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detection in aircraft gas turbine engines
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Abstract

The article addresses data-driven fault detection in commercial aircraft gas turbine engines in the framework of multi-

sensor information fusion and symbolic dynamic filtering. The hierarchical decision and control structure, adopted in this

article, involves construction of composite patterns, namely, atomic patterns extracted from single sensors, and relational

patterns representing cross-dependence between a pair of sensors. While the underlying theories are presented along

with necessary assumptions, the proposed method is validated on the NASA C-MAPSS simulation test bed of aircraft gas

turbine engines; both single-fault and multiple-fault scenarios have been investigated. Since aircraft engines undergo

natural degradation during the course of their normal operation, the issue of distinguishing between a fault and natural

degradation is also addressed.
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Introduction

Since real-time physics-based models of human-
engineered complex systems (e.g. aircraft gas turbine
engines) are usually computation-intensive, data-
driven fault diagnosis is desirable from the perspec-
tives of real-time decision and control. In this
research, a dynamic gas-path model, namely the
NASA C-MAPSS,1 has been used to serve as the
plant on the simulation test bed that generates differ-
ent sets of (simulated) sensor time series data. Data-
driven techniques for health monitoring of gas turbine
engines either use snapshot data at a time instant from
various sensors2 or a window of time series data from
selected sensor observations. The data volume is rela-
tively small for the snapshot type of data; conse-
quently, the computational expense is low. However,
just by using snapshot data, statistical changes in the
acquired information may not be adequately cap-
tured, because of possible missed detection of faults.
Although this problem could be alleviated by using a
window of time series data, it causes another problem
of handling time series due to its data volume and the
associated computational complexity; therefore, the
available data must be appropriately compressed
from the high-dimensional information space onto a
low-dimensional feature space with reduced loss of
class separability. In the previous work,3,4 the authors

proposed a nonlinear feature extraction method,
called symbolic dynamic filtering (SDF), for detection
of anomalies (i.e. deviations from the nominal condi-
tion) in dynamical systems. This method is shown to
be particularly useful for feature extraction from time
series and has been experimentally validated for real-
time execution in different applications (e.g. electronic
circuits5 and fatigue damage monitoring in polycrys-
talline alloys6). Algorithms, constructed in the SDF
setting, have been shown to yield superior perform-
ance in terms of early detection of anomalies and
robustness to measurement noise in comparison
with other existing techniques such as principal
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component analysis (PCA), neural networks (NN)
and Bayesian techniques.7 Recently, in a two-part
paper,8,9 an SDF-based algorithm for detection and
isolation of engine subsystem faults (specifically,
faults that cause efficiency degradation in engine com-
ponents) has been reported and an extension of that
work to estimate simultaneously occurring multiple
component-level faults has been presented in Sarkar
et al.10 Furthermore, an optimized feature extraction
technique has been developed in the semantic frame-
work in Sarkar et al.11 However, the patterns gener-
ated from the time series of a single sensor may not
carry sufficient information to correctly diagnose an
evolving fault. Moreover, simultaneously occurring
faults in a single subsystem or in different subsystems
may generate similar signatures as observed from a
single sensor. In this regard, a data-driven fault detec-
tion tool for aircraft engine systems should have the
capability to characterize, quantify and interpret mul-
tiple sensor outputs.

Sensor information fusion for an aircraft engine is
challenging. First of all, an aircraft engine system has
sensors with different modalities (e.g. pressure, tem-
perature, speed and acceleration), which renders data-
level information fusion to be difficult due to the
inherent scaling problem in sensors of different
modality. On the other hand, decision level fusion
generally requires an in-depth understanding of the
physical system and its failure signatures in different
sensor observations. In the literature, Dempster-
Shafer evidence theory has been applied for engine
fault diagnosis;12 similarly, the concept of Bayesian
belief networks has been used for fault diagnosis in
turbofan engines.13 Both techniques belong to the
class of decision fusion at an upper level of hierarchy.
Among other data-driven approaches, neural network
(NN)-based techniques14 are very popular. In a life
estimation technique for aircraft actuators,15 an NN
has been used for mapping different flight regimes for
in-flight aircraft engine fault diagnosis. A hybrid data-
driven method involving NN and genetic algorithm
(GA) was proposed in Kobayashi and Simon.16 A
regression-based approach was used for detecting
anomalies in aircraft performance during cruise
flight.17

One of the main aspects of the symbolic dynamic
filtering (SDF)-based method, adopted in this article,
is semantic representation of sensor data, irrespective
of modality and other sensor-specific characteristics,
where the patterns are represented by probabilistic
finite state automata (PFSA). This approach facili-
tates feature-level fusion of non-homogeneous sensors
and possibly other forms of information (e.g. pilot’s
experience and results of other case studies as seman-
tic information); however, this article focuses on
sensor fusion for fault detection in aircraft gas turbine
engines. The fusion algorithms are derived based on a
semantic framework for feature extraction and pattern
classification. To handle a large volume of data in real

time, a hierarchical framework for information fusion
is proposed that progressively leads from machine
representations of observed data to fault classifica-
tion. Quantitative values of cross-dependence between
different pairs of sensor observations are used in the
fusion algorithm to reduce loss of information.

Deterioration in engine performance usually occurs
due to two reasons: (i) natural deterioration, i.e. grad-
ual degradation of engine components due to wear
and usage, and (ii) relatively more rapid faults, i.e.
abrupt deterioration of turbo machineries due to
anticipated events. Therefore, an effective fault detec-
tion scheme must be able to distinguish between the
faults and usual gradual degradation of a component;
this is necessary to reduce the false alarm rate. This
article attempts to address this issue by normal
degradation/fault class assignment within the general
framework of data-driven fault detection. In addition,
the usage of semantic sensor fusion leads to: (i) devel-
opment of a hierarchical decision engine, and (ii) for-
mulation of an optimal sensing system strategy for
fault detection in gas turbine engines.

The article is organized in five sections including
the present one. Section ‘Description of the
C-MAPSS simulation test bed and test scenarios’
describes the C-MAPSS test bed.1 Section ‘Semantic
framework for multi-sensor data interpretation and
fusion’ explains the hierarchical framework of multi-
sensor data interpretation and fusion. Section ‘Results
and discussion’ presents the results of case studies
to validate the proposed method on the C-MAPSS
test bed. Finally, the article is summarized and con-
cluded in the final section with recommendations of
future work.

