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a b s t r a c t

Probabilistic finite state automata (PFSA) have been widely used as an analysis tool for

signal representation and modeling of physical systems. This paper presents a new

method to address these issues by bringing in the notion of vector-space formulation of

symbolic systems in the setting of PFSA. In this context, a link is established between the

formal language theory and functional analysis by defining an inner product space over a

class of stochastic regular languages, represented by PFSA models that are constructed

from finite-length symbol sequences. The norm induced by the inner product is

interpreted as a measure of the information contained in the respective PFSA. Numerical

examples are presented to illustrate the computational steps in the proposed method

and to demonstrate model order reduction via orthogonal projection from a general

Hilbert space of PFSA onto a (closed) Markov subspace that belongs to a class of shifts of

finite type. These concepts are validated by analyzing time series of ultrasonic signals,

collected from an experimental apparatus, for fatigue damage detection in polycrystal-

line alloys.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Symbolization-based techniques have been developed
for probabilistic analysis of physical signals in terms of
stochastic regular languages as a convenient framework to
achieve a common treatment of heterogeneous models of
dynamical systems [1]. Examples are signal representation
and modeling in dynamical systems [2] and pattern
recognition [3,4]. The key idea here is that, by partitioning
the (possibly pre-processed) time series or image data
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observed from the underlying physical system, a string of
symbols are generated to construct a finite-state stochastic
language model.

In the context of symbolic systems, construction of
several probabilistic finite state models has been reported
in the literature [5,6]; examples are probabilistic finite
state automata (PFSA), hidden Markov models (HMM)
[7–9], stochastic regular grammars [10], and Markov
chains [11]. In this paper, PFSA models have been used
to serve as recognizers of stochastic regular languages.
A major advantage of using a PFSA model is that, in
general, it is easier to learn from a dynamical system
[12–14] although PFSA may not be as powerful as other
models like HMM [5]. The definition of PFSA (see
Definition 2.1), adopted in this paper, is slightly different
from that used in [5]. In the sequel, the notion of PFSA is
as stated in Definition 2.1.

Symbolic models are abstract descriptions of continu-
ously varying systems in which symbols represent aggre-
gates of continuous states. During the last one and a half
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Nomenclature

þ addition operation of PFSA [Definition 4.3]
� addition of two probability measures on BS

[Definition 3.1]
� scalar multiplication operation of PFSA over R

[Definition 4.3]
� scalar multiplication of a probability measure

on BS over R [Definition 3.2]
� synchronous composition of PFSA [Definition

2.4]
/ � , �S inner product of two probability measures

[Definition 3.4]
/ � , �SA inner product of two PFSA [Definition 4.4]
� equivalence relation in the space of probabil-

ity measures [Definition 3.3]
d state transition function of PFSA [Definition

2.1]
d% extended state transition function of PFSA

[Remark 2.2]
X equivalence relation in the space of PFSA

[Definition 4.2]
m normalized finite measure defined on the

s-algebra 2S%

[Section 3.2]
P state transition matrix of PFSA [Definition 2.2]
~P probability morph matrix of PFSA [Definition

2.1]
~p probability morph function of PFSA

[Definition 2.1]
9S9 cardinality of the alphabet S [Section 2]
So the set of all strictly infinite-length strings on

S [Section 2]

S% the set of all finite-length strings on S
[Section 2]

BS smallest s-algebra on the set fxSo where x 2

S%

g [Definition 2.5]
Dd space of D-Markov machines with depth d

[Example 7.2]
F inverse of the map H [Definition 4.3]
G quotient space of PFSA over the alphabet S

[Equation (18)]
~G the set of all strictly positive PFSA [Definition

2.3]
H isomorphism between the vector spaces

ðG,þ ,�Þ and ðQf , � ,�Þ [Eq. (18)]
~H mapping from the space ~G to the space Qf

[Definition 2.8]
mn function mapping from 2S%

to ½0,1� [Definition
6.1]

N p probabilistic Nerode equivalence on ðSo,BS,pÞ
[Definition 2.7]

Np the set of all Nerode equivalence classes on S%

induced by Np [Remark 2.5]
PG2

orthogonal projection from G1DG onto G2DG
[Example 7.2]

P the set of all strictly positive probability
measures on BS [Definition 2.6]

Q quotient space P= � [Definition 3.3]
Qf subspace of Q with a finite number of Nerode

equivalence classes [Definition 4.1]
UðGÞ uniformizer of PFSA G [Definition 6.2]
½x�p the set of all equivalent strings of x for a

measure p [Proposition 4.1]
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decade, there has been a growing interest in the use of
symbolic models as an analytical tool for signal represen-
tation, modeling, pattern recognition, and decision and
control of interacting dynamical systems (e.g., planning
and navigation of autonomous robots in uncertain envir-
onments, fault detection in aerospace systems, and mili-
tary intelligence, surveillance and reconnaissance).
In these systems, the notion of classic objectives (e.g.,
robust stability and performance) is augmented with
system-level issues and their hardware and software
implementation on remotely located computational plat-
forms that are interconnected over a communication
network. Along this line, several researchers (e.g., [2])
have reported theoretical work that includes stability
analysis and synthesis of both linear and nonlinear
time-delayed control systems that may be subjected to
disturbances.

In general, it would be desirable to be able to treat
PFSA models or stochastic languages as vectors in a
Hilbert space for applications in pattern recognition and
information fusion. For example, in pattern recognition, if
PFSA are used as feature vectors (e.g., [3,15]), then the
lack of a precise mathematical structure on the feature
space (i.e., the space of PFSA in this case) may not allow
direct usage of classical signal processing and machine
learning tools [16]. Similarly, for enhancement of infor-
mation fusion [17] and information source localization [18]
tools that are often computation-intensive, PFSA models
are capable of efficiently compressing the information
derived from sensor time series [19]; but the problem is
how to fuse these heterogeneous sources of compressed
information. An example is to construct a linear combina-
tion of PFSA models with larger weights assigned to more
reliable ones to increase the signal-to-noise ratio if the
sensors are of the same type. For heterogeneous sources,
one may project the PFSA models onto a subspace defined
over a common alphabet for correlation analysis. It is
also useful to perform model order reduction on PFSA
models for higher level fusion, such as situation assess-
ment. Nevertheless mathematical operations on PFSA are
required for such feature level fusion.

The theory of how to algebraically manipulate two PFSA
has not been explored except for a few cases. Ray [20]
introduced the notion of vector space construction for finite
state automata over the finite field GFð2Þ. Barfoot and
D’Leuterio [21] proposed an algebraic construction for
control of stochastic systems, where the algebra is defined
for m�n stochastic matrices, which is only directly applic-
able to PFSA of the same structure (see Definition 4.5).
Recently, Wen and Ray [22] introduced the concept of a
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vector space of PFSA over the real field R, and Adenis et al.
[23] used an algebraic approach to construct an inner-
product space structure over R for a class of PFSA. Appar-
ently, no other prior work exists for rigorously defining a
mathematical structure in the vector space of PFSA.

The major contribution of this paper is the construc-
tion of a mathematical structure in the space of PFSA
using a measure-theoretic approach as a generalization to
the algebraic approach proposed by Adenis et al. [23].
Along this line, a vector space is constructed over R for a
class of stochastic languages, which can be realized as a
set of dynamic models represented by PFSA that are
generated from finite-length symbol sequences derived
from time series of physical signals. A family of inner
products is introduced on this vector space, which is
configurable through a user-selectable measure. A vector
subspace is also constructed by a quotient map on PFSA,
where the algebraic and topological operations in the
vector space are physically interpreted; especially, an
analogy is drawn between the norm induced from the
inner product and the entropy rate in an information-
theoretic setting [24]. Potential applications of this for-
mulation are discussed through examples of model order
reduction. The proposed analytical approach has the
following potential benefits.
1.
 Development of a mathematical structure for solving
problems of signal representation, modeling and ana-
lysis (e.g., model identification, model order reduction,
and system performance analysis) in the setting of
symbolic dynamics [25].
2.
 Establishment of a link between the theories of formal
languages [26] and functional analysis [27] to enhance
the tools of solving signal analysis problems in physi-
cal processes.

The paper is organized in eight sections. Section 2
presents the preliminary concepts and notations in the
formal language theory and related previous work. Section
3 uses a measure-theoretic approach to construct the vector
space by defining algebraic operations (e.g., vector addition
and scalar multiplication) and introduces a family of inner
products to provide a topological structure in a general
setting of stochastic languages. Section 4 focuses on sto-
chastic regular languages, where an isometric isomorphism
is defined between the vector space of stochastic regular
languages and the vector space of PFSA. Section 5 presents
physical interpretations of the algebraic operations and their
applications to system modeling via stochastic regular
languages. Section 6 addresses the choice and computation
of the measure m for constructing the inner product. Section
7 presents two numerical examples to illustrate the under-
lying concepts and to demonstrate model order reduction
based on experimental data. The paper is concluded with
recommendations for future work in Section 8.
2. Preliminaries

In the formal language theory [26], an alphabet S is a
(non-empty finite) set of symbols, i.e., the alphabet’s
cardinality 9S9 2 N, the set of positive integers. A string
x over S is a finite-length sequence of symbols in S. The
length of a string x, denoted by 9x9, represents the number
of symbols in x. The Kleene closure of S, denoted by S%, is
the set of all finite-length strings of symbols including the
null string E that has zero length, i.e., 9E9¼ 0; cardinality of
S% is @0 (countably infinite). The notation Sþ means the
subset of S% without E, i.e., Sþ ¼S%

\fEg; and So repre-
sents the set of all strictly infinite-length strings over S,
where the cardinality of So is uncountable.

2.1. PFSA model for symbolic systems

This subsection introduces basic notations and defini-
tions related to PFSA models that are used in the sequel.

