemble of the time series data is partitioned into a
mutually exclusive and exhaustive set of finitely many segments. Let
each segment in the plot at the upper left-hand corner of Fig. 2 be
labeled by a unique symbol, and let Σ denote the alphabet of all these
symbols. The segment, visited by the time response plot at a (fast
scale) instant, takes a symbol value from the alphabetΣ. For example,
in Fig. 2, Σ � fα; β; γ; δg and a sensor time series x0x1x2 · · · ,
generates a string of symbols in the symbol space as s0s1s2 · · · ,
where each si, i � 0; 1; 2; · · · takes a symbol value from the alphabet
Σ. This mapping is called symbolic dynamics because it attributes a
legal (i.e., physically admissible) symbol string to the dynamical
system starting from an initial state. For example, see the symbol
string at the top right-hand corner of Fig. 2.
It is evident from the preceding discussion that a crucial step

in STSA is the generation of a symbol string by appropriately
partitioning symbolic time series analysis. For generation of
symbolic time series in the present application, the entire range of
data for a particular measurement (e.g., heat release rate fluctuation)
is partitioned into a finite number of nonoverlapping contiguous
cells. The unique symbol is assigned to every instantaneous value of
the measured variable that falls in that partitioned region. Thus, the
discrete time series of the state variable is converted to a symbol
string (cf. Fig. 2). The time series data can be partitioned for symbol
string generation using uniform partitioning or maximum entropy
partitioning. In the present work, partitions are generated in such a
way that, at an equivalence ratio away from LBO (designated the
reference state), the number of occurrences of each symbol in the
symbol string (i.e., number of data points in each partitioned region)
is equal. This maximizes the information entropy

H�k� � −
Xi�k

i�1
pi log pi

where pi denotes the probability of occurrence of a symbol σi in the
string. Symbolic time series are generated in this work in two
different ways. In onemethod, known as simple partitioning (SP), the
time series data are directly used for the partitioning. The other
technique used was analytic signal space partitioning (ASSP) [15].
This technique uses complex valued analytic function A�x��t�
corresponding to the time series data, defined as

A�x��t� � x�t� � i ~x�t� � R�t� exp�iϕ�t��

where ~x�t� is theHilbert transformof the time series data andR�t� and
ϕ�t� are the magnitude and the phase of the complex valued analytic
function. The magnitude and the phase of the analytic function are
partitioned separately using maximum entropy partitioning. Thus,
each data point is represented by a pair of symbols, one belonging to
the symbol string ΣR (based on the magnitude) and the other
belonging to the symbol string Σϕ (based on the phase). The analytic
signal is partitioned into a symbol string by associating each pair of
symbols into a symbol from a new alphabet Σ as

Σ � f�σi; σj�: σi ∈ ΣR; σj ∈ Σϕg and jΣj � jΣRjjΣϕj

Further details of Hilbert-transform-based ASSP are reported by
Subbu and Ray [15].

B. Construction of Probabilistic Finite State Automata

The core assumption in STSA for construction of probabilistic
finite state automata (PFSA) from symbol strings is that the symbolic
process under both nominal and fault/damage conditions can be
approximated as a Markov chain of order D, called the D-Markov
machine, where D is a positive integer. Although the details of the
D-Markovmachine are given in [11], the pertinent information on the
construction of a D-Markov machine is presented next.
A D-Markov chain is a statistically (quasi-)stationary stochastic

process S � · · · s−1s0s1 · · · sn · · · , where the probability of
occurrence of a new symbol depends only on the last D symbols:

p�snjsn−1 · · · sn−D · · · s1� � p�snjsn−1 · · · sn−D�

The construction of aD-Markovmachine is based on 1) state splitting
that generates symbol blocks of different lengths according to their
relative importance, and 2) state merging that assimilates histories
from symbol blocks leading to the same symbolic behavior [32].

