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Abstract

This work aims to mathematically formalize the notion of context, with the purpose of
allowing contextual decision-making in order to improve performance in dynamic data driven
classification systems. We present definitions for both intrinsic context, i.e. factors which
directly affect sensor measurements for a given event, as well as extrinsic context, i.e. factors
which do not affect the sensor measurements directly, but do affect the interpretation of collected
data. Supervised and unsupervised modeling techniques to derive context and context labels
from sensor data are formulated. Here, supervised modeling incorporates the a priori known
factors affecting the sensing modalities, while unsupervised modeling autonomously discovers
the structure of those factors in sensor data. Context-aware event classification algorithms
are developed by adapting the classification boundaries, dependent on the current operational
context. Improvements in context-aware classification have been quantified and validated in
an unattended sensor-fence application for US Border Monitoring. Field data, collected with
seismic sensors on different ground types, are analyzed in order to classify two types of walking
across the border, namely, normal and stealthy. The classification is shown to be strongly
dependent on the context (specifically, soil type: gravel or moist soil).
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1 Introduction

It is widely recognized that the interpretation of sensor data and the associated performance of
any application which uses that data depend strongly on the operational context in which the
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data are generated. Context-aware sensor operations remain a weak link in military applica-
tions, despite significant relevant research over the past decade in diverse fields (e.g., physics-
based environmental modeling, machine learning, image processing, natural language process-
ing, ubiquitous computing, human-machine interaction, and cognitive neuroscience). In order
to implement context-awareness for automated systems, it is first necessary to precisely define
the concept of “context”. One possible definition, provided by Dey et al. [7], is as follows: “Con-
text is any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user and
an application, including the user and applications themselves.” Their work focused specifically
on the implementation of context-aware features for design applications in hand-held devices,
which could be effectively customized to the user’s current situation by using implicitly sensed
context. Blasch et al. [3] presents an extensive survey of contextual tracking for information
fusion. Shi et al. [18] performed vehicle detection from wide area motion imagery by extracting
contextual information about roads from vehicle trajectories and fed back this information to
reduce false alarms. Context due to the target itself may refer to pose change, deformation,
etc. and due to external factors to changes in illumination, viewpoint, occlusions, etc. Oliva
et al. [14] did an extensive review of work done on effects of context on object recognition by
humans, methods of learning of contextual information by the human brain and the mecha-
nism of contextual analysis by humans. Elnahrawy [8] has defined context in terms of values
of neighboring sensing nodes in sensor networks and the past history of measurements of the
sensor, which can be used to predict the next sensor reading. The notion of context in the
DDDAS framework presented here differs from those mentioned above in two specific ways:

1. The context is required to be machine-understandable in order to allow machines to
autonomously extract it from sensor data and then use it to improve decisions and to
adjust the sensing mechanisms.

2. Two different types of contexts are identified based on their influence on the sensor data.
While intuitive descriptions are presented here, mathematical definitions of intrinsic and
extrinsic context are given later in this paper.

• Intrinsic Context : Factors that directly influence the sensor measurements for a par-
ticular event are called the intrinsic context. For e.g., changes in soil stiffness due to
precipitation affect seismic sensor response for a border crossing event [12]; changes
in lighting conditions affect camera pictures of a person for identity verification.

• Extrinsic Context : Factors that do not affect the sensor measurements for any par-
ticular event, but influence the interpretation of sensor data are called the extrinsic
context. For e.g., intelligence information about a possible smuggling-related border
crossing; changes in commander’s input (e.g., switch to alert from normal mode).

The theories of context-aware sensing are succinctly presented along with an application
of the proposed techniques for detection and classification relevant to border security needs.
Data from unattended ground sensors, specifically seismic sensors, were collected for events
which consist of multiple subjects walking. The subjects perform both normal walking and an
alternate gait, which we term stealthy walking. We see that the data obtained from the ground
sensors are sensitive to the type of soil in which they are located. Data sets were collected for
both moist soil and gravel soil, which define the operational contexts. We present and validate
both supervised and unsupervised techniques to learn the context and the contextually-aware
decision boundaries. Both methods improve classification performance on the footstep seismic
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data, and the unsupervised methods are able to extract the context (the soil type) without prior
knowledge of what these contexts might have been. Results are compared with context-ignorant
classification methods. Future research directions are also presented.

2 Context Definition and Modeling

In the this section, the notion of context is mathematically formalized. We also describe two
data-driven techniques to model context from labeled and unlabeled sensor data, respectively,
with the aim of enabling machines to use context for improved classification performance.