Description of the C-MAPSS simulation
test bed and test scenarios

This section presents the C-MAPSS test bed and
simulates two test scenarios. While Scenario I
addresses the problem of distinguishing a fault from
natural degradation in a single component, Scenario
II addresses the problem of simultaneous faults in
multiple-component faults. The C-MAPSS simulation
test bed1 was developed at NASA for a typical
commercial-scale two-spool turbofan engine and its
control system. Figure 1 shows the schematic diagram
of a commercial aircraft gas turbine engine used in the
C-MAPSS simulation test bed.

The engine under consideration produces a thrust
of approximately 400,000 N and is designed for
operation at altitude (A) from the sea level (i.e. 0 m)
up to 12,200 m, Mach number (M) from 0 to 0.90,
and temperatures from approximately �50 �C to
þ50 �C. The throttle resolving angle (TRA) can be
set to any value in the range between 0� at the min-
imum power level and 100� at the maximum power
level. The gas turbine engine system consists of five
major rotating components, namely, fan (F), low
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pressure compressor (LPC), high pressure compressor
(HPC), high pressure turbine (HPT), and low pressure
turbine (LPT), as seen in Figure 1. Apart from the
rotating components, three actuators are modeled in
the simulation test bed, namely, Variable Stator Vane
(VSV), Variable Bleed Valve (VBV), and Fuel Pump
(FP) that controls the fuel flow rate (Wf).

Given the inputs of TRA, A and M, the inter-
actively controlled component models in the simula-
tion test bed compute nonlinear dynamics of real-time

turbofan engine operation. A gain-scheduled control
system is incorporated in the engine system, which
consists of speed controllers and limit regulators for
engine components.

Out of the different types of sensors (e.g. pressure,
temperature and shaft speed) used in the C-MAPSS
simulation test bed, Table 1 lists those sensors that are
commonly adopted in the Instrumentation and
Control system of commercial aircraft engines, as
seen in Figure 2.

In the current configuration of the C-MAPSS
simulation test bed, there are 13 component level
health parameter inputs, namely, efficiency param-
eters ( ), flow parameters (�) and pressure ratio modi-
fiers, that simulate the effects of faults and/or
degradation in the engine components. Ten, out of
these 13 health parameters, are selected to modify effi-
ciency (�) and flow (�) that are defined16 as:

. � X Ratio of actual enthalpy and ideal enthalpy
changes.

. � X Ratio of rotor tip and axial fluid flow
velocities.

For the engine’s five rotating components F, LPC,
HPC, LPT and HPT, the five pairs (i.e. ten) respective
efficiency and flow health parameters are: ( F, �F),
( LPC, �LPC), ( HPC, �HPC), ( HPT, �HPT) and
( LPT, �LPT). An engine component C is considered
to be in the nominal condition if both  C and �C are
equal to 1 and fault can be injected in the component
C by reducing the values of  C and/or �C. For exam-
ple,  HPC¼ 0.98 signifies a 2% relative loss in effi-
ciency of HPC. Actuator faults can also be injected
through the scale shift parameters for the three actu-
ators, VSV, VBV and Wf.

Scenario I: Case study of natural deterioration
versus faults in a single component

In the context of gas path health monitoring of air-
craft engines, two types of changes in engine

Figure 2. Schematic diagram of the C-MAPSS engine model with sensors.

LPC: low pressure compressor; HPC: high pressure compressor; LPT: low pressure turbine; HPT: high pressure turbine.

Figure 1. Gas turbine engine schematic.1

LPC: low pressure compressor; HPC: high pressure compres-

sor; LPT: low pressure turbine; HPT: high pressure turbine.

Table 1. Sensor suite for the engine system.

Sensors Description

T24 LPC exit/ HPC inlet temperature

Ps30 HPC exit static pressure

T48 HPT exit temperature

P50 LPT exit pressure

Nf Fan spool speed

Nc Core spool speed

LPC: low pressure compressor; HPC: high pressure compressor; HPT:

high pressure turbine; LPT: low pressure turbine.
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performance are considered: (i) natural deterioration,
i.e. gradual degradation of engine components due
to wear and usage and (ii) rapid faults, i.e. relatively
abrupt degradation of turbo-machinery compo-
nent(s). The fault detection method identifies the
health status of an engine component at a particular
time epoch, where faults need to be distinguished
from the usual gradual degradation of a component.
However, to achieve this goal, the health status must
be monitored over several such epochs. Given a tem-
poral profile of the health status identified by the
current method, the task is to distinguish faults
from the natural degradation. Typically, the health
of an engine deteriorates at a relatively slow rate for
natural degradation while a fault is the cause of a
relatively more rapid change in the health status
or degradation at a comparatively faster rate.
Therefore, the gas path health management system
needs to be designed to perform both functions: (1)
estimation and trend monitoring of all engine health
parameters over the lifetime of the engine; and (2)
detection of rapid performance changes to isolate the
root cause. In this section, representative simulation
studies are performed to validate the capability of
the proposed methodology of distinguishing the
normal deterioration from faults for a given usage
information. Moreover, the performance of the
entire (typical) sensor suite is examined over the
spectrum of faults in the engine components and
actuators. Such an investigation is expected to poten-
tially lead to construction of an optimal sensor suite
and a hierarchical procedure of fault detection and
isolation.

In the case study, the engines under consideration
are assumed to have undergone 1000 flight cycles.
Therefore, components of a nominal engine of this
type may degrade to some extent from the ideal con-
dition. A stochastic damage model has been con-
structed and incorporated in the C-MAPSS
Transient Test-case Generator18 (developed by
NASA), based on the experimental data for trending
the natural deterioration of the engine components.
The plots in Figure 3 are typical outcomes of the
model, which show the natural degradation profiles
of efficiency health parameters for the five rotating
components of the engine (similar profiles can be gen-
erated for the flow health parameters). For example,
the performance of an engine after K cycles of flight
could be considered as nominal if the changes in
health parameters are within the maximum degrad-
ation limits calculated by the model after K cycles.
Hence, for the nominal data samples of engine oper-
ation, health parameters of the rotating components
are assumed to be within the prescribed ranges in a
uniformly random fashion. Three actuators, Variable
Stator Vane (VSV), Variable Bleed Valve (VBV) and
Fuel Flow Rate (Wf), are assumed to be in ideal
health conditions for a nominally operating engine
after 1000 cycles.