Definition 2.1 (PFSA). A probabilistic finite state auto-
maton (PFSA) is a tuple G¼ ðQ ,S,d,q0, ~pÞ, where
	
 Q is a (non-empty) finite set, called the set of states;

	
 S is a (non-empty) finite set, called the input alphabet;

	
 d : Q �S-Q is the state transition function;

	
 q0 2 Q is the start state;

	
 ~p : Q � S-½0,1� is the probability morph function and

satisfies the condition
P

s2S ~pðq,sÞ ¼ 1 for all q 2 Q .
The probability morph function ~p is represented in a
matrix form as ~P with the element ~P ij9 ~pðqi,sjÞ.

Note: All states in a PFSA are reachable from the start
state. Otherwise, any non-reachable states are removed
from Q.

Remark 2.1. The PFSA model defined in this paper is
slightly different from that in [5], as mentioned earlier in
Section 1. One of the major differences is that, in this
paper, the PFSA models do not have final (or terminating)
state probabilities. The rationale is that the statistical
behavior of dynamical systems under consideration is
quasi-static in nature.

Remark 2.2. The transition map d naturally induces an
extended transition function d% : Q � S%-Q such that
d%

ðq,EÞ ¼ q and d%

ðq,xsÞ ¼ dðd%

ðq,xÞ,sÞ 8q 2 Q , 8x 2 S%,
and 8s 2 S.

Remark 2.3. The symbol sequence fskg
1
k ¼ 1 of a PFSA can

be realized from the respective rows of the morph matrix
as follows:
1.
 generate a symbol s 2 S according to the probability
mass function ~pðqk
1,�Þ, where k40;
2.
 cause the kth state transition to generate qk ¼ dðqk
1,skÞ;

3.
 increment k and go to Step 1.

Note that, in general, the realizations of individual
PFSA are different, but all such symbol sequences share
the same statistics specified by the morph function ~p.

Remark 2.4. In PFSA, a state transition is modeled via
occurrence of symbols; in contrast, in an uncontrolled
Markov chain, a state transition is not specified. Therefore,
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it is usually difficult to make sense of comparing or
combining two Markov chains unless the meaning of the
states are related. However, as long as two PFSA are
constructed over the same alphabet, their underlying
semantics can be compared and combined.

Definition 2.2 (State transition probability matrix). For

every PFSA G¼ ðQ ,S,d,q0, ~pÞ, there is an associated sto-

chastic matrix P 2 R9Q9�9Q9, called the state transition
(probability) matrix, which is defined as follows:

Pjk ¼
X

s:dðqj ,sÞ ¼ qk

~pðqj,sÞ ð1Þ

Every PFSA G induces a Markov chain fXn,Xn 2 Qg with
the state transition probability matrix P.

Given a finite-length symbol sequence S over an
alphabet S, there exist several PFSA construction algo-
rithms (e.g., [13,14]) to discover an underlying PFSA
model G. These algorithms start with identifying the
structure of G, i.e., ðQ ,S,d,q0Þ. Then, a 9Q9� 9S9 count
matrix C is introduced with each of its elements initi-
alized to 1. Let Nij denote the number of times a symbol sj

is emanated from the state qi by observation of the
symbol sequence S. In this way, the estimated morph
matrix for the PFSA G is computed as

~P ij9
CijP9S9

k ¼ 1 Cik

¼
1þNij

9S9þ
P9S9

k ¼ 1 Nik

ð2Þ

The rationale for initializing all elements of C to 1 is that if
a state qi is never encountered by observing the finitely
many symbols in the sequence S, then there should be no
preference to any specific symbols emanating from qi.
Therefore, it is logical to initialize ~P ij ¼ 1=9S9, i.e., the
uniform distribution for the ith row of the morph matrix
~P. (It is shown later in the paper that a morph matrix

with all elements equal to 1=9S9 serves as the zero
element in the vector space and is referred to as the
symbolic white noise.) The count matrix C is updated as
more symbols are observed from the symbol sequence S.
In this setting, the ith row ~P i of the morph matrix is a
random vector that follows Dirichlet distribution [28] as
described below:

f ~P i
ðhÞ ¼

1

BðCiÞ

Y9S9
j ¼ 1

ðyijÞ
Cij
1

ð3Þ

where hi9½yi1 � � �yi9S9� is a realization of ~P i and the
normalization constant is

BðCiÞ9

Q9S9
j ¼ 1 GðCijÞ

Gð
P9S9

j ¼ 1 CijÞ
ð4Þ

where Gð	Þ is the standard gamma function. It is noted
that the Dirichlet distribution approaches the
d-distribution as more and more symbols are observed
[29]. This procedure guarantees that each element of the
morph matrix ~P is strictly positive for any finite-length
symbol sequence S.

Definition 2.3 (Set of strictly positive PFSA). The set of
strictly positive PFSA is defined as

~G9fðQ ,S,d,q0, ~pÞ : ~pðq,sÞ40 8q 2 Q and 8s 2 Sg

Definition 2.4 (Synchronous composition). The synchro-
nous composition of two PFSA Gi9ðQi,S,d,qðiÞ0 , ~p iÞ 2 G,
i¼ 1,2, denoted by � : ~G � ~G- ~G, is defined as

G1 � G2 ¼ ðQ1 � Q2,S,d0,ðqð1Þ0 ,qð2Þ0 Þ, ~p
0
Þ

8qi 2 Q1, 8qj 2 Q2, 8s 2 S

where

d0ððqi,qjÞ,sÞ ¼ ðd1ðqi,sÞ,d2ðqj,sÞÞ
and ~p 0ððqi,qjÞ,sÞ ¼ ~p1ðqi,sÞ

The synchronous composition is not commutative
since only the morph matrix of the first PFSA is used in
the composition. Essentially, synchronous composition
breaks down each state in the first PFSA into a set of
‘‘sub-states‘‘ according to the structure of the second PFSA
but still keeps the output probability distribution the
same inside each set of ‘‘sub-states’’.

2.2. Probability measures

This subsection develops the notion of probability
measures by introducing the following definitions.

Definition 2.5 (Probability measure space). [30] :Given an
alphabet S, the set BS92S%

So is the s-algebra generated
by the set fL : L¼ xSo and x 2 S%

g. For brevity, the prob-
ability pðxSo

Þ is denoted as pðxÞ 8x 2 S% in the sequel.
That is, p(x) is the probability of occurrence of all
infinitely long strings with x as a prefix. In particular,
pðEÞ is the probability of the entire set So and thus it
follows that pðEÞ ¼ 1 by the probability axioms.

Definition 2.6 (Space P of probability measures). Given
the probability measure space ðSo,BS,pÞ, let P denote the
space of strictly positive probability measures on BS,
namely, P9fp : BS-½0,1� and such that pðxÞ40,8x 2 S%

g.
Thus, each element of P assigns a non-zero probability to
any finite string.

Definition 2.7 (Probabilistic Nerode equivalence [30]). Given
an alphabet S, any two strings x,y 2 S% are said to satisfy
the probabilistic Nerode relation N p on a probability
space ðSo,BS,pÞ, denoted by xN py, if exactly one of the
following two conditions is true:
1.
 pðxÞ ¼ 0 and pðyÞ ¼ 0;

2.
 8s 2 S%, pðxsÞ=pðxÞ ¼ pðysÞ=pðyÞ for pðxÞa0 and pðyÞa0.

The probabilistic Nerode relation is a right-invariant
equivalence relation [30] that is referred to as probabil-
istic Nerode equivalence in the sequel. The probabilistic
Nerode equivalence N p of a measure induces a partition
Np of the set S%.
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2.3. Relationship between PFSA and probability measures

This subsection presents the relationship between
PFSA and probability measures.

Definition 2.8 (Mapping of PFSA [30]). Following
Definition 2.3, let G9ðQ ,S,d,q0, ~pÞ 2 ~G be a strictly posi-
tive PFSA and the associated probability measure be
p 2 P. Then, a map ~H : ~G-P is defined as ~HðGÞ ¼ p such
that

pðxÞ ¼ ~pðq0,s1Þ
Yr
1

k ¼ 1

~pðd%

ðq0,s1 � � �skÞ,skþ1Þ ð5Þ

where the symbol string x¼ s1 � � �sr 2 S% and r¼ 9x9 2N.
Then, the measure p is said to be encoded by the PFSA G,
or the PFSA G encodes the probability measure p.

Fig. 1 shows an example of a PFSA G over S¼ fa,bg and
its encoded probability measure p¼ ~HðGÞ.

Proposition 2.1 (Synchronous composition [30]). Following

Definition2.4, if G1,G2 2
~G, then

HðG1 � G2Þ ¼HðG1Þ and HðG2 � G1Þ ¼HðG2Þ

Proposition 2.1, whose proof is given in [30], implies
that any two PFSA over the same alphabet can be
transformed into a common structure without affecting
their encoding measures by applying synchronous
composition.
Remark 2.5. The map ~H : ~G-P in Definition 2.8 may not
be injective. In other words, there may exist different
PFSA realizations that encode the same probability
measure on BS due to two reasons: (i) non-minimal
Fig. 1. PFSA G (with q0 as the initial state) and its encoded measure p.

(a) G, (b) p¼ ~HðGÞ.

Fig. 2. Different PFSA realizations of
realization, and (ii) state relabeling. For example, in
Fig. 2, all three PFSA essentially encode the same measure
on BS in spite of their different representations. The PFSA
on the right is a non-minimal realization of the left top
one since the states q1 and q2 are the same. They can be
combined to obtain the left top PFSA in Fig. 2. The left two
PFSA are exactly the same with the exception that the
states are relabeled; and this relabeling does not affect the
underlying encoded measure.