2.1 Mathematical Definition of Context

Let S be a nonempty finite set of sensing modalities and X be a random variable, which takes
values in a finite hypothesis set H of random events. Let s ∈ S be a sensing modality, that, is
used to observe a random event x ∈ H and let Y (s) be a random vector associated with the
measurement of sensor s, which is used to classify the event of interest x.

Definition 2.1. (Context Elements) Let L(s) be a non-empty finite set of labels, and each
element of L(s) is called a context element. Every context element is a physical phenomena
(natural or man-made), which is relevant to the sensing modality used to observe an event of
interest. It is assumed, that the elements of the set L(s) have been listed in such a way that
no two elements can occur simultaneously.

The assumption in construction of L(s) is not restrictive. If it is possible for few context
elements (say, l, m and n) to occur together, then, a new context element(say k) representing l,
m, and n occurring together is added to L(s) and the extension of L(s) is obtained. The further
computation would be done using this extension. Let P (Y |X, l) be the contextual observation
density of sensor measurements of modality s ∈ S for event X , under a given context l ∈ L(s).
These observation densities models the likelihood of a particular measurement for an event with
context element l. Classification of events would be performed using some features extracted
from the measurements, so it is convenient and practical to construct observation densities with
low dimensional features, instead of the actual measurements.

Definition 2.2. (Extrinsic and Intrinsic Subsets of Contexts) A nonempty set C̃ ⊆ L(s) is
called extrinsic relative to an event X and the associated measurement Y , if

∀ l, l̃ ∈ C̃, P (Y |X, l) = P (Y |X, l̃).

A nonempty set C̃ ⊆ L(s) is called intrinsic relative to an event X and the associated
measurement Y , if

∃ l, l̃ ∈ C̃ such that P (Y |X, l̃) �= P (Y |X, l).

The context elements in an intrinsic subset may probabilistically affect the measurement Y
associated with an event X , whereas an extrinsic context does not affect the conditional distri-
bution P (Y |X). This paper focuses on modeling of intrinsic context as it can be autonomously
extracted by the sensors using the data-driven approaches presented in this paper. In the
remaining sections, we will use the word “context” to refer in general to “intrinsic context”.

Context-aware Data-driven Pattern Classification Phoha, Virani, Chattopadhyay, Sarkar, Smith, Ray

1326



2.2 Context Learning

The aim of modeling context has been addressed by the research community using physics-
based modeling [21] as well as data-driven modeling, to understand the environment and its
impact on sensor data. In this work, two different data-driven techniques to obtain the labels
for context elements and intrinsic context subsets are proposed. Context construction can be
addressed through either of the following:

1. Supervised Modeling: In some application areas, all relevant factors which significantly
affect the data are known and these factors can be individually applied to the system
(probably in a controlled environment). It is desired to use this knowledge in training
and improve system performance. This technique of modeling context with knowledge of
the relevant factors known a priori is a form of supervised modeling.

2. Unsupervised Modeling: In most application areas, the factors affecting the data are
either not known a priori or cannot be individually applied in a controlled environment.
Such systems need to learn the relevant factors, during in-situ training by using unsuper-
vised learning algorithms. This technique of modeling context is a form of unsupervised
modeling.

Both these approaches are used to obtain a set of labels for distinguishable factors affect-
ing the sensor data. The set of labels obtained through these data-driven methods (i.e. an
approximation to the list of intrinsic context subsets) will be termed the context alphabet.

2.3 Supervised Modeling of Context

Herein, we introduce a supervised modeling technique for context alphabet construction. Fol-
lowing Definition 2.1, observation densities P (Y (s)|x, l) ∀x ∈ H, ∀ l ∈ L(s), can be constructed,
if several measurements Y are collected for an event x ∈ H under the same context element
l ∈ L(s). If the observation densities are overlapping and very close, then, those context ele-
ments would have nearly the same effect on the sensor data. Sets of context elements which
are approximately indistinguishable can be constructed for a given threshold parameter ε > 0
and a metric d(·, ·) on the space of observation densities using the following definition.

Definition 2.3. (Context Alphabet and Context Symbol) Let C(s, x) be a set cover of L(s)
for each modality s and event x. Then, C(s, x) is called a context alphabet and a (non-empty)
set c(s, x) ∈ C(s, x) is called context symbol provided that the following properties hold:

1. c(s, x) =
{
l,m ∈ L(s) : d(P (Y |x, l), P (Y |x,m)) < ε

}
. Then, the observation density

P (Y |x, l) ∀ l ∈ c is denoted as P (Y |x, c).