Although injection of rapid/abrupt faults is
described in the transient test-case generator code,18

it is explained in this article for completeness. For all
five rotating components, faults exhibit random mag-
nitudes (Fm) and a random health parameter ratio
(HPR). While Fm and HPR directly determines the
change in efficiency health parameter  (C) of a com-
ponent C, a change in the flow health parameter �C is
determined by HPR for a given perturbation in  C.
Formally, the following two relations are used.

� C
¼ �

Fmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þHPR2
p and ��C ¼ � C

�HPR ð1Þ

where � C
and ��C denote the changes in  C and �C,

respectively.
In the case study, fault magnitude (Fm) follows a

random uniform distribution ranging from 1 to 7.
Health parameter ratios (HPR) for Fan, LPC and
HPC are uniformly distributed between 1.0 and 2.0,
whereas HPRs for HPT and LPT are uniformly dis-
tributed between 0.5 and 1.0. The changes in health
parameters occur from certain base values of  C and
�C. For the present example, base values are taken as
the health parameters due to maximum possible nat-
ural degradation after 1000 flight cycles. So far the
actuator faults are concerned, only those due to
scale shift are considered in this example. The
ranges for random uniformly distributed scale shift
magnitudes (Sm(A) for actuator A) are: (i) 1% to
7% for Sm(VSV), (ii) 1% to 19% for Sm(VBV) and
(iii) 1% to 7% for Sm(Wf). Please see Armstrong18 for
detail reasons behind the above parameter choices.

There are 9 health condition classes considered for
this study. Apart from the nominal class, 8 fault
classes signify (single) faults in 5 rotating components
and 3 actuators. One hundred samples are generated

Figure 3. Natural efficiency degradation profiles for rotating

components.

LPC: low pressure compressor; HPC: high pressure compres-

sor; LPT: low pressure turbine; HPT: high pressure turbine.

Sarkar et al. 1991



by using the above logic for each of these 9 classes,
among which 50 are taken as training samples and the
remaining 50 are taken as test samples. Simulation
runs are conducted with the TRA inputs having trun-
cated triangular profiles with the mean value of 40�,
fluctuations within �8� and frequency of 0.056Hz
with Mach Number 0.6 and Altitude 30,000 ft
(�900m), as shown in Figure 4. The entire commer-
cially available sensor suite of 6 sensors (Nc, Nf, P50,
Ps30, T24 and T48) is used for fault detection.

Scenario II: Case study of simultaneously occurring
multiple faults

Component-level fault diagnosis in an aircraft gas tur-
bine engine involves identification of the fault type,
and location and quantification of the fault level. In
the C-MAPSS test bed setting, the physical fault scen-
arios (e.g. fouling, increased tip clearance and seal
wear) are assumed to manifest themselves in affecting
the efficiency and flow of the associated engine com-
ponent(s). In the present case study, a simultaneous
fault scenario has been considered involving two
major rotating components of the engine, namely,
HPC and HPT. Choice of these components has
important significance from the perspective of diagno-
sis of simultaneously occurring faults. As seen in
Figure 1, both HPC and HPT are mounted on the
core shaft of the engine; hence, they have a strong
mechanical interconnection. Besides, they also have
electrical interconnections via the control loop. Such
a strong electro-mechanical interconnection compli-
cates the fault diagnosis problem. On the other
hand, information from an HPC sensor may have
strong cross-dependency with an HPT sensor and it
may not be reasonable to ignore that for the purpose
of fault diagnosis. The present study involves three
heterogeneous, non-collocated and commonly used
sensors are selected that are placed in the HPC–
HPT subsystem as seen in Figure 2. The three sensors

are listed in Table 2, where standard deviations of the
sensor noise are provided as percentage of the operat-
ing point trim values.19

Remark 2.1. The three chosen sensors are of different
modalities (pressure, temperature, speed) and while the
pressure sensor is located at HPC exit, the temperature
sensor is located at HPT exit and the speed sensor is
measuring the rotational speed of the core shaft on
which both HPC and HPT are mounted. The challenge
here is to identify the relational dependencies among
these sensor data to enhance the fault diagnosis
performance.

Diagnosis involves both fault localization and fault
level identification. The health parameters that define
the health status of HPC and HPT, are the efficiency
and flow health parameters, namely,  HPC, �HPC and
 HPT, �HPT. Three similar fault levels are considered
for both HPC and HPT. Table 3 shows the approxi-
mate ranges of efficiency health parameters under
different fault levels. Corresponding flow health par-
ameters are chosen using the same logic used in sec-
tion ‘Scenario I: Case study of natural deterioration
versus faults in a single component’. Here, a low fault
level indicates very minimal loss in efficiency and flow
performance and it includes the absolute nominal
health condition (i.e.  HPC¼ �HPC¼ 1 or  HPT¼

�HPT¼ 1). In the context of the case-study I, the low
fault level can be considered as the nominal class as
well, i.e. low level faults do not raise any alarm.

In this study, classes are defined as Cartesian prod-
ucts of the ranges of HPC and HPT health param-
eters. There are 9 (i.e. 3� 3) classes of data that can be
obtained when a class is uniquely defined by an HPC
fault level (a range of HPC health parameters) and an

Figure 4. Profile of throttle resolving angle (TRA).

Table 2. Sensors for fault diagnosis in the HPC–HPT

subsystem.

Sensors Description Noise Std. (%)

Ps30 HPC exit static pressure 0.50

T48 HPT exit temperature 0.75

Nc Core spool speed 0.25

HPC: high pressure compressor; HPT: high pressure turbine.

Table 3. Fault levels in HPC/HPT.

Fault level Efficiency range

Low fault 1.0000 to 0.9867

Medium fault 0.9867 to 0.9733

High fault 0.9733 to 0.9600

HPC: high pressure compressor; HPT: high pressure turbine.