The probabilistic Nerode equivalence of a measure p

induces a partition Np of the set S% (see Definition 2.7).
Thus, the measure p can be encoded by a PFSA if and only
if the partition Np is finite [30]. However, all measures in
P cannot be encoded by PFSA, because a PFSA only
encodes measures that belong to finite probabilistic
Nerode equivalence classes. Therefore, the map ~H :
~G-P in Definition 2.8 may not be surjective.

Since the range of the map ~H is the space of measures
with finite Nerode equivalence classes [30], restricting P
to the range of ~H yields the right inverse of ~H, denoted by
~F, i.e., ~HJ ~F ¼ I. Then, it follows that if a measure p(x)
exists for each x 2 S%, then the minimal representation of
a PFSA G (e.g., see Fig. 1) can be generated by Algorithm 1.

Algorithm 1. Construction of PFSA G from the probability
measure p associated with the measurable space ðSo,BSÞ.

Input: ðSo ,BS ,pÞ such that Np is of finite index n 2 N;

Output: G;

Let Q ¼ fqj : j 2 f1, . . . ,ngg be the set of equivalence classes of the

relation Np ;

Set the initial state of G as qo 2 Q such that the null string E belongs

to the equivalence class qo;

for each qj 2 Q do

Pick an arbitrary string x 2 qj;

for each s 2 S do
if xs 2 qk then

Set dðqj ,sÞ ¼ qk;

Set ~pðqj ,sÞ ¼
pðxsÞ
pðxÞ ;

end if
end for

end for

3. Inner product space of probability measures

This section first presents the algebraic construction of
a vector space over the real field R. Then, an inner product
the same probability measure.
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is defined on this vector space to build a topological
structure. Such a structure is useful for applications like
model identification and model order reduction [31].
3.1. Construction of the vector space

This subsection constructs a vector space of PFSA over
the real field R. To this end, the notions of algebraic
operations of vector addition and scalar multiplication are
introduced below.

Definition 3.1 (Vector addition). The addition operation� :
P � P-P is defined by p39p1 � p2 8p1,p2 2 P such that
(1)
 p3ðEÞ ¼ 1.

(2)
 8x 2 S% and s 2 S,

p3ðxsÞ
p3ðxÞ

¼
p1ðxsÞp2ðxsÞP
a2Sp1ðxaÞp2ðxaÞ

ð6Þ
(3)
 For all countable pairwise disjoint sets fxiS
o
g,

p3ð
S

ifxiS
o
gÞ ¼

P
ip3ðxiÞ.
In the above definition, it follows that p3 is a prob-
ability measure on P, because 8x 2 S%,

X
s2S

p3ðxsÞ ¼
X
s2S

p1ðxsÞp2ðxsÞP
a2Sp1ðxaÞp2ðxaÞ

 !
p3ðxÞ ¼ p3ðxÞ

Proposition 3.1. The algebraic system ðP,�Þ forms an

Abelian group.

Proof. The closure and commutativity properties follow
directly from Definition 3.1. Associativity, existence of
identity, and existence of the inverse element are
established below.
	 Associativity:
It suffices to show ðp1 � p2Þ � p3 ¼ p1 � ðp2 � p3Þ 8x 2

S% and 8s 2 S.

ððp1 � p2Þ � p3ÞðxsÞ
ððp1 � p2Þ � p3ÞðxÞ

¼
ðp1 � p2ÞðxsÞp3ðxsÞP
b2Sðp1 � p2ÞðxbÞp3ðxbÞ

¼
p1ðxsÞp2ðxsÞp3ðxsÞP
b2Sp1ðxbÞp2ðxbÞp3ðxbÞ

¼
p1ðxsÞðp2 � p3ÞðxsÞP
b2Sp1ðxbÞðp2 � p3ÞðxbÞ

¼
ðp1 � ðp2 � p3ÞÞðxsÞ
ðp1 � ðp2 � p3ÞÞðxÞ

	 Existence and uniqueness of the identity:
Let a probability measure e of symbol strings be defined

such that eðxÞ9ð1=9S9Þ9x9 8x, where 9x9 denotes the length
of a string x 2 S%. It follows that 8s 2 S, eðxsÞ=eðxÞ ¼
1=9S9. Then, for a measure p 2 P and 8s 2 S,

ðp� eÞðxsÞ
ðp� eÞðxÞ

¼
pðxsÞeðxsÞP
a2SpðxaÞeðxaÞ ¼

pðxsÞ 1

9S9
1

9S9
P

a2SpðxaÞ

¼
pðxsÞ
pðxÞ

The above relations imply that p� e ¼ e � p¼ p by
Definition 3.1 and by commutativity. Therefore, e is the
identity of the monoid ðP,�Þ.

	 Existence and uniqueness of an inverse:
8p 2 P, 8x 2 S% and 8s 2 S, let a probability measure

p be defined as

ð
pÞðEÞ91 and
ð
pÞðxsÞ
ð
pÞðxÞ

9
p
1ðxsÞP
a2Sp
1ðxaÞ

where p
1ðxsÞ ¼ 1=pðxsÞ. Then, it follows that

ðp� ð
pÞÞðxsÞ
ðp� ð
pÞÞðxÞ

¼
pðxsÞð
pÞðxsÞP
a2SpðxaÞð
pÞðxaÞ

¼

pðxsÞp
1ðxsÞP
b2Sp
1ðxbÞ

P
a2SpðxaÞ p
1ðxaÞP

b2Sp
1ðxbÞ

¼
1

9S9

The above expression yields p� ð
pÞ ¼ e and hence ðP,�Þ
is an Abelian group. &

Remark 3.1. In the sequel, the zero-element e of the
Abelian group ðP,�Þ is denoted as the symbolic white noise.
For the symbolic white noise, every string of the same
length has equal probability of occurrence and the knowl-
edge of the history does not provide any information for
predicting the future.

Next the scalar multiplication operation is defined
over the real field R.

Definition 3.2 (Scalar multiplication). The operation of
scalar multiplication � : R� P-P is defined as follows:
(1)
 ðk� pÞðEÞ ¼ 1;

(2)
 8x 2 S% and s 2 S
ðk� pÞðxsÞ
ðk� pÞðxÞ

¼
pkðxsÞP
a2SpkðxaÞ

ð7Þ
(3)
 for all countable pairwise disjoint sets fxiS
o
g,

ðk� pÞð
S

ifxiS
o
gÞ ¼

P
iðk� pÞðxiÞ
where pkðxsÞ ¼ ½pðxsÞ�k, k 2 R, p 2 P, x 2 S%, and s 2 S.

Remark 3.2. It follows from Definitions 3.1 and 3.2 that
k� p is a valid probability measure on P. By convention, it
is asserted that the scalar multiplication operation has a
higher precedence than the addition operation. For exam-
ple, k� p1 � p2 implies ðk� p1Þ � p2.

Theorem 3.1 (Vector space construction). ðP, � ,�Þ defines

a vector space over the real field R.
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Proof. Let p,p1,p2 2 P; k,k1,k2 2 R; x 2 S%; and s 2 S.
The following equalities are checked:
	 To show that k� p1 � k� p2 ¼ k� ðp1� p2Þ.

ðk� p1 � k� p2ÞðxsÞ
ðk� p1 � k� p2ÞðxÞ

¼
ðk� p1ÞðxsÞ � ðk� p2ÞðxsÞ

Sa2S½ðk� p1ÞðxaÞ � ðk� p2ÞðxaÞ�

¼
pk

1ðxsÞpk
2ðxsÞP

a2Spk
1ðxaÞpk

2ðxaÞ
¼

ðp1 � p2Þ
k
ðxsÞP

a2Sðp1 � p2Þ
k
ðxaÞ

¼
ðk� ðp1 � p2ÞÞðxsÞ
ðk� ðp1 � p2ÞÞðxÞ

	 To show that ðk1þk2Þ � p¼ k1 � p� k2 � p.

ððk1þk2Þ � pÞðxsÞ
ððk1þk2Þ � pÞðxÞ

¼
pk1þk2 ðxsÞP
a2Spk1þk2 ðxaÞ

¼

pk1 ðxsÞP
g2Spk1 ðxgÞ

pk2 ðxsÞP
g2Spk2 ðxgÞ

P
a2S

pk1 ðxaÞP
g2Spk1 ðxgÞ

pk2 ðxaÞP
g2Spk2 ðxgÞ

¼
ðk1 � pÞðxsÞ � ðk2 � pÞðxsÞP
a2S½ðk1 � pÞðxaÞ � ðk2 � pÞðxaÞ�

¼
ðk1 � p� k2 � pÞðxsÞ
ðk1 � p� k2 � pÞðxÞ

	 To show that k1 � ðk2 � pÞ ¼ ðk1k2Þ � p.