…γ  δ  γ  γ β  β α  β  β γ  γ δ …
Symbol Sequence
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Fig. 2 Concept of symbolic time series analysis.
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a) b)

t= 0.03s t = 0.07s t = 0.10s t = 0.13s t = 0.17 t = 0.20s t = 0.23s t = 0.27s

t = 0.30s t = 0.33s t = 0.37s t = 0.40s t = 0.43s t = 0.47s t = 0.50s t = 0.53s

c)

Fig. 3 Flame images for fuel injected through port 1 (Lfuel � 35 cm) for a) ϕ � 1.0, b) ϕ � 0.81, and c) ϕ � 0.75.

t = 0.03s t = 0.07s t = 0 .10s t = 0.13s t = 0.17 t = 0.20s t = 0.23s t = 0.27s

t = 0.30s t = 0.33s t = 0.37s t = 0.40s t = 0.43s t = 0.47s t = 0.50s t = 0.53s

Fig. 4 Flame images for fuel injected through port 5 (Lfuel � 15 cm) for ϕ∕ϕLBO � 1.0.
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Words of length D on a symbol string are treated as the states of the
D-Markov machine before any state merging is executed. Thus, on a
(finite) alphabet Σ with cardinality jΣj, the total number of possible
states is less than or equal to jΣjD, and operations of state merging

may significantly reduce the number of states. As the value of D is

increased, more memory is imbedded in the Markov states of the
PFSA. However, the benefits of having additional memory

associated with a larger value of D could be offset by the increased
computational load. Therefore, onemustmake a tradeoff between the

two competing requirements of 1) capturing information from time
series, and 2) reduction of computational complexity in terms of

memory requirements and execution time in the construction of
D-Markov machine algorithms.
In the present work, theword sizeD is taken to be 1 and, hence, the

number of possible states is equal to the number of symbols;
therefore, the results reported in this paper are limited to D � 1.
However, in general, larger values of the integer parameter D (i.e.,

D > 1)might be necessary to capture the long time-scale information
about combustion fluctuations near LBO. It is noted that the
operations of state splitting and statemerging [32]might be necessary
for PFSA construction withD > 1, whereas these operations are not
required for D � 1.

C. Construction of Anomaly Measure

Following Fig. 2, sensor time series at a reference state (e.g.,
equivalence ratio) ϕk may now be used to compute the state
probabilities pkj ; that is, the probability of being in the state j at time
reference state ϕk. The state probability vector is obtained as
pk � �pk1; : : : ; pkn�, where n is the number of PFSA states. In the
present case, the number of PFSA states is equal to the alphabet size
as D � 1. At another state ϕl, distinct from the reference state, the
state probability vectorpk changes topl. The state probability vector
can be used for computation of a scalar anomaly measure d�pk;p0�
as the distance of the current probability vector pk from the
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Fig. 5 Time series data and symbolic state histograms at ϕ � 0.9, 0.85, 0.8, and 0.75 for port 1 with airflow Q � 70 lpm.
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probability vector p0 at the nominal condition denoted by the
superscript 0. Two histograms at the bottom of Fig. 2 illustratep0 and
pk. In this paper, the anomaly measure is defined as

M � Cos−1
< pk;p0 >

kpkkkp0k

where < pk;p0 > denote the inner product of the state probability
vectors pk and p0, and kpk denotes the Euclidean norm of the vector
p. This anomaly measure is used as an LBO detection metric.
Rao et al. [33] have reported the superior performance of STSA in

comparison to other classes of pattern recognition tools, such as
Bayesian filters and artificial neural networks, from the perspectives
of 1) anomaly detection capability, 2) decision making for failure
mitigation, and 3) computational efficiency. From these perspectives,
the major advantages of STSA for anomaly detection are listed.
1) The method is robust to measurement noise and spurious

signals.
2) The technique is adaptable to low resolution sensing due to

coarse graining in space partitions.
3) The method is capable of early detection of anomalies because

of sensitivity to signal distortion and real time execution on
commercially available inexpensive platforms.
4) The technique is computationally efficient in terms of both

execution time and memory because no large-order recursive
equations need to be solved.