1992 Proc IMechE Part G: J Aerospace Engineering 227(12)



HPT fault level (a range of HPT health parameters).
Hundred simulation runs of the engine system
have been conducted for each class to generate
data set for analysis among which 50 samples are
chosen as the training set and the remaining 50
samples are kept as testing set. HPC/HPT health
parameters are chosen randomly from independent
uniform distributions for health parameters
within the prescribed ranges given in above table.
Figure 5 plots the samples generated using the
above logic in the two-dimensional parameter
space. Different classes of samples are marked in
the boxes with respective class numbers.

For each data sample, a time series was collected
for all three sensors (given in Table 2) under persistent
excitation of TRA inputs having the same profile used
in case-study I (Figure 4). The ambient conditions are
chosen to be at the sea level when the engine is on the
ground (i.e. altitude A¼ 0.0, Mach number M¼ 0.0)
for fault monitoring and maintenance by the engin-
eering personnel. For each experiment, the engine
simulation is conducted at a frequency of 66.67Hz
(i.e. inter-sample time of 15ms) and the length of
the simulation time window is 150 s, which generate
10,000 data points. Figure 6 shows representative
examples of time series data from each of the three
sensors.

Thus, in the above context, the problem of multi-
component fault diagnosis in aircraft gas turbine
engines is formulated as a multi-class classification
problem (in the present scenario, number of classes
is 9). The following section presents a semantic frame-
work for analysis and fusion of sensor information for
fault diagnosis.

Semantic framework for multi-sensor
data interpretation and fusion

A hierarchical (three-layered) semantic framework
is proposed in this work for the purpose of multi-
sensor data interpretation and fusion. The basic
structure of this architecture is inspired by the infor-
mation fusion model proposed by the Data Fusion
Information Group (DGIF).20 The lowest level
of this hierarchy deals with signal conditioning,
transformation and finally feature extraction for
unimodal sensor data streams. In the present frame-
work, patterns discovered from individual sensors
are called atomic patterns and SDF is used to
extract them. A brief review of SDF is provided
in the following section for the completeness of
the report.

Symbolic dynamic filtering for feature extraction

This subsection briefly describes the concepts of sym-
bolic dynamic filtering (SDF) for extracting atomic
patterns from single-sensor data. The authors have
explored the concepts of symbolic dynamics and
time series data partitioning to develop this computa-
tionally efficient tool, for anomaly detection in com-
plex dynamical systems.3,5

Symbolic feature extraction from time series data
is posed as a two-time-scale problem. The fast scale
is related to the response time of the process dynam-
ics. Over the span of data acquisition, dynamic
behavior of the system is assumed to remain invari-
ant, i.e. the process is quasi-stationary at the fast
scale. On the other hand, the slow scale is related
to the time span over which non-stationary evolution
of the system dynamics may occur. It is expected
that the features extracted from the fast-scale data
will depict statistical changes between two different
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Figure 6. Representative time series observations from different sensors.

Figure 5. Fault classes for data collection and classification.

HPC: high pressure compressor; HPT: high pressure turbine.
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slow-scale epochs if the underlying system has under-
gone a change. The method of extracting features
from stationary time series data is comprised of the
following steps.

. Sensor time series data, generated from a physical
system or its dynamical model, are collected at a
slow-scale epoch and let it be denoted as q. A
compact (i.e. closed and bounded) region �2R

n,
where n2N, within which the stationary time
series is circumscribed, is identified. Let the
space of time series data sets be represented as
S �R

n�T, where T2N is sufficiently large for con-
vergence of statistical properties within a specified
threshold. While n represents the dimensionality
of the time-series, T is the number of data
points in the time series. Then, {s}2S denotes a
time series at the slow-scale epoch of data
collection.

. Encoding of � is accomplished by introducing a
partition B X {B0, . . . ,B(W�W�1)} consisting of W�W
mutually exclusive (i.e. Bj\Bk¼; 8j 6¼ k), and
exhaustive (i.e. [j�j�1j¼0 Bj ¼ �) cells, where each
cell is labeled by symbols �j2� and
�¼ {�0, . . . , � W�W�1} is called the alphabet. This
process of coarse graining can be executed by
uniform, maximum entropy, or any other scheme
of partitioning. Then, the time series data
points that visit the cell Bj are denoted as �j
8j¼ 0, 1, . . . , W�W� 1. This step enables transform-
ation of the time series data {s} to a symbol
sequence {s}, consisting of the symbols �j in the
alphabet �.

. A probabilistic finite state automata (PFSA),
is then constructed. The PFSA considered
in this framework is known as D-Markov
machine.3 Formally, a state in a D-Markov
machine is a symbol sequence of length D.
Q¼ {q1, q2, . . . , qW�WD} is the state set correspond-
ing to symbol sequence {s}. States represent all
possible words of length D, using the symbol
alphabet.

For a suite of N sensors collecting data, each
sensor time series is symbolized and the set of
states is constructed as described above. Let the
sets of symbols describing the N data sets
be denoted as �1, . . . ,�N respectively and the
corresponding D-Markov states are denoted as
Q1, . . . ,QN.

Definition 3.1 (D-Markov) A D-Markov machine3

with depth D(5 1) is defined for the product space of
all sensor time-series as a 4-tuple M¼

4
ðQ

p,�p, �, ~�Þ
such that:

. �P
¼�1��2� ��� ��N. Where, �i ¼ f�

0
i , . . . ,

�j�ij�1
i g is the alphabet set of symbol sequence from

the ith sensor.

. QP
¼Q1�Q2� ��� �QN. Where, Qi ¼ fq

1
i , q

2
i , . . . ,

qj�ij
D

i g is the state set corresponding to symbol
sequence from the ith sensor. States represent all
possible words of length D, using the symbol alpha-
bet �P.

. � : QP
��P

!Q
P is the state transition mapping

that maps the transition in a symbol sequence from
one state to another upon arrival of a symbol from
each sensor.

. ~� is the symbol generation matrix of size WQPW� W�PW

and encodes the Markovian nature of the data by
describing the probability of obtaining a symbol
(for each sensor) � 2�P conditioned on current
state of the system q2QP. In other words, elements
of ~� are the probabilities P(�12�1, �22�2, . . . ,
�N2�NWq12Q1, q22Q2, . . . , qN2QN)

The D-markov PFSA described above is essentially
a joint representation of the symbols (�P) observed
conditioned on the product space of states (QP).
However, for most applications, this method suffers
from curse of dimensionality. The size of the product
spaces of states and symbols is prohibitively large for
any meaningful estimation of ~�.