ðk1 � ðk2 � pÞÞðxsÞ
ðk1 � ðk2 � pÞÞðxÞ

¼
ðk2 � pÞk1 ðxsÞP
a2Sðk2 � pÞk1 ðxaÞ

¼

pk2 ðxsÞP
b2Spk2 ðxbÞ

 !k1

P
a2S

pk2 ðxaÞP
b2Spk2 ðxbÞ

 !k1

¼
pk1k2 ðxsÞP
b2Spk1k2 ðxbÞ

¼
ððk1k2Þ � pÞðxsÞ
ððk1k2Þ � pÞðxÞ

	 The equality 1� p¼ p follows from Definition 3.2. &

3.2. Construction of a family of inner products

In order to build a framework for generating a family
of inner products, a measure space ðS%,2S%

,mÞ is con-
structed, where the finite measure m : 2S%

-½0,1� has the
following properties.
	
 mðS%

Þ ¼ 1;S P

	
 mð 1k ¼ 1fxkgÞ ¼

1

k ¼ 1 mðfxkgÞ where xk 2 S
%.
The second condition in the above statement implies
that a non-negative measure is assigned to each singleton
string set and the null string E, which are considered to be
mutually disjoint measurable sets. Thus, for any collection
of strings, L 2 2S%

and mðLÞ ¼
P

x2LmðfxgÞ.
Given a probability measure p, its conditional version

is expressed as pðs9xÞ9pðxsÞ=pðxÞ for all s 2 S and x 2 S%,
which is another representation of the measure p. This is
so because one representation can be recovered from the
other by the chain rule of conditional probability.
The conditional version pð�9�Þ : S� S%-½0,1� is treated
as a (9S9-dimensional) vector-valued function for any given
string x 2 S%, which is denoted as pð�9xÞ : S%-½0,1�9S9 such
that, for every x 2 S%,

pð�9xÞ ¼ ½pðs19xÞ,pðs29xÞ, . . . ,pðs9S99xÞ� ð8Þ

with the constraint
P9S9

j ¼ 1 pðsj9xÞ ¼ 1.

Definition 3.3 (Probability equivalence). Given p1,p2 2 P,
an equivalence relation � is defined as: p1 � p2 if
p1ð�9xÞ ¼ p2ð�9xÞ, m-almost everywhere (a.e.), i.e., if
mðfx 2 S% : p1ð�9xÞap2ð�9xÞgÞ ¼ 0. In this context, a quotient
space is defined as Q¼P= � based on the equivalence
relation � .

Remark 3.3. If the following condition is imposed on the
measure m:

mðfxgÞ40 8x 2 S%

ð9Þ

then the condition m-a:e: in Definition 3.3 becomes
m-everywhere because, in this case, mðfxgÞamðfygÞ 8xay.
That is, the relation p1 � p2 becomes equivalent to p1 ¼ p2.
In other words, Q¼P provided that Eq. (9) holds.

Proposition 3.2. ðQ, � ,�Þ is a well-defined vector subspace

of P.

Proof. It follows from Definitions 3.1 and 3.2 that, for all
s 2 S, x 2 S% and k 2 R,

ðp1 � p2Þðs9xÞ ¼
p1ðs9xÞp2ðs9xÞP
a2Sp1ða9xÞp2ða9xÞ

ð10Þ

ðk� p1Þðs9xÞ ¼
pk

1ðs9xÞP
a2Spk

1ða9xÞ
ð11Þ

Both the above equations are consistent under the
equivalence relation � , i.e., p1 � p01 and p2 � p02 implies
ðp1 � p2Þ � ðp

0
1 � p02Þ and ðk� p1Þ � ðk� p01Þ. &

Definition 3.4 (Inner product). On the vector space Q
over the real field R, a function / � , �S : Q�Q-R is
defined as

/p1,p2S9
1

2

X
si ,sj2S

X
x2S%

log
p1ðxsiÞ

p1ðxsjÞ
log

p2ðxsiÞ

p2ðxsjÞ
mðfxgÞ ð12Þ

The rationale for using the format log p1ðxsiÞ=p1ðxsjÞ,
instead of log p1ðxsiÞ, in the definition of inner product in
Eq. (12) is that the normalization constants (i.e., the
denominators in Eqs. (6) and (7)) may not be the same
for all strings x 2 S%. That is why a division is required to
eliminate the effect of this normalization constant.

Remark 3.4. In Eq. (12), the inner summation over x 2 S%

could be recognized as an integration over S% with the
measure m. In this case, the integration degenerates to a
summation since S% is countable.

Theorem 3.2 (Pre-Hilbert space). In Definition3.4, the

function / � , �S : Q�Q-R is an inner product. That is,
ðQ, � , � ,/ � , �SÞ forms a pre-Hilbert space over the real

field R.
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Proof. While the symmetry property, i.e., /p1,p2S¼
/p2,p1S, follows directly from Definition 3.4,
positive-definiteness is established as follows:

/p,pS¼
1

2

X
si ,sj2S

X
x2S%

log
pðxsiÞ

pðxsjÞ

� �2

mðfxgÞZ0 ð13Þ

If /p,pS¼ 0, non-negativity of each term in the summation
mandates that, for m-almost every x 2 S%,
log pðxsiÞ=pðxsjÞ ¼ 0. Therefore, pðsi9xÞ ¼ 1=9S9 8si 2 S,
and it follows that p� e.

The linearity property is established as follows:

/a� p1,p2S¼
1

2

X
si ,sj2S

X
x2S%

log
ða� p1ÞðxsiÞ

ða� p1ÞðxsjÞ
log

p2ðxsiÞ

p2ðxsjÞ
mðfxgÞ

¼
1

2

X
si ,sj2S

X
x2S%

log
pa

1ðxsiÞ

pa
1ðxsjÞ

log
p2ðxsiÞ

p2ðxsjÞ
mðfxgÞ

¼
a

2

X
si ,sj2S

X
x2S%

log
p1ðxsiÞ

p1ðxsjÞ
log

p2ðxsiÞ

p2ðxsjÞ
mðfxgÞ

¼ a/p1,p2S ð14Þ

and

/p1 � p2,p3S¼
1

2

X
si ,sj2S

X
x2S%

log
ðp1 � p2ÞðxsiÞ

ðp1 � p2ÞðxsjÞ
log

p3ðxsiÞ

p3ðxsjÞ
mðfxgÞ

¼
1

2

X
si ,sj2S

X
x2S%

log
p1ðxsiÞp2ðxsiÞ

p1ðxsjÞp2ðxsjÞ
log

p3ðxsiÞ

p3ðxsjÞ
mðfxgÞ

¼
1

2

X
si ,sj2S

X
x2S%

log
p1ðxsiÞ

p1ðxsjÞ
þ log

p2ðxsiÞ

p2ðxsjÞ

� �

� log
p3ðxsiÞ

p3ðxsjÞ
mðfxgÞ

¼/p1,p3Sþ/p2,p3S ð15Þ

This completes the proof. &

Remark 3.5. Since the inner product / � , �S is defined on
the real field R, the inner product space Q is a collection
of finite-norm probability measures, where the norm is
induced by the inner product. The measure m in Eq. (12) is
user-selectable such that any valid choice of the finite
measure m yields an inner product.

3.3. An alternative norm

The inner product in Definition 3.4 is constructed with
the motivation of orthogonal projection. In addition to the
norm induced by the inner product, there exist many
other norms for this vector space P. For example, the
following supremum norm is suitable for construction of
a Banach space.

Definition 3.5 (Subspace P1). The subspace P1 of the
vector space P is defined as

P1 ¼ p 2 P : sup
x2S%

log
pðxtmaxÞ

pðxtminÞ

� �
o1

� �
ð16Þ

where pðxtmaxÞ9maxt2SfpðxtÞg and pðxtminÞ9mint2SfpðxtÞg.
Theorem 3.3 (Supremum norm). A function J � J1 :

P1-½0,1Þ defined as

JpJ1 ¼ sup
x2S%

log
pðxtmaxÞ

pðxtminÞ

� �
ð17Þ

is a norm on the vector space P1.

Proof. Let p 2 P1. The following properties are established:
	
 Strict positivity: Since pðxtmaxÞ=pðxtminÞZ1, it follows
that JpJ1Z0. Clearly for the zero element e,
eðxtmaxÞ=eðxtminÞ ¼ 1 for all x 2 S% and thus JeJ1 ¼ 0.
Conversely, if JpJ1 ¼ 0 then it forces that
pðxtmaxÞ=pðxtminÞ ¼ 1 for all x 2 S%.
It follows that pðxtÞ=pðxÞ ¼ 1=9S9 for all x 2 S% and
t 2 S. Indeed, p¼ e.

	
 Homogeneity: A non-negative real k preserves the

order of pðxtÞ for any fixed x and a negative real k

reverses the order. Therefore, for kZ0,

Jk� pJ1 ¼ sup
x2S%

log
ðk� pÞðxtmaxÞ

ðk� pÞðxtminÞ

� �

¼ sup
x2S%

log
pðxtmaxÞ

pðxtminÞ

� �k

¼ 9k9 � JpJ1

and for ko0,

Jk� pJ1 ¼ sup
x2S%

log
ðk� pÞðxtmaxÞ

ðk� pÞðxtminÞ

� �

¼ sup
x2S%

log
pðxtminÞ

pðxtmaxÞ

� �k

¼ sup
x2S%

log
pðxtmaxÞ

pðxtminÞ

� �
k

¼ 9k9 � JpJ1
	
 Triangular inequality:

Jp1 � p2J1 ¼ sup
x2S%

log
ðp1 � p2ÞðxtmaxÞ

ðp1 � p2ÞðxtminÞ

� �

r sup
x,y2S%

log
p1ðxtmaxÞp2ðytmaxÞ

p1ðxtminÞp2ðytminÞ

� �
¼ Jp1J1þJp2J1

Therefore, Jp1 � p2J1rðJp1J1þJp2J1Þ.

The proof is now complete. &

Remark 3.6. The supremum norm J � J1 has a simpler
mathematical structure than the inner product / � , �S,
primarily because the equivalence relation in Definition
3.3 and the construction of the quotient space are not
needed. Also, J � J1 does not depend on the measure m,
which is suitable for some applications which may not
require an inner product.

4. Stochastic regular languages and PFSA

Although probability measures over the s-algebra BS
adequately describe stochastic languages, PFSA representa-
tions are more compact and usable for modeling of
stochastic regular languages in many applications.
However, the mapping ~H : ~G-P in Definition 2.8, which



Y. Wen et al. / Signal Processing 93 (2013) 2594–26112602
was originally introduced in the prior work [30], is neither an
injection nor a surjection (see Remark 2.5). In this section, an
isometric isomorphism is constructed between a quotient
space of ~G and a subspace of a quotient space of P.