IV. Results and Discussions

Experiments were carried out using LPG at six airflow rates. Three
sets of results were generated at relatively low airflow rates of 70, 80,
and 85 lpm.Another set of resultswas generated for high airflow rates
of 150, 175, and 200 lpm. The corresponding Reynolds number
based on cold flow conditions varies from 6545 (corresponding to an
airflow rate of 70 lpm) to 18,700 (corresponding to an airflow rate of
200 lpm).

A. Experimental Observations

Figure 3 shows the flame images for fuel injected through port 1
(distance of fuel injection port from the dump plane,Lfuel � 35 cm),
which gives the maximum premixing of air and fuel for equivalence
ratios far from LBO (Φ � 1.0 and 0.81) and very close to LBO
(Φ � 0.75), where Φ is the air–fuel mixture quality. In the case of
stoichiometric air–fuel mixture (i.e., Φ � 1.0), the combustion is
seen to be relatively steady and occupies the whole combustor, and
the shape of the flame is observed to be conical (Fig. 3a). As the
equivalence ratio is reduced, for the Φ � 0.81 case, there is
significant change in color of flame: the flame becomes bluish with a
reddish tip. Although the flame zone changes from image to image,
there is always awell-defined combustion region and the flame looks
stable (Fig. 3b). Figure 3c plots a sequence of images captured at
30 frames per second for an equivalence ratio close to LBO; that is,
Φ � 0.75.
For conditions close to blowout (ΦLBO � 0.75), the flame shape

changes from conical to columnar and the length increases due to
reduced reaction rate and burning velocity of the flame near LBO.
Near LBO limit, there are random instances where the flame
exhibits oscillation in the combustor and flame liftoff from the dump
plane. These oscillations may produce a near-flame-loss event in the
combustor. The combustor initially has a spatially compact
combustion zone. Then the flame detaches from the center body,
showing weak reaction and moves farther downstream from the
combustor inlet and stabilizes there. From downstream, the flame
packets are convected back to inlet, which reignites the unburned fuel
that entered the combustor in the previous period. The fuel is rapidly
consumed, which exhibits intense combustion, and the flame is
reestablished in the combustor (reignition event). These unique
extinction and reignition events span a period of severalmilliseconds,
and they occur randomly in time prior to LBO.

Figure 4 shows the images of the flame atΦ∕ΦLBO � 1 for the port
5 case, where the premixing length is minimum Lfuel � 15 cm. The
low premixing length for fuel–air mixing ensured that the flame
obtained in the combustor is with lower degree of fuel–air premixing
or in mostly partially premixed condition. From Figure 4, it is
revealed that, at all times, the flame is attached to the dump plane and
does not show any liftoff pattern. Although the flame shows some
flame loss events where the flame intensity is significantly reduced
and there is subsequent reignition of flame, the flame does not
oscillate in the combustor, and so the precursor events are not so
intense. The unsteadiness is observed in the flame front in terms of
flame flickering, which is clearly observed in images and the flame
base is attached to the dump plane all the times, which is in contrast
with the observation of port 1 flame characteristics. The flame is not
symmetrically attached to the dump plane and exhibits asymmetric
spread in the combustion chamber.