Let L¼ {L1, L2, . . . ,LN} be the universal set of
atomic patterns. The atomic pattern library L is set
of modal footprints identified from individual sensing
modalities for various fault classes. Given the atomic
pattern library, a popular framework for addressing
information fusion is what is called the set-theoretic
approach. In this framework, higher level patterns or
contexts are modeled as subsets of L. Thus a compos-
ite pattern, resulting from fusion of atomic patterns, is
a collection of elements from L and the composite
pattern library L*	 2L. The disadvantage of this
approach is that it considers only modal footprints
for constructing composite patterns as a bag of
atomic patterns; relational dependencies, if any,
between patterns are disregarded. However, the rela-
tional dependencies should not be ignored for many
problems in practice, e.g. in the present problem of
fault diagnosis of simultaneously degrading electro-
mechanically connected aircraft engine components.
Therefore, a hierarchical semantic framework for
multi-sensor data interpretation and fusion is pro-
posed that involves a common approach to informa-
tion fusion going from one level to another and to
include relational dependencies for composite pattern
representation. Thus, the middle layer deals with the
relational dependencies among atomic patterns, where
relationships are modeled as the cross-dependencies
among data streams from different sensors. The
cross-dependencies are discovered via relational
PFSA that essentially capture the dynamics of state
transition in one symbol sequence (obtained from one
sensor) corresponding to a symbol appearance in the
second symbol sequence (obtained from another
sensor). The relational patterns provide symbol-level

1994 Proc IMechE Part G: J Aerospace Engineering 227(12)



cross-dependencies between modalities that are
exploited to reduce information loss. While the
atomic patterns and relational patterns are con-
structed based on sensor data on the fast time scale,
they are combined to form composite patterns that
are labeled at individual epochs on the slow time
scale.

Finally, the top layer consists of higher level com-
posite patterns (CP) that will be represented as
digraphs where the atomic patterns (AP) are modeled
as nodes and dependencies between nodes are mod-
eled as relational patterns (RP). A formal definition is
as follows:

Definition 3.2 (Composite pattern representation) Let
L¼ {L1, L2, . . . ,LN} be the atomic pattern library. Let
L*� 2L be the set of allowable primitives for a class.
Then a composite pattern library Hr ¼ fHr

1,H
r
2, . . . ,

Hr
Mg where a composite pattern Hr

i is digraph
Hr

i ¼ ðLVi
, EVi
Þ; LVi

	L with the index set Vi	 {1,
2, . . . ,N} and Ei¼ {RjkWj, k2Vi�Vi} is a set of rela-
tional PFSAs. The digraph representation is illustrated
in Figure 7.

The relational probabilistic finite state automata
(PFSA) are discovered using xD-Markov machine
construction to determine cross-dependence; the algo-
rithm is described in the following section.

Construction of relational PFSA: XD-Markov
machine

This subsection describes the construction of
xD-Markov machines from two symbol sequences
{s1} and {s2} obtained from two different sensors (pos-
sibly of different modalities) to capture the symbol level
cross-dependence. A formal definition is as follows:

Definition 3.3 (xD-Markov) Let M1 and M2 be the
PFSAs corresponding to symbol streams {s1} and {s2},

respectively. Then a xD-Markov machine is defined as a
5-tupleM1!2¼

4
ðQ1,�1,�2, �1, ~�12Þ such that:

. �1¼ {�0, . . . , � W�1W�1
} is the alphabet set of symbol

sequence {s1}
. Q1 ¼ fq1, q2, . . . , q

j�j
D1
1

g is the state set correspond-
ing to symbol sequence {s1}, where D1 is the depth
for {s1}

. �2¼ {�0, . . . , � W�2W�1
} is the alphabet set of symbol

sequence {s2}
. �1 : Q1��1!Q1 is the state transition mapping

that maps the transition in symbol sequence {s1}
from one state to another upon arrival of a symbol
in {s1}

. ~�12 is the symbol generation matrix of size
WQ1W� W�2W; the ijth element of ~�12 denotes the prob-
ability of finding jth symbol in {s2} while making a
transition from ith state in the symbol sequence {s1}

In practice, ~�12 is reshaped into a vector of length
WQ1W� W�2W and is treated as the extracted feature
vector that is a low-dimensional representation of the
relational dependence between {s1} and {s2}. This fea-
ture vector is called a relational pattern (RP). Figure 7
schematically describes the basic concept of the
xD-Markov machine. Note, a RP between two
symbol sequences is not necessarily symmetric; there-
fore, RPs need to be identified for both directions.
Also, when both symbol sequences are same, the rela-
tional patterns are essentially the atomic pattern cor-
responding to the symbol sequence; i.e. xD-Markov
machine reduces to a simple D-Markov machine.

The set-theoretic approach falls at one end of the
spectrum of information fusion; here all relationships
are excluded and any fusion is solely done in the
decision-theoretic sense, where the presence (or
absence) of one or more footprints can be used to
estimate the probability of the fault class under con-
sideration. The other end of the spectrum is to fuse
data at the lowest level and construct machines
(PFSAs) working in the product space of all sensors.
This approach would be able extract modal dependen-
cies before they are lost when constructing separate
machines for individual sensor or modalities. But
working in the product space has the danger of state
space explosion especially if the sensors and sensing
modalities are numerous, as in the case of an aircraft
engine equipped with a large number of sensors.

The proposed approach is a trade-off between the
two ends of the spectrum and attempts to include
relational dependencies between sensing modalities,
while keeping it tractable for a practical application.
The hierarchical structure ensures that composite pat-
terns are identified only when its constituting units at
the lower level have been observed. The current
framework constructs relations, taken only two at a
time; identification of relations among higher order
cliques is a topic of future work.

AP1

AP3

AP2

a a b c c c b b a a a …..
0 0 0 1 2 2 1 1 1 0 2 …..