Definition 4.1 (Subspace Qf ). The set Qf is defined to be a
subset of the quotient space Q (see Definition 3.3) having
measures with a finite number of Nerode equivalence
classes, i.e., Qf9fp 2 Q : 9Np9o1g.

The following proposition establishes that Qf is a
vector subspace of Q.

Proposition 4.1. Let p1,p2 2 Qf and x,y 2 S%. Then, follow-

ing conditions hold:
(1)
 if z1,z2 2 ½x�p1
\ ½y�p2

, then z1Np1�p2
z2;
(2)
 if z1,z2 2 ½x�p1
and k 2 R, then z1Nk�p1

z2
where ½x�p9fz 2 S
% : xNpzg.

Proof. Let un ¼ t1t2 . . . tn 2 S% and p3 ¼ p1 � p2 where
ti 2 S. To prove the first identity of the proposition, it
will be shown that p3ðz1unÞ=p3ðz1Þ ¼ p3ðz2unÞ=p3ðz2Þ for
any un 2 S%. This is achieved by the method of induction:

p3ðz1u1Þ

p3ðz1Þ
¼

p1ðz1u1Þp2ðz1u1ÞP
a2Sp1ðz1aÞp2ðz1aÞ

¼

p1ðz1u1Þ

p1ðz1Þ

p2ðz1u1Þ

p2ðz1ÞP
a2S

p1ðz1aÞ
p1ðz1Þ

p2ðz1aÞ
p2ðz1Þ

¼

p1ðz2u1Þ

p1ðz2Þ

p2ðz2u1Þ

p2ðz2ÞP
a2S

p1ðz2aÞ
p1ðz2Þ

p2ðz2aÞ
p2ðz2Þ

¼
p3ðz2u1Þ

p3ðz2Þ

For the inductive step,

p3ðz1unþ1Þ

p3ðz1Þ
¼

p3ðz1unÞ

p3ðz1Þ

p3ðz1unþ1Þ

p3ðz1unÞ

¼
p3ðz2unÞ

p3ðz2Þ

p3ðz2unþ1Þ

p3ðz2unÞ
¼

p3ðz2unþ1Þ

p3ðz2Þ

The second identity of the proposition can be derived in
the same way. &

Definition 4.2 (PFSA equivalence). Following Definition
3.3, two PFSA ~G and G are said to be equivalent if
~Hð ~GÞ � ~HðGÞ. The equivalence class of G is denoted as:
XðGÞ9f ~G 2 G : ~Hð ~GÞ � ~HðGÞg. Defining a quotient space
G9 ~G=X, the associated quotient map is obtained as

H : G
!Qf ð18Þ

The quotient map H in Eq. (18) is injective by this
quotient space construction and it is also surjective by the
application of probabilistic Nerode equivalence (see
Remark 2.5). Hence, H is a bijection and the associated
inverse map is denoted by F, i.e., F9H
1.

Remark 4.1. Given a PFSA G¼ ðQ ,S,d,q0, ~pÞ 2 G, each
state q 2 Q is a Nerode equivalence class S 2 NHðGÞ, where
NHðGÞ is the set of all Nerode equivalence classes of the
measure HðGÞ (see Remark 2.5). By Algorithm 1, it follows
that

~pðq,sÞ ¼ pðs9SÞ9pðxsÞ
pðxÞ

, 8x 2 S ð19Þ

So far the vector space ðQf , � ,�Þ is established. New
operations of vector addition and scalar multiplication are
introduced on the quotient space G by use of the bijection
H and its inverse F.

Definition 4.3 (Vector space G). Let G1,G2 2 G and k 2 R.
Then,
	
 The addition þ : G� G-G is defined as a homomorph-
ism
G1þG2 ¼ FðHðG1Þ �HðG2ÞÞ
	
 The (scalar) multiplication � : R� G-G is defined as a
homomorphism
k � G1 ¼ Fðk� ðHðG1ÞÞ

Since F9H
1, it follows from Definition 4.3 that
HðG1þG2Þ ¼HðG1Þ �HðG2Þ and Hðk � G1Þ ¼ k�HðG1Þ.
Therefore, the bijection H is linear and hence H is an
isomorphism between the vector spaces ðQf , � ,�Þ and
ðG,þ ,�Þ. Similarly, the map H is used to define the inner
product on the space G in terms of / � , �S.

Definition 4.4 (Isometric isomorphism between G and Qf ).
The inner product / � , �SA : G� G-R is defined as

/G1,G2SA ¼/HðG1Þ,HðG2ÞS ð20Þ

Consequently, the quotient map H : G
!Qf in Eq. (18)
becomes an isometric isomorphism between the two pre-
Hilbert spaces.

The pre-Hilbert space of PFSA may not be complete
because a Cauchy sequence of PFSA may converge to a
machine with infinite number of states. In many applica-
tions, however, PFSA models could be restricted to finite-
dimensional subspaces if completeness is a crucial issue
(e.g., projection in a Hilbert space setting). Section 7
presents such an example.

In the sequel, it is understood that any operations, defined
for probability measures or PFSA, could be translated into
the other space using this isomorphism.

Since Definitions 4.3 and 4.4 do not specify an efficient
way of computing the algebraic operations in terms of
PFSA, the notion of structural similarity is introduced to
address this issue.

Definition 4.5 (Structural similarity). Two PFSA Gi9ðQi,
S,di,q

i
0, ~p iÞ 2 G, i¼1,2, are said to have the same structure if

Q1 ¼Q2, q1
0 ¼ q2

0 and d1ðq,sÞ ¼ d2ðq,sÞ 8q 2 Q1 and 8s 2 S.

From the prospective of a graphical representation, if
two PFSA of the same structure have the same underlying
graph connectivity, then they may differ only in the arc
probabilities on the graph as seen in the following
proposition.

Proposition 4.2. Let two PFSA G1,G2 2 G be structurally

similar in sense of Definition4.5, i.e., Gi ¼ ðQ ,S,d,q0, ~p iÞ,
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i 2 f1,2g. If G9ðQ ,S,d,q0, ~pÞ, where

~pðq,sÞ ¼
~p1ðq,sÞ ~p2ðq,sÞP
a2S ~p1ðq,aÞ ~p2ðq,aÞ

ð21Þ

then G 2 G and G¼ G1þG2.

Proof. Let pi ¼HðGiÞ, i 2 f1,2g. Since G1 and G2 are struc-
turally similar, it follows that

piðxsÞ
piðxÞ

¼ ~p iðd
%

ðq0,xÞ,sÞ ¼ ~p iðq,sÞ, i 2 f1,2g

for all strings x in state q 2 Q and all s 2 S. By Definitions
3.1 and 2.8, it follows that

ðp1 � p2ÞðxsÞ
ðp1 � p2ÞðxÞ

¼
p1ðxsÞp2ðxsÞP
a2Sp1ðxaÞp2ðxaÞ

¼

p1ðxsÞp2ðxsÞ
p1ðxÞp2ðxÞP

a2S
p1ðxaÞp2ðxaÞ

p1ðxÞp2ðxÞ

¼
~p1ðq,sÞ ~p2ðq,sÞP
a2S ~p1ðq,aÞ ~p2ðq,aÞ

¼ ~pðq,sÞ

This implies that p1 � p2 ¼HðG1þG2Þ ¼HðGÞ and the
proof is complete. &

If G1 and G2 have different structures, then synchro-
nous composition can be used to perform the structural
transform first. Following Propositions 4.2 and 2.1, the
addition operation on any two PFSA G1 and G2 is per-
formed as

G1þG2 ¼ ðG1 � G2ÞþðG2 � G1Þ ð22Þ

Proposition 4.3. Given a PFSA G9ðQ ,S,d,q0, ~pÞ 2 G and

k 2 R, if ~G9ðQ ,S,d,q0, ~p 0Þ, where

~p 0ðq,sÞ ¼ ð ~pðq,sÞÞkP
a2Sð ~pðq,aÞÞk

ð23Þ

then ~G ¼ k � G.

Proof. By Proposition 4.1, the scalar multiplication by k

does not change the structure of G and therefore the state
transition function d and the initial state q0 also remain
unchanged. Denoting p¼HðGÞ, it follows from Eq. (5) that

pðxsÞ
pðxÞ

¼ ~pðd%

ðq0,xÞ,sÞ ¼ ~pðq,sÞ

for all strings x in the state q 2 Q and all s 2 S. By
Definition 3.2, it follows that

ðk� pÞðxsÞ
ðk� pÞðxÞ

¼
pkðxsÞP
a2SpkðxaÞ

¼

pkðxsÞ
pkðxÞP

a2S
pkðxaÞ
pkðxÞ

¼
ð ~pðq,sÞÞkP
a2Sð ~pðq,aÞÞk

¼ ~p 0ðq,sÞ

Therefore, k� p¼Hð ~GÞ. &
The following result is obtained by using Algorithm 1
for computing the inner product / � , �SA in Definition 4.4
as described below.