B. Symbolic State Vectors

Based on several trials, the number of symbolic states is fixed at
eight for the simple partitioning. For ASSP, the magnitude space is
partitioned into eight states and the phase space into five states. For
both the cases, maximum entropy partitioning is followed for the
reference state. For other states, the partitions are kept unchanged.
Figure 5 shows the time series of CH� chemiluminescence recorded
by the photomultiplier tube (PMT) fitted with a narrow bandpass
filter, centered around 430 nm and the probability of occurrence of
the symbolic states with simple partitioning for fuel injection through
port 1 as the system approaches LBO. The horizontal lines
superposed on the time series data indicate the partitions used for
generation of symbols. From the time series data, it is observed that,
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Fig. 6 Variation of anomaly measure with ϕ∕ϕLBO, window size �
13 s a) 1 s b).
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as the equivalence ratio is reduced, the intensity falls to lower values.
Because the symbol partitions are kept unaltered, as explained in the
preceding section, most of the data points now lie in the lower
partitions. Thus, the histogram of the probability of the occurrence
of the symbolic states gets skewed toward the lower ranges.
Qualitatively similar results are obtainedwith simple partitioning and
ASSP. The trend of the intensity decreasing with decrease in
equivalence ratio is observed for other levels of premixing also,
which leads to a similar change in the pattern of the probability
histograms for all levels of premixing as LBO is approached. The
difference in the patterns of the histograms at the reference and near
LBO states is reflected in the anomaly measure, which is used for
LBO detection. The present approach, thus, depends more on the
overall behavior of the system, which responds similarly to decrease
in equivalence ratio at all levels of premixing. Thus, the present
approach is suitable for LBO detection at different levels of
premixing, as the results in the next section show.

C. LBO Prediction

Figure 6a shows the anomaly measures obtained for fuel injection
through port 1 (Lfuel � 35 cm) using the two approaches: simple
partitioning and ASSP. Earlier studies [15] revealed that ASSP gives
more accurate prediction of approaching anomalies. On the other
hand,ASSP requires a considerable amount of postprocessing of data
compared to simple partitioning, which can practically work with the
sensor data itself. This is especially important in the context of LBO,
where the dynamics are fast, and real-time detection and control
requires fast computation. The results, however, reveal that, in the
present case, both the approaches produce results that are similar both
qualitatively and quantitatively. The general trend shows that, at first,
the anomaly measure increases sharply but, as LBO is approached,

the measure becomes nearly constant. This can be explained with a
reference to Fig. 5. As the equivalence ratio decreases, the PMT
reading also decreases. Consequently, only the lowest partitions
remain populated at lower equivalence ratios, leading to similar
anomalymeasures close to blowout. For real-time prediction of LBO,
the size of data sampling window is also important because it directly
affects the processing time. A comparison of Figs. 6a and 6b shows
that the method works successfully even with a data sampling
window of 1 s.
Figure 7 shows the performance of this technique using simple

partitioning in predicting LBO for different flow rates and fuel–air
premixing. For all the flow rates and fuel inlet positions considered,
the anomaly measure becomes practically constant as LBO is
approached. Thus, this sudden decrease in the slope of the curve can
be considered a precursor of LBO. Moreover, this change in slope
occurs at Φ∕ΦLBO � 1.2–1.4. From the viewpoint of control
implementation, another significant observation is that the nearly
constant value of the anomaly measure is in the range of 1.1–1.2 for
all the cases investigated. It may here be noted that, in all these
experiments, the reference cases were taken to be close to
stoichiometric.
Figure 8 shows the corresponding results withASSP. It is observed

that the qualitative behavior is identical with Fig. 7 although
quantitative variation exists. Because simple partitioning involves
less computation, it is recommended in the present work. The results
of both Figs. 7 and 8 indicate that the technique is versatile enough for
wide levels of premixing. This is in contrast with themethods of LBO
detection in published literature, which is shown to work primarily
for premixed flames only.
The LBO limit widely varies with the extent of premixing.

Consequently, the proximity of the reference state from the LBO limit
also changes considerably. Because it has been observed earlier that

Fig. 7 Variation of anomaly measure with simple partitioning, Qair = a) 150, b) 175, and c) 200 lpm.
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Fig. 8 Variation of anomaly measure with ASSP, Qair = a) 150, b) 175, and c) 200 lpm.
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Fig. 9 Variation of anomalymeasure calculatedby simple partitioningwithΦ∕ΦLBO for different port position (Lfuel) and airflowQair: a) port 1, b) port
3, and c) port 5.
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the results are sensitive to the choice of reference state, the range of
Φ∕ΦLBO where the anomaly curve changes slope and predicts LBO
can be considerably reduced by choosing the reference state at a fixed
proximity to the LBO threshold.Moreover, the high value ofϕ∕ϕLBO

where the slope changes in Figs. 7 and 8 would lead to operating the
combustor at a much richer equivalence ratio than desired. This can
be remedied by choosing the reference state at approximately
ϕ∕ϕLBO � 1.25. Figure 9 shows the anomaly measures with simple
partitioning for such reference states. It is observed that the change of
slope takes place at a much lower equivalence ratio at about
ϕ∕ϕLBO � 1.1–1.15. This allows operation at a much leaner limit.
However, this approach requires at least an approximate prior
knowledge of ϕLBO.