2. The set c(s, x) is maximal, i.e., it cannot be augmented by including another element
l ∈ L(s).

The construction of a context alphabet from the training data set can be reduced to the
standard maximal clique listing problem in graph theory. A maximal clique is a complete
subgraph, that, cannot be extended by including one more adjacent vertex. In the maximal
clique listing problem, the input is an undirected graph, and the output is a list of all its maximal
cliques. At first, a complete weighted graph G with context elements as the vertices and the
distance between any two contextual observation densities as the weight of the respective edge
is constructed using all context elements in L(s) and a suitable metric d(·, ·). Then, all edges
whose weight is larger than the threshold parameter ε are deleted to obtain undirected graph
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G′. Finally, the maximal clique listing problem for the undirected graph G′ is solved using
algorithm in Remark 2.1. If a symbol is assigned to each maximal clique, the set of all symbols
associated with the maximal cliques is the Context Alphabet, because a maximal clique in G′

represents all possible context elements whose observation densities are mutually close together
or the observations of the chosen modality are mutually indistinguishable. This procedure
offers to select the threshold parameter ε, which can be used to trade-off between robustness
and modeling accuracy/performance. If the threshold parameter ε is too large, there would be
just one context, the complete graph would be the only maximal clique. On the other hand,
if ε is too small, during thresholding all the edges will be deleted, and all singleton contexts
would be obtained, i.e., the isolated vertices in the graph. The exact mechanism to choose ε is
application specific and needs to be investigated.

Remark 2.1. (Algorithms for Listing all Maximal Cliques) Enumeration of maximal cliques
in an undirected graph has been widely researched topic in the domain of graph theory and
combinatorics [4, 2, 6]. The popular Bron-Kerbosch algorithm [4] is efficient in the worst-
case sense with a running time of O(3n/3). The problem is NP Complete, so any known exact
algorithms have exponential time complexity. The application targeted in this paper will usually
be reduced to a small graph (< 100 vertices), so time complexity is not a major concern. This
work uses a variant of original Bron-Kerbosch algorithm as mentioned in [19].

2.4 Unsupervised Modeling of Context

In general, the context under which the data is collected is unknown a priori and in many
cases, multiple factors affect the data together. Hence, some context information needs to be
extracted autonomously from the sensor data. For a given event, the feature vectors extracted
from repeated experiments, under the same context are expected to be close to each other
in the feature space. With this intuition, clustering techniques can be used to identify the
different clusters and thus, symbolize the feature space. These symbols together form a machine-
understandable context alphabet.

In this work, a graph theoretic approach was used to identify clusters and create the context
alphabet. A graph was constructed with a feature vector extracted from each time series as a
node and the weight on the edge connecting any two nodes was proportional to the similarity
between the two feature vectors. The similarity score was considered to be the inverse of
the Euclidean norm between the feature vectors. Clustering using these graphs is same as
community detection, where a community in a graph is a cluster of nodes with more intra-cluster
edges than inter-cluster edges. The majority of methods developed until now for community
detection in graphs can be reviewed in [9]. Community detection in graphs aims to identify the
modules and possibly, their hierarchical organization in graphs, by only using the information
encoded in the graph topology. Here, modularity [10] was used as the quality measure for
clustering which had to be maximized. Modularity compares the actual density of edges in a
subgraph to the edge density one would expect to have in the subgraph, if the edges were added
randomly. It can be written as follows:

Modularity =
1

2m

∑

vw

[Avw −
kvkw

2m
]δ(cvcw) (1)

Where, kv is the degree of node v, cv is the community to which node v belongs,and m

is the total number of edges. Avw is 1 if there is an edge between vertices v and w. In case
of a weighted graph, Avw is the weight of v − w edge. The second term is the probability of
there being a edge between vertices v and w, if the edges were added at random, preserving the
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degree of each vertex. For good community structure, the term in the square brackets should
be positive and larger when both vertices are in same community.

In this work, the fast community detection algorithm [13] was used. Unlike most other
clustering methods, this approach has the advantage of providing both an optimal number of
communities and the members of each community. It is an agglomerative hierarchical clustering
method, which starts with one vertex in each community. At each stage, the two communities
which result in the greatest increase of modularity with respect to the previous configuration are
merged. The largest value of modularity in this subset of partitions corresponds to the optimal
partitioning of the dataset. Hence, this procedure gives us the desired context alphabet by
exploiting the structure and distribution of features in the feature space.