Proposition 4.4. Let Gi ¼ ðQ ,S,d,q0, ~p iÞ 2 G, i¼1,2. The

following inner product is computed as

/G1,G2SA ¼
1

2

X
si ,sj2S

X
q2Q

log
~p1ðq,siÞ

~p1ðq,sjÞ
log

~p2ðq,siÞ

~p2ðq,sjÞ
mðqÞ

ð24Þ

The computation of the measure mðqÞ is addressed later
in Section 6. Note that, if G1 and G2 do not have the same
structure, the synchronous composition should be used to
compute the inner product via

/G1,G2SA ¼/G1 � G2,G2 � G1SA ð25Þ

The corresponding norm is defined by this inner product as

JGJA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/G,GSA

p
ð26Þ

5. Interpretation of algebraic operations

This section interprets the significance of the algebraic
operations in the vector space of the probability measures
and presents an analogy of the norm J � J to the entropy
rate in the setting of information theory [24]. In Definition
3.1, the � operation of vector addition is performed via
elementwise multiplication of the morph matrix.
In Definition 3.2, the � operation of scalar multiplication
is computed elementwise by taking the power of the
morph matrix. These properties are largely similar to
those of the logarithm function. Therefore, by taking
logarithms, these operations could be made analogous
to the usual vector addition and scalar multiplication in
the Euclidean space; however, they are not exactly the
same due to the additional step of normalization. This
analogy suggests the potential use of this technique for
sensor data analysis. For example, let a sensor signal be
contaminated with a multiplicative noise in the Euclidean
space. By taking logarithm of the sensor reading and by
appropriate scaling, a linear representation could be
obtained in the form of additive noise in the G-domain
(see Definition 4.2).

The zero vector e, called symbolic white noise, in the
vector space corresponds to the uniform distribution on
BS and is perfectly encoded by the PFSA E 2 G that is
expressed as

E¼ FðeÞ ¼ ffqg,S,d,fqg, ~pg

where dðq,qÞ ¼ q and ~pðq,sÞ ¼ 1=9S9,8s 2 S. Every string
of the same length has equal probability of occurrence in
the PFSA E that has only one state, where the symbols are
independent of each other and have equal probability of
occurrence. The knowledge of the history does not pro-
vide any information for predicting the future of any
symbol sequence generated by E. Thus, E is viewed as a
semantic model for symbolic white noise in a dynamical
system, because no additional information is provided
through vector addition of E to any PFSA.



Fig. 3. Scalar multiplication of the one-state PFSA G.
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Multiplication by a scalar k relates to reshaping
the probability distribution p over the alphabet BS.
The effects of k 2 R on an i.i.d. process G are illustrated
in Fig. 3, where S¼ fa,bg. As k is increased from 0 to þ1,
the string with the highest probability (e.g., the string bb

in the extreme left bottom and the string aa in the
extreme right bottom of Fig. 3) stands out in the histo-
gram and the distribution p approaches the delta distri-
bution. Similarly, as k is decreased from þ1 to 0, the
distribution p becomes more and more flat and finally
reaches e that is the uniform distribution at k¼0. This
behavior of a positive scalar k is analogous to the inverse
temperature b in the setting of Statistical Mechanics [32].
In the latter case, b¼ 0 yields the uniform distribution
over the energy states while the distribution tends to a
delta distribution as b approaches infinity. In contrast to a
positive k, a negative k favors the least probable string in
G (e.g., the string bb in Fig. 3). It inverts the distribution p

in the sense that a string originally with large probability
now has small probability of occurring and vice versa.
Similarly, another delta distribution is achieved as
k-
1. The constructed vector space G is related to the
Euclidean space as explained below.

To interpret the possible meaning of the norm J � JA in
Eq. (26), the entropy rate of a PFSA G is given in the
setting of Information Theory [24] as

hðGÞ ¼

X
q2Q

YðqÞ
X
s2S

~pðq,sÞlog ~pðq,sÞ
" #

ð27Þ

while, in the present formulation, the norm of the PFSA G

is induced by the inner product in Eq. (24) as

JGJA9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
q2Q

mðqÞ
2

X
si ,sj2S

log ~pðq,siÞ
 log ~pðq,sjÞ
� �2

2
4

3
5

vuuut ð28Þ

Eqs. (27) and (28) have structural similarity in the
sense that both are represented as a weighted sum over
the states. However, two major differences are as follows:
1.
 For each state q 2 Q , a weight mðqÞ is used in Eq. (28)
instead of the stationary probability YðqÞ in Eq. (27).
2.
 The root mean square (rms) difference of logarithm of
the probabilities of a pair of symbols conditioned on
each state is used instead of the expectation of loga-
rithm of a symbol’s conditional probability. This rms
value in the norm is a consequence of the inner
product.
uncertainty, the ideal deterministic symbolic system should
have the maximum norm while the completely random
In contrast to the entropy rate, which is a measure of the

process should have a zero norm. For an independent and
identically distributed (i.i.d.) process, namely, a single-state
PFSA G, over the binary alphabet S¼ fa,bg, let the prob-
abilities of generating the symbol a and the symbol b be y
and ð1
yÞ, respectively, with y 2 ð0,1Þ.

Fig. 4(a) compares ð1
hðGÞÞ (solid line) and
ð2=pÞ tan
1ðJGJAÞ (dashed line), where the entropy rate
h(G) ranges in ½0,1� and the range of the norm JGJA is
normalized from ½0,1Þ to ½0,1� by using the arc tangent
function. It is observed that the profiles for ð1
hðGÞÞ and
ð2=pÞ tan
1ðJGJAÞ are qualitatively similar. Hence, by
drawing an analogy, it is possible to interpret the norm
in Eq. (28) as a measure of certainty or information
contained in the PFSA G.

Let two processes be represented by PFSA ~G and G,
whose probability mass functions ~P and P, respectively.
Then, a diversity between ~G and G is defined as the
Kullback–Leibler (K–L) divergence [24] of ~P and P:

Dð ~GJGÞ9
X

i

~PðiÞlog
~PðiÞ

PðiÞ
ð29Þ

Setting the PFSA ~G to the symbolic white noise E,
Fig. 4(b) compares a distance rðE,GÞ9JE
GJA (dash-dot
line), the K–L divergence DðEJGÞ (solid line), and the K–L
divergence DðGJEÞ (dashed line) versus the probability
parameter y. It is seen that these three curves are
qualitatively very similar as all of them approach infinity
when y approaches 0 or 1 and achieve the minimum at 0
if y¼ 0:5. An advantage of the proposed measure is that r
is a metric but K–L divergence is not.

With the inner product defined in Eq. (24), the correla-
tion g : G� G-½
1,1� between two PFSA is defined in
terms of the normalized inner product as

gðG1,G2Þ ¼
/G1,G2SA

JG1JA � JG2JA
: ð30Þ

If the vectors G1 and G2 are perfectly negatively
correlated, i.e., G1 ¼
G2, then their vector addition is
exactly the zero vector e (i.e., the symbolic white noise)
that represents the uniform distribution.

6. Computation of the measure l

Computation in Eq. (12) depends on the choice of the
measure m. The measure of all strings in the equivalence



Fig. 4. Metric comparison: norm and information-theoretic metrics. (a) 1
hðGÞ and JGJA of an i.i.d. process G, (b) comparison of rðE,G2Þ, DðEJG2Þ, and

DðG2JEÞ versus parameter a with E being the Symbolic white noise.
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class represented by a state q 2 Q of a PFSA is obtained as
mðqÞ ¼

P
x2qmðfxgÞ. In general, for a countable summation

over the strings, the convergence is not guaranteed. This
section presents a few common choices of m and explains
how to compute them.

Let 0oyo1 and let m1 and m2 be two measures
defined as follows:

m1ðfxgÞ ¼ ð1
yÞ �
y
9S9

 !9x9

ð31Þ

m2ðfxgÞ ¼ ð1
yÞ
2
�
9x9y9x9
1

9S99x9
ð32Þ

Since both measures m1 and m2 depend only on the length
of the symbol string, it implies that strings of the same length
are identical under a given measure. Accordingly, a smaller
measure is assigned to a longer string, because the prob-
ability of its occurrence is small. Both measures m1 and m2
decay exponentially as the string length 9x9 grows and the
rate is specified by the parameter y. As the parameter y is
increased, a larger number of longer strings contributes to
the inner product. However, a major difference between the
measures m1 and m2 lies in the fact that m1ðEÞ ¼ ð1
yÞa0 and
m2ðEÞ ¼ 0, where E is the null string with 9E9¼ 0. Since the
transition from the initial state q0 to itself is represented by E,
it would be logical to assign a non-zero measure m1ðEÞ if q0 is
significant in the PFSA model; alternatively, assigning
m2ðEÞ ¼ 0 puts no significance to q0. The following definitions
are introduced to compute the measures m1 and m2 for each
state of a given PFSA.

Definition 6.1 (Dependence of measure on string length).
Let the map mn : 2S%

-½0,1� be defined as

mnðLÞ9
9fx 2 L : 9x9¼ ng9

9S9n 8LDS%

ð33Þ
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Remark 6.1. The function mn(L) in Definition 6.1 is the
ratio of the number of strings of length n in the set L to the
total number of strings of length n in S%. It represents the
size of the set L in terms of strings of length n.

Definition 6.2 (Uniformizer of PFSA). Given a PFSA
G¼ ðQ ,S,d,q0, ~pÞ, the PFSA G0 is called the uniformizer of
G if G0 ¼ ðQ ,S,d,q0, ~p 0Þ, where ~p 0ðq,sÞ ¼ 1=9S9,8q 2 Q ,
8s 2 S.

The uniformizer of a PFSA G is denoted by UðGÞ, which
simply modifies the original probability morph function
to a uniform distribution over the symbols at each state.
Note that UðGÞ retains the graph connectivity of G.