RP12

RP21

RP23

RP32

RP13
RP31

Figure 7. Composite pattern digraph.
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Results and discussion

This section presents the results obtained from the
two case studies by applying the semantic framework
of sensor fusion. For pattern classification applica-
tions, a time-series from the reference class is parti-
tioned using a partitioning schemes (e.g. uniform
partitioning (UP) or maximum entropy partitioning
(MEP)).3,5,21 Then, using the steps described before,
a low-dimensional feature is constructed for the refer-
ence class. Similar features can be extracted from
time-series data of all classes using the same partition-
ing. Finally a classifier is trained using features of
different classes extracted from training data and
can be used to classify the features from test data
set. There are plenty of choices available for design
of both parametric and non-parametric classifiers in
Bishop22 and Duda et al.23 Among the parametric
type of classifiers, one of the most common techniques
is to consider up to two orders of statistics in the
feature space. In other words, the mean feature is
calculated for every class along with the variance of
the feature space distribution in the training set. Then,
a test feature vector is classified by using the
Mahalanobis distance24 or the Bhattacharya dis-
tance25 of the test vector from the mean feature
vector of each class. However, these methods lack in
efficiency if the feature space distribution cannot be
described by second order statistics (i.e. non-Gaussian
in nature). In the present context, Gaussian feature
space distribution cannot be ensured due to the non-
linear nature of the partitioning feature extraction
technique. Therefore, a non-parametric classifier,
such as the k-NN classifier may a better candidate
for this study22,23; however, in general, any other suit-
able classifier, such as the support vector machines
(SVM) or the Gaussian mixture models (GMM)
may also be used.

Validation results for Scenario I

Pertinent fault detection results for the problem
described in Scenario I is presented in this subsection.
For data partitioning, maximum entropy partitioning
is used with alphabet size, W�W¼ 5 for all six sensors
(although alphabet size does not need to be the
same for different sensors). The depth for constructing
PFSA states3 is taken to be, D¼ 1 for both atomic
and relational pattern construction and features are
classified by a k-NN classifier (with k¼ 5) using the
Euclidean distance metric. Table 4 provides the clas-
sification errors corresponding to all atomic and rela-
tional patterns. The cross-dependence direction is
from Sensor 1 to Sensor 2 in the table. Hence, the
diagonal elements represent the classification error
percentages corresponding to the atomic patterns,
where as the off-diagonal elements represent the clas-
sification error percentages corresponding to the rela-
tional patterns.

It is observed from Table 5 that the relational pat-
terns are able to extract useful information from the
perspective of fault diagnosis, which is physically
meaningful due to the strong electro-mechanical inter-
connections among the rotating components and the
actuators. Therefore, ignoring these cross-dependen-
cies should affect the fault detection results. Finally all
the patterns are concatenated to construct the overall
composite pattern. The classification error on the test
data set using the composite pattern is found to be 2%
and the corresponding confusion matrix is given
below. In a confusion matrix C, element Cij denotes
the frequency of classifying test sample from class i as
a sample from class j.

CAll
test ¼

1 2 3 4 5 6 7 8 9

1 50 0 0 0 0 0 0 0 0

2 0 48 0 0 0 0 0 2 0

3 0 0 50 0 0 0 0 0 0

4 0 0 0 50 0 0 0 0 0

5 0 0 0 0 50 0 0 0 0

6 0 0 0 0 0 50 0 0 0

7 0 0 0 0 0 0 50 0 0

8 0 0 0 0 0 0 6 44 0

9 0 0 0 0 0 0 0 1 49

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

The above exercise is adequate while treating the
engine as a black-box and using all sensors blindly for
fault detection. However, deeper questions regarding
relationships among fault locations and sensor loca-
tions or the optimal sensor-suite still remain. These
two issues are briefly discussed in the sequel.

Building a hierarchical decision engine. From the physical
understanding of the engine model, it is clear that
there may be variation in sensitivity of different sen-
sors to different fault conditions (locations). For
example, detection accuracy (false alarm) for faults

Table 4. Comparison of classification error percentages using

atomic and relational patterns on test data set (50� 9 samples);

Cross-dependence direction: Sensor 1! Sensor 2.

Sensor 2

Nc Nf P50 Ps30 T24 T48

Sensor 1 Nc 26.22 17.78 16.89 7.11 2.89 5.78

Nf 19.33 43.56 49.78 12.44 21.11 14.44

P50 12.00 50.22 52.00 34.22 28.44 29.78

Ps30 7.56 10.89 32.22 23.78 16.00 15.33

T24 4.22 17.78 29.78 14.22 43.78 26.44

T48 8.00 15.78 33.78 5.11 18.67 34.44
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in components mounted on the core shaft may be
higher (lower) while using the Nc sensor. However,
from the previous observations, it is evident that
just using Nc may not be enough. This issue will be
more clear with the following two concrete examples.
Figures 8 and 9 are two bar charts plotting the detec-
tion accuracies (in percentage) for HPT and VBV
fault conditions respectively while using different
atomic and relational patterns. In this case, (as it is
seen in the figure) there are 36 different patterns
(6 atomic and 30 relational) available for 6 sensors.

Figure 8 shows that the relational patterns invol-
ving Nc and T24 perform very well in detecting HPT
faults. This can be explained from the physical
understanding of the engine lay out. First of all,
Nc monitors the speed of the core shaft on which
HPT is mounted. On the other hand, T24 monitors
the temperature at HPC inlet and HPC is mechan-
ically connected to HPT as it is mounted on the
core shaft as well. So naturally, relational patterns
involving these two sensors should perform well in
detecting HPT faults. However, the faults, which do

Figure 8. HPT fault detection accuracy for different atomic and relational patterns.

HPT: high pressure turbine.

Figure 9. VBV fault detection accuracy for different atomic and relational patterns.

VBV: variable bleed valve.
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not affect the outputs of Nc and T24 sensors, are
not expected to be detected by the respective rela-
tional patterns. Therefore, it is necessary to select
appropriate sensors for detection of faults of differ-
ent types.

In the second example, as shown by Figure 9, rela-
tional patterns involving Nf and T48 perform very
well in detecting variable bleed valve (VBV) faults.
VBV is used to control the pressure of the gas flowing
from LPC to HPC. It is a modulating valve and
actuator assembly that bleeds off excess air to the
atmosphere as necessary to prevent turbine surge.
Therefore, it is natural that Nf, that monitors speed
of fan shaft (LPC is mounted on the fan shaft) and
T48, that monitors HPT exit temperature (VBV essen-
tially prevents turbine surge) perform very well in
detecting VBV faults.