2.5 Contextual Classification

Context and events both affect the sensor measurements. If the effect of context on the sensors
measurements for the same event is much smaller than the effect of different events under the
same context, then, practically there might not be any classification performance improvement
by using the knowledge of context. There are many realistic problems in which this is not the
case, so the effect of different contexts is either comparable or larger than that of the different
events. In such cases, it is beneficial to extract the knowledge of context and use it to improve
event classification performance. The technique developed (to extract context from sensor data)
and used in this work involves, first classifying the features extracted from time series to identify
context and then, using the classifier which improves classification performance in the known
context. Not only the decision boundary/classifier, but also, the feature extraction scheme
can be adapted according to the identified context. Traditionally, a classifier is defined as a
function which maps a feature space into a finite set. In [20], the term context-based classifier
was introduced as follows:

Definition 2.4. (Context-based Classifier) Let C be the set of contexts, Ψ be the set of features,
and X be the (finite) set of classes. Then, a function A : C×Ψ → X is said to be a context-based
classifier, if ∀ c ∈ C, ∀ P ∈ Ψ, A(c, P ) ∈ X . In other words, A(c, ·) is a classifier ∀ c ∈ C.

During the training of a context-based classifier, once the feature space is partitioned, every
feature is assigned the context symbol associated with their partition and a classifier is trained
using all features which have the same context symbol. These classifiers take input of feature
and context and give output as the event class of the feature under the given context. The
context-based classifiers essentially implements a dynamic classifier selection framework [17] in
a systematic way.

3 Experiments and Results

This section describes the experiment and results to validate the proposed data-driven context
extraction and contextual classification technique with the data collected in field experiments.

3.1 Scenario and Data Collection

A series of experiments were designed to validate the proposed technique for context-aware event
classification. Three-axis geophones were deployed to identify two different types of walking:
(i) normal walking and (ii) stealthy walking. The seismic response from geophones, used in the
analysis, were collected on two different types of test fields: namely a gravel road and a moist
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soil road. As the characteristics of the seismic response vary significantly with the change of
soil properties [12], the two ground types are considered to be two different physical contexts.
Eighty experiments (40 for normal walking and 40 for stealthy walking), constituting of two
different human subjects, were performed for each context. The seismic sensors (geophones)
were buried approximately 15 cm deep underneath the soil surface. Human subjects passed by
the sensor sites at a distance of approximately 2 m. The geophone signal was acquired at a
sampling frequency of 4 kHz for 10 seconds for each experiment. The main task of the context-
aware event classifier is to discriminate between normal and stealthy walking over different soil
types with high accuracy.

3.2 Data preprocessing and Feature extraction

The feature extraction method used in this work is built upon the concept of symbolic dynamic
filtering (SDF) [16], where (finite-length) time series data are partitioned to produce symbol
strings that, in turn, generate a special class of probabilistic finite state automata (PFSA). As
described in [16], there are two pertinent steps in SDF feature extraction: (i) Symbolization
(also known as quantization) of the time series based on a selected alphabet Σ of symbols
{σ|σ ∈ Σ}, and (ii) Construction of probabilistic finite state automata (PFSA).

For data symbolization, the data sets are partitioned by maximum entropy partitioning
(MEP) [15]. MEP maximizes the entropy of the generated symbols and therefore, each gener-
ated symbol is chosen so as to appear approximately equally often in the training set.

The PFSA we construct, calledD-Markov machines, have a deterministic algebraic structure
and their states are represented by symbol blocks of lengthD or less. The generalizedD-Markov
machines [1] are constructed in two steps: (i) State splitting : The states are split based on
their information contents, and (ii) State merging : Two or more states (of possibly different
lengths) are merged together to form a new state without any significant loss of the embedded
information. After theD-Markov machine is constructed, the stationary state probability vector
is computed and used as the low-dimensional feature representing the associated time series for
future classification purpose.

In the signal preprocessing step of analysis of our experimental data, the DC component
of a seismic signal was first eliminated, resulting in a zero mean signal. Then, the signal was
partitioned using the maximum entropy partitioning approach with a symbol size of 7. The
maximum number of allowable states of theD-Markovmachine was varied, and the classification
performance on a validation test set was found in each case. This process was repeated 3 times
to obtain average error. The number of states was then chosen to be 10, as it resulted in
the best performance on the validation test set (Fig. 4). The features thus obtained from a
time-series data set, i.e. the stationary state probability vector of the D-Markov machine thus
represented, were determined and used for classification.