D. Implications for Real-Time Control

The results presented in the earlier subsections could lead to a
strategy for real-time control schemes for mitigating LBO. The
efficacy of real-time control would be enhanced by reducing the
extent of online computation, which can be achieved by computing a
significant part of the present algorithm a priori. For example, the
generation of the partition and the symbolic state vector for the
reference condition can be computed offline prior to commencement
of the online operation. Thus, the only part of the algorithm that
requires online computation is the generation of the symbolic state at
the actual operating point and computation of the anomaly measure.
The simple partitioning involves only segregating the data into proper
bins and, hence, is recommended as a suitable technique for
controllingLBO.Data samplingwindowcan be optimally selected as
a tradeoff between accuracy and computation time [14].

V. Conclusions

A novel strategy for detection of lean blowout (LBO) based on
optical sensor data was developed and applied in a laboratory-scale
swirl-stabilized dump combustor. The strategy involved generation
of symbolic time series. In symbolic time series analysis, the time
series data from the photomultiplier tube (PMT) is converted to a
symbol string by partitioning the measurement range of the PMT
sensor into a finite number of cells and assigning a symbol to each
cell, depending on the cell in which its measured value falls. Symbol
blocks of length D are treated as the states of the probabilistic finite
state machine (PFSA). In this paper, the symbol block parameter for
PFSA states is selected to be D � 1. However, in general, larger
values of the integer parameterD (i.e.,D > 1) might be necessary to
capture the long-time-scale information on combustion fluctuations
near LBO. In that case, the number of states would increase with
the upper limit of jΣjD, where jΣj is the cardinality of the alphabetΣ in
the PFSA; consequently, tools of state splitting and state merging
might be necessary to reduce the number of states in the PFSA
construction. Thus, an important topic of future research is investiga-
tion of combustion processes with a relatively long memory,
where the PFSA may have to be constructed from symbol strings
with D > 1 by making use of the tools of state splitting and state
merging.
The array of the probabilities of occurrence of data in each partition

cell constitutes the state vector for a given state. Keeping the
partitions fixed, the state vectors are generated for different states and
compared with those of a reference state, away from LBO. The
difference between the vectors constitutes an anomaly measure. This
measure is used as an LBO detection metric.
In the present work, the time series data of CH� chemilu-

minescence is used to generate a symbolic time series using
simple partitioning and analytic signal space partitioning, both based
onmaximumentropy approach such that all states are equiprobable at
the reference state. The results show that both simple and analytic
signal space partitioning give similar results. The anomaly measure
first increases rapidly as the equivalence ratio is decreased but
approaches a constant value as LBO is approached. This behavior is
observed for a wide range of flow rates and air–fuel premixing. Thus,
the change in slope can be used for LBO detection at various levels of
premixing, making the method more versatile than those commonly

reported in literaturemainly for premixed flames.Moreover, in all the
cases, the anomaly measure approaches a constant value within a
narrow range for different levels of premixing. The combustor can be
operated at a closer proximity to LBO by choosing the reference state
at a fixed distance from LBO.

Appendix: Algorithms for Anomaly Detection

The algorithms for anomaly detection using simple partitioning
and analytic signal space partitioning (ASSP) are given next.
The simple partitioning algorithm is described as follows:
Generation of partitions

1) Generate time series data of length N, x�i� for the nominal state.
2) Select number of states N1 and assign one symbol to each partition

(alphabet).
3) Arrange the time series data in ascending order and store the sorted series as
x1�i�.