Proposition 6.1 (State transition matrix for Uniformizer).
Let G¼ ðQ ,S,d,q0, ~pGÞ be a PFSA and

mn9m0ðPUðGÞ
Þ
n

ð34Þ

where mn ¼ ½mnðq1Þ,mnðq2Þ, . . . ,mnðq9Q9Þ�. Then, PUðGÞ is the

state transition matrix for the uniformizer UðGÞ, and

m0ðqÞ ¼
1 if q¼ q0

0 if qaq0

(

Proof. For any qi 2 Q and n 2 N, it follows that

9S9nþ1
mnþ1ðqiÞ ¼ 9fx 2 qi : 9x9¼ nþ1g9

¼ 9S9n
X

dðqj ,sÞ ¼ qi

mnðqjÞ

Then,

mnþ1ðqiÞ ¼
1

9S9

X
dðqj ,sÞ ¼ qi

mnðqjÞ

¼
X

dðqj ,sÞ ¼ qi

~pUðGÞ
ðqj,sÞmnðqjÞ ð35Þ

Following Definition 2.2, a matrix representation of Eq.
(35) is obtained as

mnþ1 ¼mnPUðGÞ
ð36Þ

from which Eq. (34) follows. This completes the
proof. &

Let f yðqÞ ¼
P1

i ¼ 0 miðqÞ � y
i for y 2 ð0,1Þ. Given a PFSA

G¼ ðQ ,S,d,q0, ~pÞ 2 G, it follows that if f y9½f yðq1Þ,
f yðq2Þ, . . . ,f yðq9Q9Þ�, then

f y ¼
X1
i ¼ 0

mi � y
i

ð37Þ

and an application of Eq. (34) yields

f y ¼m0

X1
i ¼ 0

ðy �PUðGÞ
Þ
i
¼m0ðI
y �PUðGÞ

Þ

1

ð38Þ

The last step is valid since Jy �PUðGÞJ1o1.

Proposition 6.2. Let G be a PFSA. Then, the following two

measures are valid. li9½miðq1Þ,miðq2Þ, . . . ,miðq9Q9Þ� where

i 2 f1,2g. Then,
(1)
 l1 ¼m0ð1
yÞðI
y �PUðGÞ
Þ

1;
(2)
 l2 ¼ ð1
yÞ
2m0ðI
y �PUðGÞ

Þ

1PUðGÞ

� ðI
y �PUðGÞ
Þ

1.
Proof.
(1)
 For any q 2 Q , we have

m1ðqÞ9
X
x2q

m1ðfxgÞ

¼
X1
k ¼ 0

ðmkðqÞ9S9
k
Þð1
yÞ �

y
9S9

 !k

¼ ð1
yÞ
X1
k ¼ 0

mkðqÞy
k
¼ ð1
yÞf yðqÞ ð39Þ

It follows from Eq. (38) that

l1 ¼m0ð1
yÞðI
y �PUðGÞ
Þ

1

ð40Þ
(2)
 Similarly for m2, it follows that

m2ðqÞ ¼
X1
k ¼ 1

ðmkðqÞ9S9
k
Þð1
yÞ2 �

9x9 � y9x9
1

9S9k

¼ ð1
yÞ2
X1
k ¼ 1

mkðqÞ � k � y
k
1
¼ ð1
yÞ2

df yðqÞ

dy
ð41Þ
df y
dy
¼

1

y2

X1
k ¼ 1

mk � k � y
kþ1

ð42Þ

Thus,

l2 ¼ ð1
yÞ
2 df y

dy
ð43Þ

Since the convergence regions of df y=dy and f y are
the same, m2 converges. The fact that dA
1=dt¼


A
1
ðdA=dtÞA
1 for an invertible matrix A (that is depen-

dent on a parameter t) leads to the following result:

l2 ¼ ð1
yÞ
2m0ðI
y �PUðGÞ

Þ

1PUðGÞ

ðI
y �PUðGÞ
Þ

1 &

ð44Þ

This section is concluded with a theorem that addresses
PFSA-based modeling of stochastic regular languages.

Theorem 6.1 (Approximation of stochastic languages). The

subspace Qf is dense in the inner product space

ðQ, � , � ,/ � , �S).

Proof. Let us consider any p 2 Q. By Remark 3.5,
it follows that

/p,pS¼
1

2

X
si ,sj2S

X
x2S%

log
pðxsiÞ

pðxsjÞ

� �2

mðfxgÞo1

This implies that the infinite tail of the above sum must
converge to zero. That is, 8e40, there exists NðeÞ 2 N such
that

SN9
1

2

X
si ,sj2S

X
9x9ZN

log
pðxsiÞ

pðxsjÞ

� �2

mðfxgÞoe

We now define another measure p0 such that

p0ðxÞ ¼
pðxÞ if 9x9rN

pðpref NðxÞÞ �
1

9S99x9
N if 9x94N

8<
:

where pref NðxÞmeans the prefix of length N of the string x.
The number of the Nerode equivalence class of p0 is at



{a}1/3

{b}2/3
{a}1/3

{b}2/3 {a}2/3

{b}1/3
{a}1/3

{b}2/3

Fig. 5. An orthonormal basis for D1 (q0 ¼ f%ag and q1 ¼ f%bg).

(a) e1, (b) e2.
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most
PN

i ¼ 0 9S9
i
þ1 since any strings of length more than

N are equivalent to each other and therefore p0 2 Q.
The difference between p and p0 is given as

ðp� ð
p0ÞÞðxÞ ¼

eðxÞ if 9x9rN

pðxÞ

9S9N
� pðpref NðxÞÞ

if 9x94N

8>><
>>:

and this implies

Jp� ð
p0ÞJ2
¼ SN oe

This proves that Qf is dense in Q. &

The implication of Theorem 6.1 is that any stochastic
language with a finite norm can be approximated as
closely as desired by a PFSA model. In other words, it is
always possible to arbitrarily reduce the modeling error
by increasing the number of states of the PFSA model.
Therefore, by restricting the symbolic system model to
PFSA, there is no significant loss of modeling power in the
sense of the metric defined on the vector space.

7. Examples for concept validation

The section presents three examples. The first and
second examples, respectively, illustrate the numerical
steps in the computation of an inner product and an
orthogonal projection from a Hilbert space of PFSA onto a
(closed) Markov subspace. Orthogonal projection provides
optimization in the Hilbert space setting, which is useful
for diverse applications in signal representation and
model identification. The third example is based on
experimental data and demonstrates the efficacy of the
proposed PFSA-based tool for model order reduction.

The space G of PFSA is not complete because a Cauchy
sequence of PFSA with an increasingly number of states
will have the limit point that is not a finite state machine
(e.g., similar to the space of polynomials). However, in
practice, a finite-dimensional subspace could be adequate
for feature extraction from symbolic sequences. For
example, finite-order D-Markov machines have been used
for anomaly detection in polycrystalline alloys [33] and in
electronic systems [14]. Since all finite-dimensional vec-
tor spaces over the real field R are guaranteed to be
complete [27], any closed finite subspace of G is a well-
defined Hilbert space. Therefore, an inner product defined
on a finite-dimensional subspace of the space G admits
orthogonal projections on closed subspaces with guaran-
teed existence and uniqueness.

Let PG2
: G1-G2 denote the orthogonal projection from

a finite-dimensional subspace G1 of the space G onto
another smaller closed subspace of G2 � G1. If fVig

n
i ¼ 1 is

an orthonormal basis for the space G2, where
n¼ dimðG2Þ 2 N, then it follows that

PG2
ðGÞ ¼

Xn

i ¼ 1

/G,ViSA � G ð45Þ

The error due to projection onto the smaller dimensional
space G2 is obtained as JG
PG2

ðGÞJA.
Finite-dimensional subspaces spanned by D-Markov

machines [14] (that belong to a class of shifts of finite
type [25]) have been used for system identification and
anomaly detection in diverse applications [14,33]. Let the
D-Markov subspace with depth d be denoted as Dd, where
d is a positive integer. The rationale for this choice is that
D-Markov machines have a clearly defined physical
meaning for each of their states and the D-Markov
algorithm is computationally efficient [19]. The objective
here is to project the original system model onto a
D-Markov machine subspace for enhancement of compu-
tational efficiency without significantly compromising the
modeling accuracy. In this formulation, D-Markov
machines are referred to those with positive morph
matrices. The underlying procedure is illustrated in the
following two examples.

Example 7.1 (Numerical computation). Let the alphabet
for the symbolic system be S¼ fa,bg. A set of orthonormal
basis vectors needs to be specified first. Since all D-Markov
machines with a specified depth d have a common struc-
ture [14], it is convenient to select those PFSA of the same
structure and having different morph matrices as a basis.
As an example, Fig. 5 shows two vectors in the D1 space,
where e1 and e2 have the same Markov structure with
d¼1. They have two states q0 ¼ f%ag (i.e., all strings ending
with the symbol a) and q1 ¼ f%bg (i.e., all strings ending
with symbol b). The inner product of e1 and e2 is computed
via Eq. (24) by using the base 2 logarithm as

/e1,e2SA ¼ log
1=3

2=3
log

2=3

1=3
mðq0Þþ log

1=3

2=3
log

1=3

2=3
mðq1Þ

¼ mðq1Þ
mðq0Þ ð46Þ

Following Eq. (32), let the measure m be chosen as m2

with the parameter y¼ 1=2. Then, Proposition 6.2 is
applied to yield

l2 ¼
mðq0Þ

mðq1Þ

" #
¼ ½1 0�ð1
yÞ2ðI
y �PUðGÞ

Þ

1

�PUðGÞ
ðI
y �PUðGÞ

Þ

1

ð47Þ

with PUðGÞ
¼ ½

1=2
1=2

1=2
1=2�. Since l2 ¼ ½

1=2
1=2� for y¼ 1=2, it follows

that /e1,e2SA ¼ 0. With this choice of the measure m, it is
also verified that Je1JA ¼ Je2JA ¼ 1. This implies that e1

and e2 form an orthonormal basis for the space D1.
In general, the dimension of the space Dd is
Kr9S9d

ð9S9
1Þ. Therefore, an orthonormal basis can be
obtained by applying the Gram–Schmidt procedure on a
linearly independent set of K vectors.