3.3 Context Alphabet Construction

The entire data set was randomly divided into training (60%) and test (40%) sets ten times
and the entire analysis was repeated for each combination of training and testing sets. Graph-
theoretic techniques were then applied on the training data to get the context alphabet. The
results were as follows:

1. Supervised Modeling: The features with the same event labels and same type of soil
are used to model the contextual observation densities. The k-nearest neighbor (k=6)
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Figure 1: Gravel Soil Figure 2: Moist Soil

0 2 4 6 8 10
−0.5

0

0.5

time

se
is

m
ic

 r
es

po
ns

e

normal walking

0 2 4 6 8 10
−0.5

0

0.5

time

se
is

m
ic

 r
es

po
ns

e

stealthy walking

1 2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

state index

pr
ob

ab
ili

ty

1 2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

state index

pr
ob

ab
ili

ty

Figure 3: Signals and Features
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Figure 4: Selection of Number of States
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Figure 5: Modularity Score

algorithm was used as a nonparametric density modeling technique. Symmetric KL di-
vergence [11] was used as a metric of distance between the observation densities. Two max-
imal cliques were obtained one for each soil type; hence, the context alphabet size was 2.
Note the human-understandable factors can be associated with machine-understandable
context in supervised modeling. If a single maximal clique was obtained, it would imply
that the features obtained from each context element are similar and contextual classifi-
cation would not significantly improve performance.

2. Unsupervised Modeling: Figure 5 shows a modularity plot on a sample dataset of
normal walking. The modularity of the graph configuration is highest when there are
two communities. Hence, observing the modularity plot gives the number of communities
present, essentially yielding the context alphabet. Since the ground truth context labels
were available in the experiment, it was seen that the two communities detected by the
algorithm actually corresponded to the two different ground types.

3.4 Classification Performance

The proposed analysis was performed for three different cases and the corresponding results are
reported. The classifier used was a linear support vector machine [5]. The following cases have
been considered:
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1. No context knowledge: The training set had only the event labels. The knowledge
that the data had been collected under two different physical contexts (Sect. 3.1) was not
used in training; hence, just a single classifier was trained. This classifier was then used
to classify the event of the test set. The context knowledge was not available, yet the
error was found to be 14.53± 3.82% (Table. 1), which shows the robustness of the chosen
feature extraction method.

2. Perfect context knowledge: The training set was labeled with the event and context
symbols. A separate classifier was trained for each context symbol corresponding to a
ground type. A k-nearest neighbor classifier was trained and used to assign the context
symbol to the test set. The assigned symbol and the feature were used to classify the
event of this sample. Minimum classification error was obtained in this case (8 ± 2.4%
(Table. 1)), as expected.

3. With context identification: The training set had only the event labels. Both un-
supervised and supervised modeling yielded two context symbols. A k-nearest neighbor
classifier was used to assign the context symbol to each test sample. The assigned symbol
and the feature were then used to classify the event of this sample. The average perfor-
mance was 8.1%, almost same as case 2, albeit with a larger standard deviation (2.81%).
One reason for this could be that the extracted context might not always coincide with
the ground truth, so the resulting classifiers might not be optimal under the true context.

Table 1: Experimental Results: Error Percentage in the three cases

Case Mean Standard Deviation

1 14.53 3.82
2 8 2.4
3 8.1 2.81

This experiment shows that, if a sensor has been trained with data collected from several
sites, then during operation, it can first learn about the soil type and use that knowledge for
better target classification. Also, in this experiment, the benefit of context-aware adaptation of
classifiers is clearly visible as the performance improves by choosing the appropriate classifier
for the estimated context.

4 Summary, Conclusions, and Future Research

This paper proposes a dynamic data-driven approach to extract context from sensor data for
context-aware pattern recognition. A formal definition of machine-understandable context is
presented. Contexts are extracted from Generalized D-Markov features, which are derived from
sensor data via graph-theoretic methods (maximal clique finding, modularity based clustering)
using both supervised and unsupervised approaches. Finally, contextual decision adaptation is
performed via modification of the classifier. The proposed approach was validated in field exper-
iments (seismic responses of human walking) relevant to border control problem. Context-aware
event classification shows a significant improvement over non-contextual classification in dis-
criminating different types of walking on different soil types. Intended topics of future research
include machine learning of new context states and context evolution modeling for real-time
classifier adaptation, as well as dynamic data-driven contextual adaptation of heterogeneous
sensor networks for cross-sensory event classification.
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