The above discussion leads to the idea of building a
hierarchical decision engine. In this framework, there
will be a hierarchical strategy of isolating the fault
location by going through decisions made by sensor
sets that are much smaller in size compared to the full
sensor suite. For example, (referring to the two exam-
ples above) if patterns from Nc and T24 determine that
a fault has occurred in VBV, decision confidence can
be enhanced based on the decision made by patterns
from Nf and T48. And if the decision regarding the
fault location is supported by the corresponding most
efficient sensor group, then the user does not need to
go for investigating remaining patterns. Thus, this
procedure can handle data from large sensor suites.
However, another interesting question remains:
Whether there exists an optimal sensor suite (smaller
than the full sensor suite) that performs well enough
in all fault conditions. This issue is discussed in the
sequel.

Optimal sensor suite. Building a hierarchical decision
engine may be very useful when one has considerable
physical understanding of the system and the inter-
connection characteristics among its sub-systems.
This approach can also handle the issue of scalability.
However, given a large volume of training data, it is
possible to identify an optimal sensor suite that per-
forms well enough for all fault conditions. Although,
this may require handling large dimensional compos-
ite patterns all the time, it does not require much
insight regarding the physics of the system. Here is
an example optimization procedure for the current
problem.

Let the detection accuracy (in fraction, i.e. varies
from 0 to 1) of pattern P for a fault class i be denoted
as Di(P) and the minimum allowable accuracy be
denoted as DT. With these notations, a pattern will
be called an optimal pattern P*, if it satisfies the fol-
lowing condition

min
i

DiðPÞ4DT ð2Þ

This is essentially placing a bound on the worst per-
formance of a pattern. Therefore, the set of optimal
patterns {P*} will increase with decrease in the value
of DT. An alternate cost function may be the average
performance of a pattern. In the present study, con-
sidering DT¼ 0.85, one can obtain that three rela-
tional patterns are optimal, namely Nc to T24, T24

to Nc and Nc to Ps30. The following confusion
matrix is obtained by using the three sensors involved
in these relational patterns. Note that to maintain the
structure of a composite pattern, all three atomic and
six relational patterns that are generated by these
three sensors have been used.

COpt
test ¼

1 2 3 4 5 6 7 8 9

1 50 0 0 0 0 0 0 0 0

2 0 48 0 0 0 0 0 2 0

3 0 0 50 0 0 0 0 0 0

4 0 0 0 50 0 0 0 0 0

5 0 0 0 0 50 0 0 0 0

6 0 0 0 0 0 50 0 0 0

7 0 0 0 0 0 0 49 1 0

8 0 0 0 0 0 0 2 48 0

9 0 0 0 0 0 0 0 1 49

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

The overall classification error is reduced from 2%
to 1.33%, which is the consequence of leaving out
quite a few non-optimal patterns that may be useful
for detecting some other faults. This is somewhat
counterintuitive from an information theoretic point
of view as more patterns should provide more infor-
mation. However, in the present classification setting,
non-optimal patterns may incorporate more ambigu-
ities in decision making.

Validation results for Scenario II

This subsection presents pertinent fault diagnosis
results for the Scenario II. The signal processing spe-
cifications remains same as in Scenario I. For a par-
ticular health parametric condition, three atomic
patterns are generated from three sensor observations
and six relational patterns are generated by extracting
pairwise directed cross-dependencies. Finally all the
patterns are concatenated to construct the overall
composite pattern. The classification error on the
test data set using the composite pattern is found to
be 11.56%. Similar to Table 4, Table 5 provides the
classification errors corresponding to all atomic and
relational patterns.

It is observed from the above table that the rela-
tional patterns are able to extract useful information
from the perspective of fault diagnosis. The problem
in the present study has been posed in such a way that
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the sensor information from different sensors actually
have cross-dependencies due to strong electro-
mechanical interconnections between HPC and HPT.
Therefore, ignoring these cross-dependencies should
affect the fault diagnosis results. This result once
again confirms the conjecture and shows that the
xD-Markov machine construction can extract those
cross-dependencies. It should be noted that the fault
diagnosis algorithm is completely data-driven and has
no model information. Therefore, the result is signifi-
cantly encouraging. Representative classification con-
fusion matrices corresponding to atomic patterns from
Sensors T48, Nc and their relational patterns of both
directions are provided below.

CT48
test ¼

1 2 3 4 5 6 7 8 9

1 47 1 0 2 0 0 0 0 0

2 0 18 2 22 3 0 5 0 0

3 0 1 12 0 15 5 11 6 0

4 11 11 0 21 5 0 2 0 0

5 0 6 15 2 15 2 5 5 0

6 0 0 4 0 0 21 0 16 9

7 0 5 11 3 17 2 11 1 0

8 0 0 9 0 3 19 2 13 4

9 0 0 0 0 0 11 0 3 36

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

CNc
test ¼

1 2 3 4 5 6 7 8 9

1 17 0 0 17 8 0 1 7 0

2 1 23 1 0 10 6 0 1 8

3 0 2 40 0 0 6 0 0 2

4 11 0 0 29 0 0 7 3 0

5 6 8 0 1 19 0 0 6 10

6 0 5 16 0 2 17 0 0 10

7 0 0 0 14 0 0 35 1 0

8 10 0 0 9 11 0 2 17 1

9 1 6 4 0 5 13 0 3 18

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

CT48�4Nc
test ¼

1 2 3 4 5 6 7 8 9

1 47 0 0 3 0 0 0 0 0

2 0 46 1 0 3 0 0 0 0

3 0 0 43 0 0 7 0 0 0

4 1 0 0 44 4 0 1 0 0

5 0 3 1 0 40 1 0 5 0

6 0 0 2 0 0 39 0 0 9

7 0 0 0 4 1 0 43 2 0

8 0 0 0 0 7 2 1 36 4

9 0 0 0 0 0 5 0 5 40

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

CNc�4T48
test ¼

1 2 3 4 5 6 7 8 9

1 49 0 0 1 0 0 0 0 0

2 0 40 2 3 5 0 0 0 0

3 0 0 48 0 0 2 0 0 0

4 6 1 0 40 3 0 0 0 0

5 0 3 0 2 43 0 0 2 0

6 0 0 3 0 0 45 0 0 2

7 0 0 0 1 0 0 46 3 0

8 0 0 0 0 3 0 0 40 7

9 0 0 0 0 0 2 0 2 46

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

A close observation reveals similarity of fault sig-
natures on single sensor data for two completely dif-
ferent fault conditions (please see Figure 5 for fault
classes), e.g. fault signatures of Class 4 (HPC medium
fault, HPT low fault) has been confused with Class 1
(HPC low fault, HPT low fault) for both sensors T48

and Nc individually. However, this ambiguity can
be removed by using relational pattern directed
from T48 to Nc.