Example 7.2 (Orthogonal projection). Let the alphabet for
the symbolic system be S¼ fa,bg. Fig. 6 presents two PFSA,
G1 and G2, which are not D-Markov machines, and their
projections onto the D-Markov space D1 are PD1

ðG1Þ and
PD1
ðG2Þ, respectively. These projections are obtained from

Eq. (45) in terms of the orthonormal bases e1 and e2 (see
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Fig. 5). Two plots in Fig. 7 display the projection errors of
PFSA G1 (solid line) and PFSA G2 (dashed line) onto the
projection chain D1 � D2 � � � � � D8, respectively. It is
observed that, for both G1 and G2, the projection errors
decrease as the depth d of the D-Markov machine Dd

becomes larger. Following Theorem 6.1, it is expected that
as the depth d of Dd increases, the projection errors for both
G1 and G2 would monotonically decrease.

To numerically interpret the meaning of the projection,
a symbol sequence of length 10,000 is generated by
simulating the PFSA G1 and then the D-Markov algorithm
is applied on the symbol sequence to obtain a D-Markov
machine with depth d¼1. The resulting output is shown
in Fig. 8, which is very close to the analytically derived
projection PD1

ðG1Þ in Fig. 6(c). That is, a low-order model
captured by the D-Markov algorithm from the simulated
symbolic sequence is very close to the optimal projection
point in the proposed Hilbert space setting.
{a}0.500
{b}0.500

{b}0.200
{a}0.700

{a}0.500
{b}0.500

{b}0.30

{a}0.553

{b}0.447
{a}0.726

{b}0.274 {

Fig. 6. Projection of PFSA G1 and G2 on D1. (

Fig. 7. Projection errors of G1 and
Example 7.3 (Fatigue damage detection in polycrystalline

alloys). This example addresses the construction of a
semantic model and the associated model order reduction
based on time series of ultrasonic signals, collected from
an experimental apparatus for fatigue damage detection
in polycrystalline alloys [33].

Fig. 9(a) shows a picture of the experimental apparatus
that is built upon a special-purpose uniaxial fatigue
damage testing machine. The apparatus is instrumented
with ultrasonic flaw detectors and an optical traveling
microscope; the details of the operating procedure of the
fatigue test apparatus and its instrumentation and control
system are reported in [33]. Tests have been conducted
using center-notched 7075-T6 aluminum specimens (see
Fig. 9(b)) under a periodically varying load, where the
maximum and minimum (tensile) loads were kept con-
stant at 87 MPa and 4.85 MPa at 12.5 Hz frequency. Each
specimen is 3 mm thick and 50 mm wide, and has a slot of
{a}0.800
{b}0.30

{a}0.800

{b}0.200

0
{a}0.700

{b}0.274a}0.622

{b}0.377
{a}0.726

a) G1, (b) G2, (c) PD1
ðG1Þ, (d) PD1

ðG2Þ.

G2 on D-Markov subspaces.
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1.58 mm�4.5 mm at the center. The central notch
increases the stress concentration factor that ensures
crack initiation and propagation at the notch ends [33].
The ultrasonic sensing device is triggered at a frequency
of 5 MHz at each peak of the cyclic load. The time epochs,
at which data are collected, are chosen to be 1000 load
cycles (i.e., � 80 s) apart. At the beginning of each time
epoch, the ultrasonic data points have been collected for
50 load cycles (i.e., � 4 s) which produce a time series of
15,000 data points, i.e., 300 data points around each load
peak. It is assumed that no significant changes occur in
the fatigue crack behavior of the test specimen during the
tenure of data acquisition at a given time epoch. The
nominal condition at the time epoch t0 is chosen to be 1.0
Fig. 8. Results of D1 algorithm based on simulated data from G1.

Fig. 9. Computer-instrumented apparatus and a 7075-T6 aluminum all
kilocycles to ensure that the electro-hydraulic system of
the test apparatus had come to a steady state and that no
significant damage occurs till that point, i.e., zero damage
at the time epoch t0. The fatigue damage at subsequent
time epochs, t1,t2, . . . tk . . ., are then calculated with
respect to the nominal condition at t0. The set consists
of data collected at 56 consecutive epochs.

The time-series data set at the time epoch t0 is first
converted into a symbol sequence based on the maximum
entropy partitioning (MEP) [34] for a given symbol alphabet
size 9S9¼ 6 and this partitioning is retained for all subse-
quent epochs, t1,t2, . . . . Note that each partition segment is
associated with a unique symbol in the alphabet and each
symbol sequence characterizes the evolving fatigue damage
and is modeled via a PFSA with Q states. Then, by the MEP
property, the stationary state probability vector p0 of the
resulting probabilistic finite state automaton (PFSA) model at
the epoch t0 is uniformly distributed, i.e., p0 ¼ ð1=9Q9Þe,
where e is the 9Q9-dimensional row vector of all ones.
Starting from the initial value of zero at the epoch t0, the
fatigue damage at an epoch tk is expressed in terms of the
respective (scalar) damage divergence defined as

mk ¼ dðpk,p0Þ ð48Þ
oy specimen. (a) Experimental apparatus, (b) damaged specimen.



Fig. 10. Optical microscope images and ultrasonic time series of surface crack evolution in a 7075-T6 aluminum alloy test specimen. (a) Nominal:

1 kcycles, (b) internal damage: 23 kcycles, (c) surface crack: 34 kcycles, (d) full crack: 47 kcycles.
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where dð	,	Þ is an appropriate metric. In this study, dð	,	Þ is
chosen to be the standard Euclidean distance.

The two-dimensional (optical microscope) images of the
specimen surface and the corresponding profiles of ultrasonic
sensor outputs are, respectively, presented in the top row and
the bottom row of Fig. 10 at different time epochs, approxi-
mately at 1, 23, 34 and 47 kilocycles, to visually display the
gradual evolution of fatigue damage from the pre-selected
reference condition. Fig. 10(a) and (b) shows that no surface
crack becomes visible until � 23 kilocycles. Fig. 10(c) shows
the appearance of a crack on the image of the specimen
surface in the vicinity of 34 kilocycles while there is a small
change in the profile of the ultrasonic signal. Eventually the
amplitude of the ultrasonic signal dramatically decreases as
seen in Fig. 10(d) when the surface crack is fully developed at
47 kilocycles.

At the nominal condition of the time epoch t0 and
subsequent epochs tk with k¼ 1,2, . . ., respective PFSA
models are constructed from the collected data sets. Each
of these PFSA models has 20 states and is not restricted to
be a D-Markov machine [14]. The 20-state (non-D-Mar-
kov) PFSA models are projected onto the subspaces of
(lower dimensional) D-Markov machines with different
values of 9Q9 for model order reduction.

The D-Markov machine with D¼0 generates the space of
the single-state PFSA, because the number of PFSA states
9Q9¼ 9S9D

¼ 1. Projection onto this space is not of interest
as it yields a grossly oversimplified model. However, the
D-Markov machine with D¼1 implies that the space
consists of PFSA with 9Q9¼ 9S9, i.e., 9Q9¼ 6. Furthermore,
the measure in the construction of the inner product is
chosen to be m2 (see Eq. (32)) with y¼ 1

2. The six-state PFSA
is found to be adequate for representation of damage
divergence (see Eq. (48)) in terms of its state probability
distribution, as seen in Fig. 11 that shows a comparison of a
pair of damage evolution profiles: the plot in solid line
corresponds to the original model of 20-state PFSA and the
plot in dashed line corresponds to the projected model
of six-state PFSA. These two profiles of damage divergence
are observed to be very close to each other. It is apparent
from Fig. 11 that not only the orthogonal projection reduces
the complexity of the semantic model of the dynamical
system (i.e., the process of fatigue damage evolution) practi-
cally without compromising the performance of damage
detection, but also the reduced order model removes the
small ripples in the damage divergence profile produced by
the 20-state model.

8. Conclusions and future work

With the objective of signal representation and modeling
of interacting dynamical systems, this paper develops a
vector space model for a class of probabilistic finite state
automata (PFSA) that are constructed based on finite-length
symbol sequences derived from time series of physical
signals. The construction procedure is formulated in a
measure-theoretic setting, where the operations of vector
addition and scalar multiplication are introduced by estab-
lishing an isomorphism between the space of probability
measures and the quotient space of PFSA relative to a
specified equivalence relation. This isomorphism is made
isometric by constructing user-configurable inner products
on the respective vector spaces. Numerical examples are
presented to illustrate the computational steps of the
proposed method and to explain the operation of orthogo-
nal projection from Hilbert spaces of general PFSA onto
closed Markov subspaces that belong to a class of shifts of
finite type [25]. The concepts of vector space model and
model order reduction by orthogonal projection are vali-
dated on the experimental data. The orthogonal projection
technique in the Hilbert space of PFSA is potentially useful
for signal representation, modeling and analysis (e.g., model
identification, model order reduction, and system perfor-
mance analysis) of physical systems in a computationally
efficient manner. In this context, some of the research topics
that are envisioned to enhance the theory and applications
of symbolic system modeling, presented in this paper, are
delineated below.



Fig. 11. Evolution of damage divergence.
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(i)
 Signal representation: Systematic procedures for con-
struction of symbolic systems need to be integrated
with those for construction of Hilbert spaces of PFSA
for representation of physical signals in different
contexts.
(ii)
 Pattern classification: Systematic procedures for con-
struction of PFSA models need to be developed to
generate feature vectors for pattern classification in
physical systems.
(iii)
 Choice of the measure m for construction of the inner

product: A systematic procedure for selection of an
application-dependent m and its effects on the inner
product needs further investigation.
(iv)
 Performance and computational complexity of the

symbolic model: State merging and state splitting algo-
rithms need to be investigated toward this end.
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