4) Assign N2 � b NN1
c where b c denotes nearest lower integer.

5) Assign partition�1� � x1�1� and partition�i� 1� � x1�i � N2�
for 1 ≤ i ≤ �N1 − 1� and partition�N1 � 1� � x1�N�.

Construction of state probability vector for nominal state

1) Initialize state probability vector p�i� � 0 for 1 ≤ i ≤ N1

2) for j � 1: N
for i � 1: N1

if x�j� ≥ partition�i� and x�j� < partition�i� 1�,
p�i� � p�i� � 1

end
end

end
3) p0�i� � p�i�∕N for 1 ≤ i ≤ N1

Construction of state probability vector for other states

1) Generate time series data of length N 0, x�i� for the non-nominal state.
2) Initialize state probability vector p�i� � 0 for 1 ≤ i ≤ N1

for j � 1: N 0

for i � 1: N1

if x�j� ≥ partition�i� and x�j� < partition�i� 1�,
p�i� � p�i� � 1

end
end

end
3) p1�i� � p�i�∕N for 1 ≤ i ≤ N1

Use the same partitions for all the states.
Determination of anomaly measure

1) Compute anomaly measure,M � Cos−1 p0 ·p1
kp0kkp1k

The ASSP algorithm is described as follows:
Generation of partitions

1) Generate time series data of length N, x�i� for the nominal state.
2) Generate complex analytic function using Hilbert transform
x0�i� � Hilbert�x�i��.

3) Arrange abs�x0� and angle�x0� in ascending orders and store the sorted
series as x1�i� and x2�i�.

4) Select number of statesN11 andN12 for x1 and x2, respectively, and assign
one symbol to each partition (alphabet).

5) Assign N21 � b NN1
c and N22 � b NN2

c where b c denotes the nearest lower
integer.

6) Assign partition1�1� � x1�1� and partition1�i� 1� � x1�i � N2�
for 1 ≤ i ≤ �N11 − 1� and partition�N11 � 1� � x1�N�.

7) Assign partition2�1� � x2�1� and partition2�i� 1� � x2�i � N2�
for 1 ≤ i ≤ �N12 − 1� and partition�N12 � 1� � x2�N�.

Construction of state probability vector for nominal state

1) Initialize state probability vector p�i� � 0 for 1 ≤ i ≤ N11 �N12

2) for j � 1: N
for i1 � 1: N11 − 1
for i2 � 1: N12 − 1

if x1�j� ≥ partition1�i1� and x1�j� < partition1�i1� 1� and
x2�j� ≥ partition2�i2� and x2�j� < partition2�i2� 1�
p��i1 − 1� � �N12 − 1� � i2� � p��i1 − 1� � �N12 − 1� � i2� � 1
end
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Table (Continued.)

end
end

3) p0�i� � p�i�∕N for 1 ≤ i ≤ N11 �N12

Construction of state probability vector for other states

1) Generate time series data of length N 0, x�i� for the non-nominal state.
2) Generate complex analytic function using Hilbert transform
x0�i� � Hilbert�x�i��.
3) Arrange abs�x0� and angle�x0� in ascending orders and store the sorted
series as x1�i� and x2�i�.
4) Initialize state probability vector p�i� � 0 for 1 ≤ i ≤ N11 � N12

5) for j � 1: N 0

for i1 � 1: N11 − 1
for i2 � 1: N12 − 1

if x1�j� ≥ partition1�i1� and x1�j� < partition1�i1� 1� and
x2�j� ≥ partition2�i2� and x2�j� < partition2�i2� 1�

p��i1 − 1� � �N12 − 1� � i2� � p��i1 − 1� � �N12 − 1� � i2� � 1
end

end
end

6) p1�i� � p�i�∕N 0 for 1 ≤ i ≤ N11 �N12

Use the same partitions for all the states.
Determination of Anomaly Measure

8) Compute anomaly measureM � Cos−1 p0 ·p1
kp0kkp1k
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