Summary, conclusions and future plans

Summary and conclusions

This article presents feature-level fusion of multiple
sensor data, which is very important for data-driven
fault detection techniques. A symbolic dynamic filter-
ing (SDF)-based methodology has been adopted for
data-driven detection of component level faults and
actuator faults in aircraft gas turbine engines via
multi-sensor data interpretation and fusion. In the
proposed method, the abstract semantic representa-
tion of sensor data enables feature level fusion of het-
erogeneous and disparate sensors. It is also shown
that identification of cross-dependencies among dif-
ferent sensors mitigates loss of significant information
compared to set-theoretic information fusion meth-
ods. The hierarchical architecture of this method
reduces computational complexity, allowing real-
time operability.

Table 5. Comparison of classification error percentages using

atomic and relational patterns on test data set (50� 9 samples);

Cross-dependence direction: Sensor 1! Sensor 2.

Sensor 2

Ps30 T48 Nc

Sensor 1 Ps30 56.44 15.11 41.56

T48 12.89 56.89 16.00

Nc 25.11 11.78 52.22
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Scalability in terms of fault classes and number of
sensors is always a critical issue for data-driven meth-
ods of fault diagnosis. The current algorithm is for-
mulated generally enough to accommodate high
number of fault classes possibly at the expense of a
larger alphabet size and depth. On the other hand, the
basic hierarchical architecture of this framework
allows a tractable solution to the problem of dealing
with a large number of sensors and mitigates the
problem of dimensionality explosion, because
upward movements in the knowledge-base levels
may occur only after the structure of the lower
levels has been identified.

The fault detection method described in this arti-
cle identifies the health status of an engine compo-
nent at a given slow-scale epoch. In a real life
scenario, faults need to be distinguished from the
usual gradual degradation of a component.
Typically, the engine health deteriorates at a slow
rate for usual degradation while a fault is character-
ized by a relatively more rapid change in the health
status and/or degradation at a comparatively faster
rate. A method for distinguishing natural degrad-
ation from faults has been developed on a data-
driven framework.

Future research directions

Although the method presented in the report has been
successfully validated by execution on the C-MAPSS
test bed, various operating conditions need to be
investigated in real time for potential in-flight appli-
cations. Apart from this important issue, the follow-
ing research areas, specific to semantic sensor fusion,
need to be validated on a real-life engine test bed.

. Development of algorithms to extract relational
dependencies among three or more symbol
sequences.

. Exploration of other statistical analysis tools (e.g.
Copula distribution26) as an alternative to extrac-
tion of relational dependencies.

. Investigation of the effects of mis-synchronization
among sensor observations on the proposed
xD-Markov machine.

. Comparative evaluation of semantic information
fusion framework with other information fusion
techniques (e.g. Dempster-Shafer or Bayesian net-
work) approaches.

. Construction of a Hierarchical Decision Engine to
enhance successful detection and reduce false alarm
rates while using a sensor suite.

. Identification of Optimal Sensor Suite (i.e. a small
number of strategically placed sensors) that can
serve the purpose of system fault detection and iso-
lation maximally.

. Fault Diagnosis during Take-off, Climb and
Landing using C-MAPSS transient test case gener-
ator model developed at NASA.18
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NASA/TMŮ2004-212924, 39th Combustion/21th
Airbreathing Propulsion/21st Propulsion Systems
Hazards/ 3rd Modeling and Simulation Joint

Subcommittee Meeting. Colorado Springs, CO, USA,
1–5 December, 2003.

15. Byington C, Watson M and Edwards D. Data-driven

neural network methodology to remaining life predic-
tions for aircraft actuator components. In: Proceedings
of IEEE Aerospace Conference. Big Sky, MT, USA,
March, 2004.

16. Kobayashi T and Simon DL. A hybrid neural network-
genetic algorithm technique for aircraft engine perform-
ance diagnostics. In: 37th Joint Propulsion Conference

and Exhibit cosponsored by the AIAA, ASME, SAE and
ASEE. Salt Lake City, UT, USA, 2001.

17. Chu E, Gorinevsky D and Boyd S. Detecting aircraft

performance anomalies from cruise flight data. In:
AIAA Infotech Aerospace Conference. Atlanta, GA,
USA, April 2010.

18. Armstrong J. Users guide for the transient test case gen-
erator. NASA GRC Internal Report, September 2009.

19. Simon D and Garg S. Optimal tuner selection for
Kalman filter-based aircraft engine performance esti-

mation. J Eng Gas Turb Power 2010; 132(3): 031601.

20. Blasch E, Kadar I, Hintz K, et al. Resource manage-
manet coordination with level 2/3 fusion issues
and challenges. IEEE A&E Sytems Magazine, March

2008, pp. 32–46.
21. Subbu A and Ray A. Space partitioning via hilbert

transform for symbolic time series analysis. Appl Phys

Lett 2008; 92(8): 084107–1–084107–3.
22. Bishop CM. Pattern recognition and machine learning

(Information science and statistics). Secaucus, NJ:

Springer-Verlag, 2006.
23. Duda R, Hart P and Stork D. Pattern classification.

New York, NY: John Wiley, 2001.
24. McLachlan GJ. Discriminant analysis and statistical pat-

tern recognition. Wiley Series in Probability and
Statistics. New York, NY: Wiley-Interscience, 2004.

25. Choi E and Lee C. Feature extraction based on the

Bhattacharyya distance. Pattern Recogn 2003; 36:
1703–1709.

26. Trivedi P and Zimmer D. Copula modeling: An intro-

duction for practitioners. Foundations Trend Econom
2005; 1(1): 1–111.

Sarkar et al. 2001


